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Abstract
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1 Introduction

The non-cooperative theory of bargaining, introduced by Stahl (1972) and Rubinstein

(1982), deals with situations in which two players seek an agreement on how to divide a

given surplus. Once an agreement is reached, each player receives his share and the game

ends with the two players never interacting again in the future. However, as Schelling

(1960) noted many years ago, in many real life situations the bargaining parties negotiate

over not one but multiple issues. While bargaining over an issue today, the players may,

for instance, know that in the future they will come to the negotiating table again to

bargain over a new issue altogether.

In this paper, we build a model to capture such a situation. We assume that there

are two pies, one of which is already on the table.1 The other pie can only be consumed

starting at a future date. The assumption that the second pie is available only in the

future may be interpreted as a physical constraint on the environment, or may capture

the idea that some issues are not yet ripe for discourse. We assume that the players

have opposite valuations for the two pies: one player values the first pie more than the

second, while the other player values the second pie more than the first. The players

can either bargain over the two pies as they arrive, or they can wait for the second pie

to arrive so as to bargain over the two pies simultaneously. We first consider a model in

which the players are constrained to make complete offers : that is, each pie must either

be completely consumed or remain completely unconsumed. We show that players may

wait for the second pie to arrive before coming to an agreement on the first.

Although our setup is highly stylized, there are many real life situations that have its

structure. Consider the following example. An economics department has two openings

in the job market—one for a political economist and one open search. Suppose that a

candidate appears that is attractive to both the political economy faculty and those who

specialize in theory, but more so to the political economists. To hire her, the political

economists need the support of the theorists, and would like to extend her an offer

under the quid pro quo understanding that when an excellent theorist who does some

political economy arrives on the market, they will support the theorists in their bid to

make that candidate an offer. But the political economists cannot commit to supporting

the theorists in any of their future bids. If the department makes an early offer to the

existing candidate, then the political economy faculty can afford to be obstinate in the

future and seek another of their own for the open search. Because of the commitment

1We use the terms “pie,” “issue” and “surplus” interchangeably.
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problem, the theorists may want to wait and see if the candidate that they are looking

for appears on the market in the same year. If she does, then the department could

make the two offers simultaneously. But if they wait too long, the department suffers

the risk that the existing candidate will take a job at a competing institution. In other

words, delay is costly.

The example provides some insight into the role of commitment problems in pro-

ducing delays in bargaining situations. If the players in our model come to an early

agreement on the first pie (and immediately consume the benefits of this agreement),

then the subgame that starts when the second pie arrives is a standard bargaining game a

la Rubinstein. Consequently, the players will split the second pie almost evenly, and this

division will be independent of how they value the second pie with respect to the first.

On the other hand, if the players delay an agreement on the existing pie until the second

one arrives, then each player will receive most of the pie he values more. Therefore, if

the discounting costs are not too large, then the players will delay an agreement on the

first pie so as to bargain over the two pies simultaneously. However, if the discounting

costs are large, then the players will reach an immediate agreement.

After analyzing the case of complete offers, we consider a model that is otherwise the

same, except that players are able to make partial offers. In this case, the players can

reach agreements in which they consume any fraction of the pies that are on the table,

leaving the remainder for future consumption. We find that in this setting, the players

may come to a partial agreement on the first pie, completing the agreement only when the

second one arrives. More precisely, for some parameter values the players will consume

some (but not all) of the first pie in the initial period, and the remainder of it in the period

in which the second pie arrives. Therefore, even the partial offers case features a form

of delay; but, more importantly, it provides a framework for understanding situations in

which we may observe partial agreements.

The intuition for the partial offers case is as follows. Players in our model face the

following tradeoff: they can either reach a complete agreement on the first pie in the

initial period and not incur any cost of delay, or they can delay reaching a complete

agreement on the first pie until the arrival of the second pie and thus achieve an efficient

allocation. In the complete offers case, players resolve this tradeoff by either reaching a

complete agreement on the first pie at the start of the game (and avoiding the costs of

delay altogether) or by delaying all consumption of the first pie until the arrival of the

second. In the case of partial offers, players may be able to obtain a larger payoff by

reaching a partial agreement over the first pie in the first period, and completing this
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agreement once the second pie arrives.

We stress that if the players could commit to an agreement on the second issue

before it is on the table (for instance, if they could write enforceable contracts), then

they would always be able to implement an efficient allocation. However, in the absence

of a commitment mechanism, any early agreement that the players may reach on the

second issue will be violated with certainty once it is finally on the table. Therefore,

when players lack commitment, inefficiencies arise naturally as a result of the timing

of the game (the fact that the second pie is not yet on the negotiating table) and the

assumption that the players attach different values to each of the pies. In particular, if

the players value the two pies the same, then they always reach complete and immediate

agreements on both pies. But if there is an asymmetry in valuations the players may

delay reaching a complete agreement on the first issue until the second one is finally on

the table.

Related literature. Our paper is related primarily to the literature on bargaining im-

passes. Kennan and Wilson (1993) survey the literature on bargaining delays in models

with incomplete information. Merlo and Wilson (1995, 1998) consider a stochastic bar-

gaining model in which players may delay an agreement as they wait for the pie to

increase in size. Abreu and Gul (2000) show that delays may arise when players can

build a reputation for being irrational. Yildiz (2004) shows that players may delay an

agreement if they hold optimistic beliefs about their future bargaining power and they

update these beliefs as the game proceeds.2 Finally, Compte and Jehiel (2004) introduce

a bargaining model with complete information and history-dependent outside options,

and show that parties will make gradual concessions until reaching an agreement.

Because of the presence of the second issue, our paper is also related to the literatures

on repeated bargaining and multi-issue bargaining. Muthoo (1995) develops a model of

repeated bargaining in which, unlike our setting, a new issue emerges only after players

have reached an agreement on the existing one. Fershtman (1990) studies a multi-issue

bargaining game in which players bargain over the issues sequentially, and in which

agreements are implemented after all issues have been settled. He shows that the agenda

(i.e., the order in which issues are negotiated) affects the outcome of the game, and that

the outcome might be inefficient if players have conflicting valuations over the issues at

stake. Busch and Hortsmann (1997) also study the effect of the bargaining agenda on

allocations. Their model also features two pies, and players can reach an agreement on

2See also Babcock and Loewenstein (1997) for some empirical evidence on delays and optimism.
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the second pie only after agreeing on the first. Our model differs from these papers in

two respects. First, in our model the second pie may arrive before the players reach

an agreement on the first one. Second, and more importantly, we are concerned with

bargaining delays and partial agreements rather than the effect of the agenda on the

allocation of the surplus.3

Finally, our paper is also related to the literature on the hold-up problem (Grout

1984; Grossman and Hart 1986). As in the hold-up problem, the source of inefficiency

in our model arises from the lack of commitment. In particular, players in our model

may delay agreement over the first pie since they cannot commit to any allocation of

the second pie until it finally arrives.

2 The Model

There are two players i = 1, 2 and two pies X and Y . Time is discrete and indexed

by t = 0, 1, 2, .... If xit and yit are the shares of pies X and Y consumed by player i in

period t, then the players’ payoffs at period t are

u1(x1t, y1t) = x1t + ry1t

u2(x2t, y2t) = rx2t + y2t

where 0 < r ≤ 1 is player 1’s marginal rate of substitution between pies and ∞ >

1/r ≥ 1 is the corresponding quantity for player 2.4 A consumption path is denoted

{((x1t, x2t) , (y1t, y2t))}∞t=0. Player i’s preferences over consumption paths are represented

by
∑

t≥0 δ
tui(xit, yit), where δ < 1 is a common discount factor.

In every period, each of the two players is recognized with probability 1/2 to be the

proposer. The proposer then offers nonnegative consumption shares ((x1t, x2t), (y1t, y2t)).

The other player, the responder, will then either accept or reject the offer. If the offer

is accepted, then the proposed shares are consumed and the period ends; if the offer is

rejected, then the players consume 0 of each pie and the period ends.

The only restriction on offers is that they be feasible, and feasibility is state-contingent.

In each period the state is given by (j, s) where j = 1, 2 is the identity of the proposer

and s determines the fractions of pies X and Y that can be consumed in that period.5

3Inderst (1998) and In and Serrano (2003, 2004) study multi-issue bargaining settings in which the
agenda is endogenous.

4The assumption that players have diametrically opposite valuations is for simplicity. Indeed, our
qualitative results would continue to hold if we instead assumed more generally that u1(x1t, y1t) =
x1t + r1y1t and u2(x2t, y2t) = r2x2t + y2t, with r1, r2 ∈ (0, 1).

5We sometimes abuse terminology and refer only to component s as the state.
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We assume that pie X exists beginning in period 0, and thus part or all of it may be

consumed starting in the first period. On the other hand, pie Y arrives stochastically:

if it has not arrived by period t, then it arrives at the beginning of period t + 1 with

probability p < 1.6 Obviously, no fraction of pie Y can be consumed before it arrives.

Let λt = 1 −
∑

τ<t(x1τ + x2τ ) denote the fraction of pie X not yet consumed by

period t, with the convention that λ0 = 1. We will later argue that in any subgame in

which pie Y has already arrived, the players will come to an agreement over all of pie

Y and all of the fraction of pie X that has not yet been consumed (and thus the game

will effectively end). In other words, if pie Y arrives in period t, and λt is the fraction

of pie X not yet consumed by that period, then in equilibrium the players will consume

the total shares x1t + x2t = λt and y1t + y2t = 1 in period t. This implies that the only

relevant periods are those up to (and including) the period at which pie Y arrives. For

such periods t, the state s can be written either as λtX if pie Y has not yet arrived, or

λtXY if pie Y arrived in period t. Feasibility of offers in a given state s = λX, λXY

then requires that7

x1t + x2t ≤ λ and

y1t + y2t ≤ ψ =

{
0 if s = λX
1 if s = λXY .

(1)

Consider states (j, s) with s = λX or λXY . If s = 0X, then we say that the players

are waiting for pie Y to arrive (having already consumed all of pie X). We say that the

players reach a complete agreement at state (j, s), s 6= 0X, if they consume x1t +x2t = λ

and y1t + y2t = ψ. We say that the players delay at state (j, s), s 6= 0X, if they consume

x1t + x2t = 0 and y1t + y2t = 0. We say that the players reach a partial agreement at

state (j, s) in all other cases, i.e. if they do not delay, are not waiting, or do not reach

a complete agreement.

Our equilibrium concept is subgame perfect equilibrium (SPE). In the next section,

we characterize the SPE of the game with complete offers; i.e., the game in which

proposals must satisfy (1) with both inequality signs replaced by equalities. Section 4

characterizes the SPE of the game in which the constraints in (1) are satisfied as stated.

6The assumption that the second pie arrives stochastically is not crucial for our results. For instance,
the qualitative insights of the model would continue to hold if instead we assumed that the second pie
arrives at some fixed date in the future.

7Formally, offers are denoted ((x1t, x2t), (y1t, y2t)) but in states s = λX it is redundant to specify
0-consumption of pie Y ; therefore, in these states we write offers simply as (x1t, x2t).
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3 Complete Offers

In this section, all offers must be complete. In other words, we assume that the feasibility

constraints are given by (1) with the two inequalities replaced by equalities. This as-

sumption further simplifies the states: in each period, we have s ∈ {0X, 0XY, 1X, 1XY }.

Theorem 1. (i) There are unique SPE payoffs. (ii) In all SPE, the players reach

complete agreements in all subgames beginning in states 0XY and 1XY . (iii) There

exists a function φ(p, δ, r), strictly increasing in p and δ and strictly decreasing in r, such

that for all subgames beginning in state 1X, and all SPE, the players reach a complete

agreement when φ(p, δ, r) < 0 and they delay when φ(p, δ, r) > 0.8

Proof. (i) & (ii) Standard arguments can be used to show that for all subgames beginning

in states of the form (j, 0XY ) and (j, 1XY ), the SPE payoffs are unique, and the players

reach complete agreements in all such states. (Appendix A computes the equilibrium

offers as a function of the parameters for these states.) Let vi(j, s) be the equilibrium

payoff to player i in state (j, s), s = 0XY , 1XY , and let wi (s) = 1
2
vi(1, s) + 1

2
vi(2, s). If

s = 0X, players are waiting for pie Y to arrive, so

wi(0X) = δ (pwi(0XY ) + (1− p)wi(0X))⇒ wi(0X) = αwi(0XY ) (2)

where α ≡ δp/(1− δ(1− p)). This implies that SPE payoffs in states of the form (j, 0X)

are also unique. Finally, in Appendix B, we adapt the proof of Shaked and Sutton (1984)

to show that SPE payoffs in states of the form (j, 1X) are also unique.

(iii) Since SPE payoffs are unique, we can let vi(j, s) denote the unique equilibrium

payoff for player i in state (j, s). It is also useful to define

wi (s) =
1

2
vi(1, s) +

1

2
vi(2, s) and W (s) = rw1(s) + w2(s) (3)

for all i = 1, 2, s = λX, λXY and λ ∈ {0, 1}. The quantity wi(s) is player i’s ex

ante expected equilibrium payoff for state s, and W (s) can be interpreted as the total

(normalized) equilibrium payoff for state s.

Now suppose that when s = 1X, there exists an offer that, if accepted, would give

both players larger payoffs than the payoffs that they would receive from an offer being

rejected. In other words, suppose that there exists a number x ∈ [0, 1] such that

x+ δ (pw1(0XY ) + (1− p)w1(0X)) > δ (pw1(1XY ) + (1− p)w1(1X))

r(1− x) + δ (pw2(0XY ) + (1− p)w1(0X)) > δ (pw2(1XY ) + (1− p)w2(1X)) (4)

8The omitted case, φ(p, δ, r) = 0, corresponds to a knife-edge set of parameters for which there are
SPE supporting both delay and complete agreement at state 1X.
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Then, it would have to be the case that there is complete agreement at state 1X;

otherwise, if there is delay, then the proposer could deviate to make an offer that the

responder would have to accept, and would also make the proposer strictly better off.

Combining the inequalities in (4) and using the definition of W (·) in (3), such a

number x ∈ [0, 1] exists if and only if

r + δpW (0XY ) + δ(1− p)W (0X) > δpW (1XY ) + δ(1− p)W (1X). (5)

Next, note that if there is complete agreement at state s = 1X then

W (1X) = rw1(1X) + w2(1X) = r + rw1(0X) + w2(0X)

= r +W (0X) = r + αW (0XY ) (6)

where the last equality follows from (2). Substituting (6) into (5) and rearranging gives

r + αW (0XY ) > αW (1XY ). (7)

In Appendix A, we explicitly compute W (λXY ) (where λ ∈ {0, 1}) as a function of the

parameters δ and r. Substituting these expressions in (7) and rearranging gives

φ(p, δ, r) ≡ p− 2r(1− δ)(2− δ + rδ)

δ2(1− r)(1 + r2)
< 0. (8)

Therefore, if (8) is satisfied, then in all SPE the players must reach a complete agreement

whenever s = 1X.

Conversely, suppose that there is no number x ∈ [0, 1] that simultaneously satisfies

the inequalities in (4) even when both inequality signs are replaced by weak inequalities.

In this case, there must be delay at state s = 1X, since there is no division of pie X that

gives both players a payoff larger than what they would get by delaying. This implies

W (1X) = δ(pW (1XY ) + (1 − p)W (1X)), so W (1X) = αW (1XY ). Since we know

from (2) that W (0X) = αW (0XY ), we can substitute these expressions into (5) (with

reverse inequality) and rearrange to get φ(p, δ, r) > 0. Therefore, the players delay at

state s = 1X if φ(p, δ, r) > 0.

The idea behind the proof of part (iii) in Theorem 1 is as follows. If φ(p, δ, r) < 0,

then there exists a number x ∈ [0, 1] that satisfies the two inequalities in (4). But this

means that whoever is the proposer in state 1X can find an offer that gives him and

the responder payoffs that are strictly larger than their respective continuation values.

Consequently, there can be no equilibrium with delay at state 1X; and, therefore, there
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must be complete agreement. On the other hand, if φ(p, δ, r) > 0, then there is no

possible division of pie X that satisfies both of the inequalities in (4) even when the two

strict inequality signs are replaced by weak inequalities. In words, the proposer cannot

find an offer that is both incentive compatible for him to make, and incentive compatible

for the responder to accept. As a result, there must be delay at state 1X. Note that

limr→0 φ(p, δ, r) = p > 0, so there exists a non-empty set of parameters under which

players delay whenever s = 1X.

The proof of Theorem 1 shows that whether or not there is agreement in state

1X does not depend on the identity of the proposer. Indeed, the proposer (regardless

of his identity) will be able to find an offer that is (strictly) incentive compatible for

both players only if inequality (5) holds. Intuitively, players will come to an immediate

agreement at t = 0 only if there exists a division of the first surplus that gives each of

them a payoff that is at least as large as the payoff they would get by waiting until pie

Y arrives; and whether such a division of the pie X exists is independent of the identity

of the proposer.

The function φ(p, δ, r) is strictly increasing in δ and p and strictly decreasing in r.

This means that players are more likely to delay an agreement when δ and/or p are large,

and are less likely to delay an agreement when r is large. The intuition behind these

comparative statics is as follows. The payoff that players get from delaying an agreement

until pie Y arrives is increasing in both δ and p: a larger δ implies a lower cost of delay,

while a larger p means that players expect pie Y to arrive earlier. Therefore, an increase

in either of these parameters “tightens” the inequality in (5), and makes it harder for

players to reach an early agreement on pie X. On the other hand, an increase in r

decreases the efficiency gains from delaying until the arrival of pie Y and bargaining

over the two pies jointly, since now the differences in the players’ valuations are smaller.

As a result, inequality (5) becomes “looser,” making it easier for the players to reach an

immediate agreement.

We stress that the equilibrium outcome of the bargaining game is always inefficient,

either because players delay, or because immediate agreements on each of the issues

involve inefficient allocations of the pies. Indeed, if the players reach an immediate

agreement on pie X, then they both consume a positive fraction of each pie, while an

efficient allocation must have one player consuming all of the pie he values more.

Finally, the results in Theorem 1 can be generalized to settings in which pies X and

Y are of different size. For instance, suppose that pie Y is of size ρ > 0, and normalize X

to be of size 1. By arguments similar to those in the proof of Theorem 1, in this setting
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there exists a function φ̃(p, δ, r, ρ), increasing p, δ and ρ and decreasing in r, such that

players delay at state 1XY whenever φ̃(p, δ, r, ρ) > 0. That is, the set of parameters for

which there is delay is increasing in the size of the pie Y .

4 Partial Offers

We now suppose that all proposals must satisfy the feasibility constraints in (1) as stated.

That is, in this section we consider the bargaining game in which players can make partial

agreements over existing pies, and leave part of any pie for future consumption. In this

setup the possible states in any period t are s = λX, λXY with λ ∈ [0, 1]. The first

result of this section shows that the states λXY are indeed terminal.

Lemma 1. In every SPE, the players reach a complete agreement when the state is

λXY with λ ∈ [0, 1]. Moreover, the SPE payoffs for these states are unique.

Proof. See Appendix C.1

Lemma 1 shows that in all SPE, players will always reach a complete agreement

at states λXY with λ ∈ [0, 1]. At such states, proposer j will make a feasible offer

((xj1, x
j
2), (y

j
1, y

j
2)) that maximizes his total payoff, subject to the constraint that the

offer is acceptable to player i:

max
xj1,x

j
2,y

j
1,y

j
2≥0

uj
(
xjj, y

j
j

)
subject to (9)

ui
(
xji , y

j
i

)
≥ δ

(
1

2
ui
(
xji , y

j
i

)
+

1

2
ui
(
xii, y

i
i

))
xj1 + xj2 ≤ λ, yj1 + yj2 ≤ 1

The offers that solve (9) for j = 1, 2 depend on the fraction λ of pie X that remains.

When λ is close to 1, player 2’s offer will be such that he will keep all of pie Y for

himself, since he can get player 1 to accept his proposal by offering him most of what

remains of pie X. On the other hand, when λ is very low any offer that gives player 2

the entirety of pie Y will be rejected by player 1, since such an offer will give player 1 at

most a fraction λ of pie X. In this case, player 2 must offer player 1 a fraction of pie Y

in order for player 1 to accept the offer. In Appendix A, we show that the the threshold

λ̂(δ, r) = rδ
2−δ ∈ (0, 1) defines the critical point at which player 2 must offer some of pie

Y to player 1. Note that at states λX with λ ≤ λ̂(δ, r) player 2 has a strong incentive

to delay until Y arrives, since any further consumption of pie X substantially reduces
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his payoff in states in which pie Y has arrived. In contrast, when λ > λ̂(δ, r) player 2’s

incentive to delay until pie Y arrives is weaker.

Let φ̂(p, δ, r) = p − 1−δ
δ

2r2

1−r2 , and note that φ̂(p, δ, r) is strictly increasing in p and δ

and strictly decreasing in r.

Theorem 2. (i) There are unique SPE payoffs. (ii) For any subgame beginning in state

λX, we have the following:9

1. if φ̂(p, δ, r) < 0, then in all SPE the players reach a complete agreement, and

2. if φ̂(p, δ, r) > 0, then in all SPE the players reach a partial agreement (consuming

x1 + x2 = λ− λ̂(δ, r)) when λ > λ̂(δ, r), and they delay when λ ≤ λ̂(δ, r).

Proof. See Appendix C.2

Unlike the case of complete offers (Section 3), when players can make partial offers,

the unique equilibrium always involves some form of agreement (either complete or

partial) in the initial round of negotiations. Indeed, at any state λX with λ > λ̂(δ, r)

the players reach a partial agreement on pie X if φ̂(p, δ, r) > 0 and then delay until Y

arrives; and they reach a complete agreement on pie X if φ̂(p, δ, r) < 0.

To understand the intuition behind Theorem 2, first consider the case in which

φ̂(p, δ, r) > 0 and the state is λX with λ ≤ λ̂(δ, r). Lemma 2 in the Appendix shows

that players will always delay at these states. The intuition behind this is as follows.

Note first that φ̂(p, δ, r) > 0 implies that the discounting costs are small relative to the

efficiency gains from bargaining over the two pies together. Moreover, when λ ≤ λ̂(δ, r),

consuming pie X (either partially or in its entirety) has a large cost in terms of a less

efficient allocation once pie Y arrives. In this case, the costs of consuming pie X outweigh

the benefits; as a result, at these states there is no offer involving positive consumption

of pie X that is incentive compatible for both players, so there must be delay.

Next, consider states λX with λ > λ̂(δ, r). Lemma 3 in the Appendix shows that

if φ̂(p, δ, r) > 0, then in every SPE, the proposer will make an offer to consume a total

λ− λ̂(δ, r) of pie X. Intuitively, at states λX with λ > λ̂(δ, r) the total marginal benefit

of consuming an additional slice of pie X outweighs the cost of implementing a less

efficient allocation of the pies in the period that pie Y arrives; hence, in this case players

must consume a fraction λ − λ̂(δ, r) of pie X, leaving a fraction λ̂(δ, r) to negotiate

9As with the function φ(p, δ, r) in Theorem 1, the case where φ̂(p, δ, r) = 0 is a knife-edge case that
supports equilibria with both partial and complete agreements.
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together with pie Y in the period in which it arrives. Lemma 4 uses this result to derive

bounds on the players’ supremum and infimum SPE payoffs. Lemma 5 then uses these

bounds, and an argument similar to those in Shaked and Sutton (1984), to show that

all SPE are payoff equivalent.

Finally, consider the case where φ̂(p, δ, r) < 0, so that delaying the consumption of

pie X until pie Y arrives is costly relative to the efficiency gains accrued from bargaining

over the two pies simultaneously. One can show that, in this case, the proposer will find

it optimal to make an offer in which the players consume all of the remainder of pie X at

any state λX, regardless of whether λ > λ̂(δ, r) or λ ≤ λ̂(δ, r). Using this observation,

one can again derive bounds on the players’ supremum and infimum SPE payoffs and

apply arguments similar to those in Shaked and Sutton (1984) to show that all SPE are

payoff equivalent.

The threshold φ̂(p, δ, r) is comparable to the threshold φ(p, δ, r) that we derived for

the case of complete offers. According to Theorem 2, the players will reach a partial

agreement on pie X at the beginning of the game if φ̂(p, δ, r) > 0, and they will reach a

complete agreement if φ̂(p, δ, r) < 0. Similarly, when offers are restricted to be complete,

Theorem 1 shows that the players will delay an agreement on pie X if φ(p, δ, r) > 0, and

they will reach a complete agreement if φ(p, δ, r) < 0. One can show that φ(p, δ, r) <

φ̂(p, δ, r) for all 0 < p, δ, r < 1. In other words, there is a region of the parameter space

in which the players would come to a complete agreement on pie X if restricted to make

complete offers, but would reach only a partial agreement if they had the option. In this

sense, the added flexibility from partial offers may in fact hinder the chances of reaching

a complete agreement at the start of the game.

As in the complete offers case, the results of Theorem 2 can also be generalized to

settings in which the two pies have different sizes. Let pie X be of size 1 and pie Y be

of size ρ > 0. In this case, the agreement that players reach at states λXY will again

depend on the fraction λ of pie X that remains to be consumed. In particular, there

exists λ̃(δ, r, ρ), increasing in δ, r and ρ, such that player 2 offers a positive share of pie

Y to player 1 whenever he is proposer at states λXY if λ < λ̃(δ, r, ρ), but offers a zero

share of pie Y to player 1 if λ ≥ λ̃(δ, r, ρ). In this case, if delaying the consumption of

pie X until Y arrives is costly, the players will reach a partial agreement on X at the

start of the game, consuming a fraction 1 − λ̃(δ, r, ρ), and they will then complete this

agreement in the period in which pie Y arrives. Since λ̃(δ, r, ρ) is increasing in ρ, the

fraction of pie X that players consume at the beginning of the game is decreasing in the

size of pie Y .
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Appendix

A. Equilibrium Offers for States λXY

In this section we compute the offers players make in equilibrium at states λXY . This

results will be used both in the case of complete offers (Section 3) and the case of partial

offers (Section 4.)

Let s = λXY . (In the case of Section 3, λ ∈ {0, 1}, whereas in Section 4 we may

have any λ ∈ [0, 1].) Denote by
((
xj1, x

j
2

)
,
(
yj1, y

j
2

))
the consumption shares proposed by

player j when he is the proposer. These offers solve the following problems

max
x11,x

1
2,y

1
1 ,y

1
2≥0

x11 + ry11 subject to (A1)

rx12 + y12 ≥ δ

(
1

2

(
rx12 + y12

)
+

1

2

(
rx22 + y22

))
x11 + x12 ≤ λ, y11 + y12 ≤ 1

max
x21,x

2
2,y

2
1 ,y

2
2≥0

rx22 + y22 subject to (A2)

x21 + ry21 ≥ δ

(
1

2

(
x11 + ry11

)
+

1

2

(
x21 + ry21

))
x21 + x22 ≤ λ, y21 + y22 ≤ 1

Problem (A1) says that player 1’s proposal at state λXY must maximize his payoff

subject to being feasible and to being acceptable to player 2. Problem (A2) says that

player 2’s proposal at state λXY must maximize his payoff subject to being feasible and

to being acceptable to player 1. The solutions to these problems are as follows:

If λ ≥ λ̂(δ, r) =
rδ

2− δ
, then((

x11, x
1
2

)
,
(
y11, y

1
2

))
=

(
(λ, 0) ,

(
2(1− δ)(2− δ(1 + rλ))

4(1− δ) + δ2(1− r2)
, 1− 2(1− δ)(2− δ(1 + rλ))

4(1− δ) + δ2(1− r2)

))
((
x21, x

2
2

)
,
(
y21, y

2
2

))
=

((
λ− 2(1− δ)(λ(2− δ)− rδ)

4(1− δ) + δ2(1− r2)
,
2(1− δ)(λ(2− δ)− rδ)
4(1− δ) + δ2(1− r2)

)
, (0, 1)

)
(A3)

If, on the other hand, λ ≤ λ̂(δ, r) then((
x11, x

1
2

)
,
(
y11, y

1
2

))
=

(
(λ, 0) ,

(
1− δ(r + λ)

2r
,
δ(r + λ)

2r

))
((
x21, x

2
2

)
,
(
y21, y

2
2

))
=

(
(λ, 0) ,

(
rδ − λ(2− δ)

2r
, 1− rδ − λ(2− δ)

2r

))
(A4)
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The players’ payoffs at state (j, λXY ) are then given by v1(j, λXY ) = xj1 + ryj1 and

v2(j, λXY ) = rxj2+yj2, and their ex ante expected payoffs are wi(λXY ) = 1
2
vi(1, λXY )+

1
2
vi(2, λXY ), i = 1, 2. From (A3) and (A4) we calculate

w1(λXY ) =

{
2r(1−δ)+λ(2−δ−r2δ)
4(1−δ)+δ2(1−r2) if λ > λ̂(δ, r)

r+λ
2

if λ ≤ λ̂(δ, r)

w2(λXY ) =

{
(2−δ−r2δ)+2λr(1−δ)
4(1−δ)+δ2(1−r2) if λ > λ̂(δ, r)

r+λ
2r

if λ ≤ λ̂(δ, r).
(A5)

From these, we can further compute the total (normalized) payoff

W (λXY ) = rw1(λXY ) + w2(λXY ) =

{
2r(1−δ)(r+λ)+(1+rλ)(2−δ−r2δ)

4(1−δ)+δ2(1−r2) if λ > λ̂(δ, r)
(1+r2)(r+λ)

2r
if λ ≤ λ̂(δ, r).

(A6)

Finally, for results proven in Appendix C, it will be useful to note that

W ((λ− κ)XY ) =

{
W (λXY )− ξκ if λ̂(δ, r) ≤ λ− κ ≤ λ ≤ 1

W (λXY )− ζκ if 0 ≤ λ− κ ≤ λ ≤ λ̂(δ, r).
(A7)

where ξ ≡ r(2−δ−r2δ)+2r(1−δ)
4(1−δ)+δ2(1−r2) and ζ ≡ r

2
+ 1

2r
.

B. Uniqueness of Equilibrium Payoffs in States s = 1X

Let vi(j, 1X) and vi(j, 1X) denote the supremum and infimum SPE payoffs of player i in

state (j, 1X), and define wi (1X) = 1
2
vi(1, 1X) + 1

2
vi(2, 1X) and wi (1X) = 1

2
vi(1, 1X) +

1
2
vi(2, 1X). To show that vi(j, 1X) = vi(j, 1X) it suffices to show that wi (1X) =

wi (1X). At state (1, 1X), player 2’s payoff from accepting an offer (1 − x, x) is rx +

w2 (0X). However, player 2 can guarantee himself a payoff δ(pw2(1XY )+(1−p)w2(1X))

by rejecting the offer. Thus, player 2 will only accept the offer if

x ≥ δ

r
(pw2 (1XY ) + (1− p)w2 (1X))− w2 (0X)

r
. (B1)

Player 1’s payoff from making the offer (1− x, x) is 1− x+ w1 (0X), provided player 2

accepts. But player 1 could also make an offer that player 2 rejects, in which case he gets

a continuation payoff of at most δ (pw1 (1XY ) + (1− p)w1(1X)). Using this together

with (B1), it follows that

v1(1, 1X) ≤ max

{
1 + w2(0X)

r
− δ

r
(pw2 (1XY ) + (1− p)w2 (1X)) + w1 (0X) ,

δ (pw1 (1XY ) + (1− p)w1(1X))

}
(B2)
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On the other hand, at state (2, 1X) it must be that

v1(2, 1X) ≤ δ (pw1 (1XY ) + (1− p)w1(1X)) . (B3)

Combining (B2) and (B3) yields

w1 (1X) ≤ 1

2
max

{
1 + w2(0X)

r
− δ

r
(pw2 (1XY ) + (1− p)w2 (1X)) + w1 (0X) ,

δ (pw1 (1XY ) + (1− p)w1(1X))

}
+

1

2
δ (pw1 (1XY ) + (1− p)w1(1X)) (B4)

Using similar arguments, we get

w1 (1X) ≥ 1

2
max

{
1 + w2(0X)

r
− δ

r
(pw2 (1XY ) + (1− p)w2 (1X)) + w1 (0X) ,

δ (pw1 (1XY ) + (1− p)w1 (1X))

}
+

1

2
δ (pw1 (1XY ) + (1− p)w1(1X)) (B5)

Finally, subtracting (B5) from (B4) we get

w1 (1X)− w1 (1X) ≤ δ (1− p)
2− δ (1− p)

max

{
1

r
(w2 (1X)− w2 (1X)) , (w1(1X)− w1 (1X))

}
.

(B6)

A symmetric argument for player 2 establishes that

w2 (1X)− w2 (1X) ≤ δ (1− p)
2− δ (1− p)

max {r (w1 (1X)− w1 (1X)) , (w2 (1X)− w2 (1X))} .

(B7)

There are two possible cases:

1. r (w1 (1X)− w1 (1X)) ≥ w2 (1X)− w2 (1X), and

2. r (w1 (1X)− w1 (1X)) ≤ w2 (1X)− w2 (1X).

In case (1), from (B6) we have w1 (1X) − w1 (1X) ≤ δ(1−p)
2−δ(1−p)(w1(1X) − w1 (1X)), so

w1(1X) = w1 (1X). Since r(w1 (1X) − w1 (1X)) ≥ w2 (1X) − w2 (1X) ≥ 0 and r > 0,

this implies w2 (1X)−w2 (1X) = 0. In case (2), from (B7) we have w2 (1X)−w2 (1X) ≤
δ(1−p)

2−δ(1−p)(w2 (1X) − w2 (1X)), so w2 (1X) = w2 (1X). Since w2 (1X) − w2 (1X) ≥
r(w1 (1X) − w1 (1X)) ≥ 0 and r > 0 we have w1 (1X) − w1 (1X) = 0. We conclude

that wi (1X) = wi (1X), so vi(j, 1X) = vi(j, 1X), i = 1, 2, j = 1, 2. Hence, all SPE are

payoff equivalent.
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C. Proofs for Section 4

C.1. Proof of Lemma 1

Suppose s = λXY . Let vi(j, λXY ) and vi(j, λXY ) be the infimum and supremum SPE

payoffs to player i = 1, 2 when the state is (j, λXY ), j = 1, 2, and let wi(λXY ) =
1
2
vi(1, λXY ) + 1

2
vi(2, λXY ) and wi(λXY ) = 1

2
vi(1, λXY ) + 1

2
vi(2, λXY ). To prove

Lemma 1, let i 6= j and consider first player j’s problem of choosing an offer that

maximizes his payoff, subject to the constraint that player i’s payoff from accepting

this offer equals δwi(λXY ). Since there is positive discounting, at the solution to this

problem player j will make an offer such that he and player i consume all λ of pie X

and all of pie Y . The payoff that player j receives when this offer is accepted is a lower

bound on his SPE payoff, since player i must always accept such an offer. Similarly,

consider player j’s problem of choosing an offer that maximizes his payoff, subject to the

constraint that player i’s payoff from accepting this offer equals δwi(λXY ). Again, at

the solution to this problem, player j makes an offer such that he and player i consume

all λ of pie X and all of pie Y . In this case, the payoff that player j gets when this offer

is accepted is an upper bound on his SPE payoff, since this is the worst offer that player

i could possibly accept. Using these bounds on payoffs, one can apply arguments similar

to those in Shaked and Sutton (1984) to show that SPE payoffs at states s = λXY

are unique, and that these payoffs can be attained by a strategy profile in which the

proposer always makes an offer to consume all λ of pie X and all of pie Y . Finally, note

that these unique SPE payoffs are the same payoffs that would arise at states s = λXY

in a game in which players are constrained to make complete offers (as in Section 3).

C.2. Proof of Theorem 2

The proof is organized as follows. We first consider the case where φ̂(p, δ, r) = p −
1−δ
δ

2r2

1−r2 > 0. Lemma 2 shows that players delay in states λX with λ ≤ λ̂(δ, r) if

φ̂(p, δ, r) > 0. Lemma 3 then shows that at states λX with λ > λ̂(δ, r), the proposer

finds it optimal to make an offer to consume a total λ− λ̂(δ, r) of pie X. Lemma 4 uses

these results to derive upper and lower bounds on the players’ SPE payoffs at states λX

with λ > λ̂(δ, r). Using these bounds, Lemma 5 adapts the arguments in Shaked and

Sutton (1984) to show that SPE payoffs are unique at any state λX with λ > λ̂(δ, r).

Finally, Lemma 6 provides a sketch of the argument for the case where φ̂(p, δ, r) < 0. In

what follows, we write φ̂ and λ̂ in place of φ̂(p, δ, r) and λ̂(δ, r).
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We now introduce some more notation. Let the state be λX and let t = 0 denote the

period in which this state is reached. A consumption plan is a sequence {(x1t, x2t)}∞0 ,

with the interpretation that xit is the share of pie X that player i consumes in period

t conditional on the event that pie Y has not arrived. Define the consumption sequence

{µt}∞0 associated with the consumption plan {(x1t, x2t)}∞0 by µt = x1t+x2t for all t. Let

the total normalized payoff from consumption plan {(x1t, x2t)}∞0 be

U ({(x1t, x2t)}∞0 ) ≡ E

[
r
∞∑
t=0

δtu1 (x1t, y1t) +
∞∑
t=0

δtu2 (x2t, y2t)

]
,

where the xit’s are given by the consumption plan {(x1t, x2t)}∞0 until pie Y arrives, and

are determined in equilibrium along with the yit’s when pie Y arrives. If pie Y has

not arrived by period t − 1 it arrives in period t with probability p and players come

to an agreement over all of what is left of pie X and all of pie Y (by Lemma 1); with

probability 1 − p pie Y does not arrive in period t, so players consume x1t and x2t as

determined by the consumption plan. For any period t prior to the arrival of pie Y , we

have ru1(x1t, y1t)+u2(x2t, y2t) = rµt. On the other hand, if pie Y arrives in period t > 0

then ru1(x1t, y1t) + u2(x2t, y2t) = W (λtXY ), where λt = 1 −
∑t−1

τ=0 µτ is the fraction of

pie X left in period t and W (·XY ) is given by (A6). Therefore, we have

U ({(x1t, x2t)}∞0 ) = r
∞∑
t=0

δt(1− p)tµt + δp
∞∑
t=0

[
δt(1− p)tW

((
1−

t∑
τ=0

µτ

)
XY

)]
.

(C1)

Lemma 2. Let φ̂ > 0. Then in every SPE the players delay in states λX with λ ≤ λ̂.

Proof. Fix an equilibrium strategy profile. Let {(x1t, x2t)} be the consumption plan as-

sociated with this strategy profile, and let {µt} be the associated consumption sequence.

Assume for the sake of contradiction that λ ≥ µ0 > 0. The total normalized payoff from

this consumption plan is

U({(x1t, x2t)}) = r

∞∑
t=0

δt(1− p)tµt + δp

∞∑
t=0

[
δt(1− p)tW

((
λ−

t∑
τ=0

µτ

)
XY

)]

= r
∞∑
t=0

δt(1− p)tµt + δp
∞∑
t=0

[
δt(1− p)t

(
W (λXY )− ζ

t∑
τ=0

µτ

)]

= (r − αζ)
∞∑
t=0

δt(1− p)tµt + αW (λXY ) < αW (λXY )
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where the second equality follows from (A7) and from the fact that δp
∑∞

t=0 δ
t(1− p)t =

δp/ (1− δ (1− p)) = α; the third equality follows from adding terms; and the inequality

follows since it is easy to verify that φ̂ > 0 if and only if r − αζ < 0. Therefore, the

total payoff from the strategy profile results in a payoff strictly smaller than αW (λXY ),

which is the total payoff of delaying all consumption until pie Y arrives. This means

that at least one of the two players is getting a payoff strictly lower than the payoff

he would get if there were delay. Since that player can unilaterally deviate to generate

delay (by either rejecting all proposals or making offers that the other player will reject),

it cannot be that the players consume µ0 > 0 in states λX when λ ≤ λ̂.

Lemma 3. Let φ̂ > 0 and s = λX with λ > λ̂. Consider proposer j’s problem of

choosing an offer that maximizes his discounted payoff subject to the constraint that

the responder’s discounted payoff be equal to wi ≤ ui(λ − λ̂, 0) + αwi(λ̂XY ), where

wi(λ̂XY ) is given by (A5). At the solution to this problem, the proposer makes an offer

such that he and the responder consume a total fraction λ− λ̂ of pie X.

Proof. We prove Lemma 3 for j = 1 and i = 2. The proof for j = 2 and i = 1

is symmetric and omitted. Suppose player 1 makes an offer (x1, x2) with x1 + x2 =

λ − λ̂. Player 2’s discounted payoff from accepting this offer rx2 + αw2(λ̂XY ), since

Lemma 2 implies that after such an offer is accepted the players will delay until pie Y

arrives. Let x2 satisfy rx2 + αw2(λ̂XY ) = w2. Then, player 1’s payoff from this offer is

(λ − λ̂ − 1
r
w2) + α(1

r
w2(λ̂XY ) + w1(λ̂XY )). Multiplying this quantity by r, player 1’s

normalized payoff from player 2 accepting this offer is

r(λ− λ̂)− w2 + α(w2(λ̂XY ) + rw1(λ̂XY )) = r(λ− λ̂) + αW (λ̂XY )︸ ︷︷ ︸
a

− w2.

On the other hand, suppose player 1 makes any other offer that gives player 2 a dis-

counted payoff of w2, and which leads to a consumption plan {(x1t, x2t)} with associated

consumption sequence {µt}. The total normalized payoff from this consumption plan is

given by equation (C1) above, and player 1’s normalized payoff from this offer is

r
∞∑
t=0

δt(1− p)tµt + δp
∞∑
t=0

[
δt(1− p)tW

((
λ−

t∑
τ=0

µτ

)
XY

)]
︸ ︷︷ ︸

b

− w2,

since player 1’s offer must give player 2 a continuation payoff equal to w2. Thus, to

establish the Lemma it suffices to show that a > b. There are two possibilities: (1)
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∑∞
t=0 µt ≤ λ−λ̂, or (2) there exists t′ ≥ 0 such that

∑t′

t=0 µt > λ−λ̂ (and
∑τ

t=0 µt ≤ λ−λ̂
for all τ < t′).

Consider first case (1). In this case,

b = r
∞∑
t=0

δt(1− p)tµt + δp

∞∑
t=0

[
δt(1− p)t

(
W (λXY )− ξ

t∑
τ=0

µτ

)]

= r
∞∑
t=0

δt(1− p)tµt + αW (λXY )− αξ
∞∑
t=0

δt(1− p)tµt

= (r − αξ)
∞∑
t=0

δt(1− p)tµt + αW (λXY ) ,

where the first equality follows from (A7) and from
∑∞

t=0 µt ≤ λ − λ̂, the second one

follows from adding terms and the third one follows from rearranging. Therefore,

b− a = (r − αξ)
∞∑
t=0

δt(1− p)tµt + αW (λXY )− r(λ− λ̂)− αW (λ̂XY )

< −αξ(λ− λ̂) + αW (λXY )− αW (λ̂XY ) = −αξ(λ− λ̂) + αξ(λ− λ̂) = 0

where the inequality follows from the fact that
∑∞

t=0 δ
t(1 − p)tµt <

∑∞
t=0 µt ≤ λ − λ̂,

and the equality that follows is a consequence of (A7).

Consider next case (2). By Lemma 2, it must be that µt = 0 for all t > t′, since for

any such t the state would be λ′X with λ′ < λ̂ (and hence, by Lemma 2, players will

delay). Let {µ̃t} be such that µ̃t = µt for all t 6= t′, µ̃t′ = λ − λ̂ −
∑t′−1

t=0 µt. Note that

this implies that
∑t′

t=0 µ̃t =
∑∞

t=0 µ̃t = λ− λ̂. Let b̃ be the same expression than b, but

with µ̃t replacing µt. Since
∑∞

t=0 µ̃t′ = λ − λ̂, the arguments above imply that a > b̃.

Note that λ−
∑t′

t=0 µt = λ̂− (µt − µ̃t′). Thus, it follows that

b̃− b
δt′(1− p)t′

= r (µ̃t′ − µt′) + α

[
W

((
λ−

t′∑
τ=0

µ̃τ

)
XY

)
−W

((
λ−

t′∑
τ=0

µτ

)
XY

)]
= r (µ̃t′ − µt′) + α

[
W
(
λ̂XY

)
−W

((
λ̂− (µt − µ̃t′)

)
XY

)]
= r (µ̃t′ − µt′)− αζ (µ̃t′ − µt) > 0,

where the first equality follows the fact that µ̃t = µt for all t < t′ and from the fact that

µ̃t = µt = 0 for all t > t′; the second equality follows from
∑t′

t=0 µ̃t = λ − λ̂ and from

λ −
∑t′

t=0 µt = λ̂ − (µt − µ̃t′); the third follows from equation (A7); and the inequality

follows since µ̃t′ < µt′ and since r − αζ < 0 whenever φ̂ > 0. It then follows that

a > b.
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Lemma 4. Let vi(j, λX) and vi(j, λX) be the infimum and supremum SPE payoffs for

player i when the state is (j, λX), and define wi (λX) = 1
2
vi(1, λX) + 1

2
vi(2, λX) and

wi (λX) = 1
2
vi(1, λX) + 1

2
vi(2, λX). If λ > λ̂ and φ̂ > 0, then we have

1. vi(j, λX) ≥ δ(pwi(λXY ) + (1− p)wi(λX)) for i, j = 1, 2, j 6= i

2. vi(j, λX) ≤ δ(pwi(λXY ) + (1− p)wi(λX)) for i, j = 1, 2, j 6= i

3. rv1(1, λX) ≥ r(λ− λ̂) + αW (λ̂XY )− δ(pw2(λXY ) + (1− p)w2(λX))

4. rv1(1, λX) ≤ r(λ− λ̂) + αW (λ̂XY )− δ(pw2(λXY ) + (1− p)w2(λX))

5. v2(2, λX) ≥ r(λ− λ̂) + αW (λ̂XY )− rδ(pw1(λXY ) + (1− p)w1(λX))

6. v2(2, λX) ≤ r(λ− λ̂) + αW (λ̂XY )− rδ(pw1(λXY ) + (1− p)w1(λX))

where wi(·XY ), i = 1, 2, are the functions defined in (A5).

Proof. Claims (1) and (2) are immediate, and the arguments for (5) and (6) are the

same as the arguments for (3) and (4). We therefore only prove (3) and (4).

We start by proving (3). Suppose the state is λX with λ > λ̂. Suppose player 1

offers (λ − λ̂ − x2, x2) where 0 ≤ x2 ≤ λ − λ̂. (Note that this offer leaves fraction λ̂ of

pie X for future consumption.) By Lemma 2, if player 2 accepts this offer then players

delay an agreement on the remainder of pie X until pie Y arrives. Therefore, the payoff

to player 2 from accepting this offer is rx2 + αw2(λ̂XY ). Note that if x2 solves

rx2 + αw2(λ̂XY ) = δ (pw2(λXY ) + (1− p)w2(λX))

then player 2 will accept the offer (λ − λ̂ − x2, x2). Importantly, one can show that

x2 < λ − λ̂, so that (λ − λ̂ − x2, x2) is in fact a feasible offer. The payoff player 1

gets if this offer is accepted is λ − λ̂ − x2 + αw1(λ̂XY ). Since player 2 always accepts

(λ− λ̂− x2, x2), it must be that

rv1(1, λX) ≥ r(λ− λ̂− x2 + αw1(λ̂XY ))

= r(λ− λ̂)− δ(pw2(λXY ) + (1− p)w2(λX)) + α(rw1(λ̂XY ) + w2(λ̂XY ))

which establishes (3) since rw1(λ̂XY ) + w2(λ̂XY ) = W (λ̂XY ).

Next, we prove (4). To show this, consider player 1’s problem of making an offer

that maximizes his discounted payoff subject to the constraint that player 2’s payoff is

equal to w2 = δ(pw2(λXY ) + (1− p)w2(λX)). By definition, such an offer is the worst
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offer that player 2 would ever accept. Moreover, note that w2 ≤ rx2 + αw2(λ̂XY ) <

r(λ−λ̂)+αw2(λ̂XY ), since w2(λX) ≤ w2(λX) and x2 < λ−λ̂. By Lemma 3, the solution

to this problem is for player 1 to make an offer (λ− λ̂−x2, x2) with rx2 +αw2(λ̂XY ) =

δ(pw2(λXY ) + (1 − p)w2(λX)). The payoff player 1 gets if this offer is accepted is

λ− λ̂− x2 + αw1(λ̂XY ). Therefore,

rv1(1, λX) ≤ r(λ− λ̂− x2 + αw1(λ̂XY ))

= r(λ− λ̂)− δ(pw2(λXY ) + (1− p)w2(λX)) + α(rw1(λ̂XY ) + w2(λ̂XY ))

which establishes (4) since rw1(λ̂XY ) + w2(λ̂XY ) = W (λ̂XY ).

Lemma 5. Let φ̂ > 0 and λ > λ̂. For each j = 1, 2, all SPE starting at state (j, λX)

are payoff equivalent. Moreover, in every SPE the players reach a partial agreement,

consuming a total fraction λ− λ̂ of pie X.

Proof. The inequalities stated in Lemma 4 imply

rw1(λX) ≤1

2

(
r(λ− λ̂) + αW (λ̂XY )− δ (pw2(λXY ) + (1− p)w2(λX))

)
+

1

2
rδ (pw1(λXY ) + (1− p)w1(λX))

rw1(λX) ≥1

2

(
r(λ− λ̂) + αW (λ̂XY )− δ (pw2(λXY ) + (1− p)w2(λX))

)
+

1

2
rδ (pw1(λXY ) + (1− p)w1(λX)) .

These in turn imply

r (w1(λX)− w1(λX)) ≤ δ(1− p) (w2(λX)− w2(λX))

2− δ(1− p)
. (C2)

Similarly, for player 2 we get

w2(λX)− w2(λX) ≤ rδ(1− p) (w1(λX)− w1(λX))

2− δ(1− p)
. (C3)

Combining (C2) and (C3) yields

w1(λX)− w1(λX) ≤
(

δ (1− p)
2− δ(1− p)

)2

(w1(λX)− w1(λX)) ,

which implies w1(λX) = w1(λX) = w1(λX). Then, (C3) implies w2(λX) = w2(λX) ≡
w2(λX), so vi(j, λX) = vi(j, λX) ≡ vi(j, λX) for i, j = 1, 2, and the SPE payoffs are
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unique. Substituting back, we find that for i 6= j

vi(j, λX) = δ (pwi(λXY ) + (1− p)wi(λX))

rv1(1, λX) = r(λ− λ̂) + αW (λ̂XY )− v2(1, λX)

v2(2, λX) = r(λ− λ̂) + αW (λ̂XY )− rv1(2, λX).

Finally, note that these payoffs can only be supported by a strategy profile in which the

proposer offers to consume a total fraction λ− λ̂ of pie X and the responder accepts.

Lemma 6. Let φ̂ < 0 and λ ∈ [0, 1]. For each j = 1, 2, all SPE starting at state (j, λX)

are payoff equivalent. Moreover, in every SPE the players reach a complete agreement.

Proof. (sketch) Let the state be s = λX. Using arguments similar to those in Lemma

3, one can show that when φ̂ < 0 the proposer will find it optimal to make an offer such

that the players consume all λ of pie X, regardless of whether λ > λ̂ or λ ≤ λ̂. Because

players always make offers over all λ of pie X, we can again find bounds for vi(j, λX)

and vi(j, λX) as in Lemma 4, and then use an argument similar to the one in Lemma 5

to establish the uniqueness of equilibrium payoffs.
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