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Abstract

I study a bilateral bargaining game in which the size of the surplus follows a stochas-

tic process and in which players might be optimistic about their bargaining power. Fol-

lowing Yildiz (2003), I model optimism by assuming that players have different beliefs

about the recognition process. I show that the unique subgame perfect equilibrium of

this game might involve inefficient delays. I also show that these inefficiencies disappear

when players can make offers arbitrarily frequently.
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1 Introduction

Experimental and field evidence shows that, when bargaining, people tend to form optimistic

beliefs about how future uncertainty will be resolved (e.g. Babcock and Loewenstein, 1997).

This evidence also shows that there is a positive correlation between the optimism of the

parties and the probability that bargaining ends in an impasse. In other words, this evidence

identifies optimism as a possible explanation for bargaining delays.

However, Yildiz (2003) showed that optimism by itself cannot cause delays in bargaining.

Yildiz (2003) studied a complete information bilateral bargaining game a la Rubinstein

(1982) in which players have optimistic beliefs about their future bargaining power. The

main result of his paper is that agreement will always be immediate whenever optimism is

persistent and the number of bargaining rounds is sufficiently large.

In this paper, I extend Yildiz’s (2003) model by allowing the size of surplus that the

players are bargaining over to follow a stochastic process. The game has an infinite horizon

and players have optimistic beliefs about their bargaining power. The model in this paper

can also be thought of as an extension of the stochastic bargaining model of Merlo and Wilson

(1995, 1998), allowing agents to have different beliefs about the recognition process. One of

the main goals of the current paper is to show that persistent optimism can lead to costly

delays in this stochastic environment.1

The following is a description of this paper’s model and an overview of its main results.

Let S be a finite set of states and let P be a transition matrix over elements in S. At each

period until players reach an agreement, nature selects a state s according to the one period

ahead distribution implied by P . The state s determines the size of the surplus. After agents

learn the state, one player is recognized to make an offer. Players may have optimistic beliefs

about the recognition process. The recognized player can either make a feasible offer or pass.

In the first case, the responder can either accept or reject the offer. If she accepts the proposal

the game ends. If the proposer chooses to pass or if the responder rejects the current offer,

the game moves on to the next bargaining period.

By adapting arguments in Merlo and Wilson (1995, 1998), I show that this game has a

unique subgame perfect equilibrium. The unique equilibrium satisfies the following property:

there exists a set of states Sa such that agents come to an agreement in period t if and only

if st ∈ Sa. Therefore, whether there is agreement or not at any given period depends only

1Cripps (1998) also considers a bargaining game in which the size of the surplus follows a Markov process.
However, there are no differences in beliefs in his model, and inefficiencies can only arise in equilibrium when
the buyer and the seller have different discount factors.
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on the size of the surplus, and is independent of the proposer’s identity that period.

Suppose an agent is endowed with a surplus whose size follows the Markov process above.

At each period, the agent must decide whether to consume the surplus or to wait. This

problem is an optimal stopping problem, whose solution is given by an optimal stopping

region S∗. At every state in S∗ it is optimal for the agent to stop the process and consume

the surplus, while at any other state it is optimal to wait. Say that the outcome of the

stochastic bargaining game is efficient if the set of states Sa at which there is agreement is

equal to S∗. Merlo and Wilson (1998) showed that these two sets are identical when agents

have common beliefs about the recognition process. In contrast, in this paper I show that Sa

is always a subset of S∗ when agents hold optimistic beliefs. Importantly, this set inclusion

might be strict. That is, there might be states at which it is optimal to consume the surplus

but at which players fail to reach an agreement, as the following example shows.

Example 1 Suppose the surplus can take two possible values, h = 1 and l < h. Let δ < 1 be

the common discount factor. State h is an absorbing state, while Pr(st+1 = l| st = l) = Pll.

Both players believe that they will make offers next period with probability 1 (regardless of

the state next period). In this setting it is always efficient to consume the surplus at state

h. Moreover, consuming the surplus at state l is efficient if and only if

l ≥ δ (Plll + (1− Pll))⇐⇒ l ≥ δ (1− Pll)
1− δPll

. (1)

Since h is an absorbing state, the results in Yildiz (2003) imply that players will reach an

agreement the fist time st = h: the proposer will obtain a payoff of 1/ (1 + δ) and the

responder will obtain δ/ (1 + δ).

Let Vi (l) be player i’s payoff at state l from delaying an agreement until the state reaches

h:

Vi (l) = δ

(
PllVi (l) +

1− Pll
1 + δ

)
⇒ Vi (l) =

δ (1− Pll)
(1 + δ) (1− δPll)

. (2)

With probability Pll the state will be l next period, in which case player i again gets Vi (l).

With probability 1−Pll the state will be h next period, in which case player i expects to obtain

1/ (1 + δ) since she believes she will make offers with probability 1. If V1 (l)+V2 (l) > l players

will delay at state l, since there is no agreement that can satisfy both players’ expectations.

Since V1 (l) + V2 (l) > δ (1− Pll) / (1− δPll), there are values of δ, Pll and l for which it is

efficient to consume the surplus at state l but for which players delay at this state.

The intuition behind these inefficiencies is as follows. When players reach an agreement,
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the player who makes the offer extracts a non-informational rent. If the surplus is expected

to grow in the near term, the non-informational rent that the proposer gets in the future

might be large relative to the current size of the surplus. When players are optimistic about

the recognition process, they both expect to extract this large non-informational rent with

high probability. In this case, the sum of what the players expect to get from delaying might

be larger than the size of the surplus today, thereby making it impossible for them to reach

an agreement. As Example 1 shows, this might occur even at states at which it is optimal

to consume the surplus right away. The ultimate reason for this is that optimism about

bargaining power has more impact in this stochastic environment, since now players can be

optimistic about their bargaining power at states at which the surplus is large.

Example 1 shows how inefficient delays can arise when optimistic players bargain over a

stochastic surplus. However, this paper also shows that these inefficiencies can only occur

when there are non-negligible frictions in the bargaining process, and that they disappear

when players can make offers arbitrarily frequently. The intuition behind this result is as

follows. As the time between bargaining rounds goes to zero, the non-informational rent that

the proposer gets also vanishes to zero: in the continuous-time limit the right to make an

offer becomes extremely transient, so players get the same share of the surplus when they

are making offers and when they are not. Therefore, when offers are arbitrarily frequently,

the differences in beliefs about the recognition process no longer have an effect on the sum

of the players expected continuation payoffs from delaying, and the outcome becomes fully

efficient. The following example illustrates this.

Example 2 (Example 1 continued) Suppose that the surplus can take two possible val-

ues, h = 1 and l < h. Let ∆ measure the time between offers, with δ∆ = e−r∆ the dis-

count factor. Suppose h is an absorbing state, while Pr (st+∆ = l| st = l) = e−λ∆ for some

λ ∈ (0,∞). Both players believe that they will make offers next period with probability 1.

By equation (1), it is efficient to consume the surplus at state l if and only if

l ≥
e−r∆

(
1− e−λ∆

)
1− e−r∆e−λ∆

→
as ∆→0

λ

r + λ
.

By equation (2), the payoff player i gets by always delaying an agreement at state l is

V ∆
i (l) =

e−r∆
(
1− e−λ∆

)
h

(1 + e−r∆) (1− e−r∆e−λ∆)
→

as ∆→0

1

2

λ

r + λ
,

so V ∆
1 (l) + V ∆

2 (l)→ λ
r+λ

as ∆→ 0. In the continuous-time limit players will delay at state
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l only if λ
r+λ

> l; that is, only if it is inefficient to consume the surplus at state l.

Related literature: This paper relates primarily to the literature of bargaining with optimism,

starting with Yildiz’s (2003) immediate agreement result. In a different paper, Yildiz (2004)

shows that optimism about bargaining power may produce inefficient delays if players update

their beliefs as the game goes on. Ali (2006) shows that optimism may lead to disagreement

and delays in multilateral bargaining settings. Simsek and Yildiz (2009) consider a model in

which the player’s bargaining power evolves as a stochastic process, and show how optimism

can lead to delays when players expect bargaining power to become more durable at some

future date.2

More broadly, this paper also relates to the literature on bargaining impasses. Delays in

bargaining can arise when players have private information (Kennan and Wilson, 1993), when

players can commit not to accept poor offers (Fershtman and Seidmann, 1993) or when players

may receive new information while bargaining (Avery and Zemsky, 1994). Inefficiencies may

also arise when players can build a reputation for being irrational (Abreu and Gul, 2000),

when outside options are history-dependent (Compte and Jehiel, 2004) or when players have

higher order uncertainty (Feinberg and Skrzypacz, 2005).

2 Model

Let N = {1, 2} be the set of players, with typical elements i and j, and let S be a finite set of

states. The realization of the state s ∈ S each period determines the size of the surplus that

period: there exists a function c : S → R+ such that c (s) is the size of the surplus when the

state is s. Let st denote the realization of the state at time t. For simplicity, I assume that the

random variable that determines the state at time zero is degenerate, assigning probability

one to s0 ∈ S. From period zero onwards the state evolves according to an exogenous time-

homogeneous Markov process. Let P denote the transition matrix over elements in S, and

let Pss′ denote the probability of moving from s to s′. At each date t > 0 until players reach

an agreement, nature draws a state st ∈ S according to the distribution
{
Pst−1s

}
s∈S.

At each date t = 0, 1, 2, ... before players reach an agreement, and after the realization of

state s ∈ S, one player is randomly recognized to make an offer. The recognized player can

either make an offer u ∈ C (st) := {x ∈ R2
+ : x1 + x2 ≤ c (st)} or pass. In the first case, the

other player must choose to either accept or reject the offer. If she accepts the offer the game

ends and players receive their payoffs. If the proposer chooses to pass or if the responder

2See Yildiz (2011) for a complete review of the literature on bargaining with optimism.
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rejects the current offer the game moves on to the next period. At period t+ 1 nature draws

a state st+1 ∈ S according to the distribution {Psts}s∈S, and then a new player is recognized

to make an offer. The process continues until a player accepts an offer, so there is no limit

on the number of bargaining rounds.3 Let δ < 1 be the common discount factor.

The difference between the model I study in this paper and the one studied by Merlo

and Wilson (1995, 1998) is that I allow agents to hold different beliefs about the recognition

process. Let pis be the probability with which player i believes she will be recognized to make

an offer when the state is s ∈ S. I only consider the case in which players are optimistic, so

p1
s + p2

s ≥ 1 for all s ∈ S. If this inequality is strict for some s, then players hold divergent

beliefs at s. Define y (s) := p1
s + p2

s − 1 to be the level of optimism in state s, with y (s) ≥ 0

for all s ∈ S. Note that the players’ beliefs about the recognition process depend only on the

state s, and are independent of time. This difference in beliefs is common knowledge.

Let Z = S ×N . The set Z is an expanded set of states, with z = (s, i) ∈ Z denoting the

state in which the surplus size is c (s) and agent i makes offers. Given the transition matrix

P over elements of S and given the players’ beliefs about the recognition process, I can

calculate for each player i a transition matrix P̃i over elements in Z. Since players may have

different beliefs about the recognition process, it might be that P̃1 6= P̃2. Let Ei [· | z] denote

the conditional expectation associated with transition matrix P̃i, and let E [· | s] denote the

conditional expectation associated with transition matrix P .

An outcome of this bargaining game is a pair (u, τ), where τ is a stopping time and

u = (u1, u2) is a 2-dimensional random variable, measurable with respect to the σ-algebra

generated by zτ = (z1, ..., zτ ), with u (sτ , jτ ) ∈ C (sτ ) if τ <∞ and u = 0 if τ =∞. That is,

an outcome (u, τ) is given by a time τ at which players reach an agreement and a random

variable u which determines the share of the surplus that each agent gets. I assume that

players are risk-neutral expected utility maximizers: given an initial state z, player i’s payoff

from outcome (u, τ) is given by Ei [δ
τui (zτ ) | z].

An outcome (u, τ) is stationary if there exists a subset Za ⊆ Z and a function η : Za → R2

such that (i) τ := inf {t ≥ 0 : (st, it) ∈ Za} and (ii) u (sτ , iτ ) = η (sτ , iτ ) ∈ C (sτ ). That is,

under a stationary outcome players reach an agreement the first time the state reaches the

set Za, in which case the division of the surplus is η (zτ ). Given an initial state z, agent i’s

3Although I assume that the game has an infinite horizon, the setup can incorporate games with a finite
horizon or games with an exogenous risk of breakdown. To do this, I need to add an absorbing state s̃ such
that c (s̃) = 0 (and in the case of a finite horizon I also need to expand the set of states S accordingly, so
that a state now represents the size of the surplus and the time left until the final bargaining round).
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utility from stationary outcome (u, τ) is

Vi (z) =

{
ηi (z) if z ∈ Za,

Ei [δ
τηi (zτ ) | z0 = z] if z /∈ Za.

In what follows, I will denote a stationary outcome by (Za, η).

Finally, a stationary outcome (Za, η) is anonymous if Za = Sa × N for some Sa ⊆ S.

Thus, in an anonymous stationary outcome players reach an agreement the first time the

Markov process enters the set Sa, independently of which player makes an offer that period.

Given an initial state (s, k), player i’s payoff from outcome (Sa ×N, η) is

Vi (s, k) =

{
ηi (s, k) if s ∈ Sa,
E
[
δτ
(
pisτηi (sτ , i) +

(
1− pisτ

)
ηi (sτ , i)

)
| s0 = s

]
if s /∈ Sa.

Note that in this case I can drop the subscripts in the expectations, since now the stopping

time τ depends only on the realization of s0, s1, s2, ...; i.e., in this case τ = inf{t ≥ 0 : st ∈ Sa}.
For each player, a strategy specifies a feasible action at every history at which that player

must act. A strategy profile is a pair of strategies, one for each player. A strategy profile

σ induces an outcome (u, τ), and hence an expected payoff for each player at every history

of the game. A strategy profile σ is a subgame perfect equilibrium (SPE) if for every player

i ∈ N , σi is a best response to σ−i at every history.

3 SPE payoffs

In this section, I show that this bargaining game has unique SPE payoffs and that the

game also has a unique SPE outcome. This unique SPE outcome is both stationary and

anonymous. For any f : S → R, let Es [f (s′)] =
∑

s′∈S Pss′f (s′) denote the expectation of

f (st+1) conditional on st = s.

Theorem 1 There exists unique SPE payoffs. For every (s, k) ∈ Z, let Vi (s, k) denote the

payoff of player i when the state is (s, k). These payoffs satisfy:

Vi (s, j) = δEs
[
pis′Vi (s

′, i) +
(
1− pis′

)
Vi (s

′, j)
]
, (3)

Vj (s, j) = max

{
c (s)− δEs [pis′Vi (s

′, i) + (1− pis′)Vi (s′, j)] ,
δEs[p

j
s′Vj (s′, j) + (1− pjs′)Vj (s′, i)]

}
. (4)
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Proof. See Appendix A.1.

Let V : Z → R2 be the unique SPE payoffs. Suppose the state is (s, j) ∈ Z and consider

the equilibrium payoff of player i 6= j at that state. If player j chooses to pass or if player

j makes an offer that player i rejects, then player i’s utility at state (s, j) is given by her

continuation payoff. On the other hand, if player j makes an offer that player i accepts, this

offer must give player i her continuation payoff, since in equilibrium player i will accept any

offer that gives her this much. Therefore, the equilibrium payoff of player i at state (s, j)

is given by her continuation value, regardless of whether there is agreement at that state or

not; this is the content of equation (3).

Consider next the equilibrium payoff of player j at state (s, j). If player j is to make

an offer that player i will accept, she will offer to give player i her continuation payoff. In

this case, player j gets a payoff equal to the size of the surplus c (s) minus the continuation

payoff of player i. However, player j can also choose to pass on her right to make an offer,

in which case she gets her own continuation payoff. Therefore, player j will make an offer

that player i will accept only if the first quantity is larger than the second, and will choose

to pass otherwise; this is the content of equation (4).

It follows from equation (4) that players will reach an agreement at state (s, j) only if

c (s)− δEs
[
pis′Vi (s

′, i) +
(
1− pis′

)
Vi (s

′, j)
]
≥ δEs

[
pjs′Vj (s′, j) +

(
1− pjs′

)
Vj (s′, i)

]
, (5)

and will delay if the reverse inequality holds. Moreover, since continuation values are inde-

pendent of the player who is making offers, if there is agreement at state (s, j) there will also

be agreement at state (s, i). If equation (5) holds with equality then equilibrium is consistent

with both agreement and delay at state (s, j). From now on I will ignore this trivial source

of multiplicity and assume that players always come to an agreement in state (s, j) if the

inequality in equation (5) holds with equality.

Define the function φ : S → R as

φ (s) = δEs
[
p1
s′V1 (s′, 1) +

(
1− p1

s′

)
V1 (s′, 2) + p2

s′V2 (s′, 2) +
(
1− p2

s′

)
V2 (s′, 1)

]
.

Let Sa := {s ∈ S : c (s) ≥ φ (s)}. It then follows that the set of states at which there is

agreement is Sa × N . That is, the SPE outcome of this stochastic bargaining game is

stationary and anonymous.

Remark 1 In Appendix A.1, I show that the unique SPE payoffs in Theorem 1 can be
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derived via iterated conditional dominance (Proposition A1). Therefore, as in Yildiz (2003),

the analysis in the paper is immune to the critique of Dekel, Fudenberg and Levine (2004)

to games in which players have heterogeneous beliefs.

4 Delay and inefficiency

Let w : S → R be the solution to

w (s) = sup
τ∈T

E [δτc (sτ ) | s0 = s] , (6)

where T is the set of stopping times. Problem (6) is an optimal stopping problem. This

problem arises when one agent with discount factor δ has complete control over the process

c (s) and must decide at each time period whether to consume the surplus or wait. Using

standard dynamic programming arguments one can show that w is the unique solution to

w (s) = max {c (s) , δEs [w (s′)]} . (7)

Moreover, the stopping time that solves problem (6) is given by τ ∗ = inf {t ≥ 0 : st ∈ S∗},
with S∗ := {s ∈ S : w (s) = c (s)}.

Definition 1 An anonymous stationary outcome (S̃×N, η) is efficient if and only if S̃ = S∗.

Let (Sa × N, η) be the SPE outcome. The main result of this section shows that it is

always the case that Sa ⊆ S∗. That is, the set of states at which there is agreement is a

subset of the set of states at which it is optimal to stop the process and consume the surplus.

This implies that the only type of inefficiency that can arise in equilibrium is that players

wait for too long before coming to an agreement.

Let V : Z → R2 be the unique SPE payoffs of the bargaining game. Equations (3) and

(4) imply that V1 (s, k) + V2 (s, k) = max{c (s) , φ (s)} for every s ∈ S and k = 1, 2. Since

V1 (s, 1) + V2 (s, 1) = V1 (s, 2) + V2 (s, 2) for all s ∈ S, it follows that

φ (s) = δEs [V1 (s′, 1) + V2 (s′, 1) + y (s′) (V1 (s′, 1)− V1 (s′, 2))] ,

where y (s′) = p1
s′ + p2

s′ − 1 for all s′ ∈ S. For all s ∈ S, let

ṽ (s) = y (s) (V1 (s, 1)− V1 (s, 2)) = y (s) (c (s)− φ (s)) 1{s∈Sa},
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where 1{·} denotes the indicator function. Note that ṽ (s) = 0 for all s /∈ Sa. Moreover, since

V1 (s, 1) ≥ V1 (s, 2) for all s ∈ Sa and since y (s) ≥ 0 for all s ∈ S, it follows that ṽ (s) ≥ 0

for all s ∈ S. Therefore, φ (s) = δEs [V1 (s′, k) + V2 (s′, k) + ṽ (s′)], and

V1 (s, k) + V2 (s, k) = max {c (s) , δEs [V1 (s′, k) + V2 (s′, k)] + δEs [ṽ (s′)]} . (8)

Let W : S → R be given by W (s) = V1 (s, k) + V2 (s, k). Equation (8) implies that

W (s) = max {c (s) , δEs [W (s′)] + δEs [ṽ (s′)]} . (9)

Finally, note that Sa = {s ∈ S : φ (s) ≤ c (s)} = {s ∈ S : W (s) = c (s)}.

Theorem 2 Let (Sa ×N, η) be the SPE outcome. Then Sa ⊆ S∗.

Proof. Recall that S∗ = {s ∈ S : w (s) = c (s)} and Sa = {s ∈ S : W (s) = c (s)}. To prove

Theorem 2 it suffices to show that W (s) ≥ w (s) for all s ∈ S. To see that these inequalities

hold, let T ′ : F (S)→ F (S) be the operator

T ′ (f) (s) = max {c (s) , δEs [ṽ (s′)] + δEs [f (s′)]} .

Operator T ′ is a contraction with modulus δ and T ′ (W ) = W is its unique fixed point.

The operator T ′ is increasing. That is, if f, g ∈ F (S) are such that f (s) ≥ g (s) for

all s ∈ S, then T ′ (f) (s) ≥ T ′ (g) (s) for all s ∈ S. To see this, note that there are two

possible cases: (i) T ′ (g) (s) = c (s) and (ii) T ′ (g) (s) = δEs [ṽ (s′)] + δEs [g (s′)]. In case (i),

T ′ (f) (s) ≥ c (s) = T ′ (g) (s). In case (ii),

T ′ (f) (s) ≥ δEs [ṽ (s′)] + δEs [f (s′)] ≥ δEs [ṽ (s′)] + δEs [g (s′)] = T ′ (g) (s) ,

where the first inequality follows from the definition of T ′ and the second one from the

assumption that f (s) ≥ g (s) for all s ∈ S. Define the sequence {f r} with f 1 = w and

f r = T ′ (f r−1) for all r > 1, where w is the solution to (7). Note that f 2 (s) = T ′ (f 1) (s) ≥
f 1 (s) = w (s) for all s ∈ S. Since T ′ is increasing, it follows by induction that f r (s) ≥
f r−1 (s) for all s ∈ S and for all r ≥ 2. Finally, the fact that T ′ is a contraction implies that

{f r} → W . I conclude that W (s) ≥ w (s) for all s ∈ S, which in turn implies Sa ⊆ S∗.

Corollary 1 If players have common beliefs about the recognition process (so y (s) = 0 for

all s ∈ S), then Sa = S∗.
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Proof. Note that y (s) = 0 for all s ∈ S implies that ṽ (s) = 0 for all s ∈ S. In this case

equation (9) becomes

W (s) = max {c (s) , δEs [W (s′)]} . (9’)

Note that the solution to (9’) is equal to the solution to (7), so W (s) = w (s) for all s ∈ S.

Thus, Sa = {s : W (s) = c (s)} = {s : w (s) = c (s)} = S∗.

Corollary 1 is a known result, which I include here only for completeness. Indeed, when

y (s) = 0 for all s ∈ S the model in this paper becomes a special case of the stochastic

bargaining game with transferable utility studied by Merlo and Wilson (1998), and they

showed that in their model there can only be efficient delays.4

Theorem 2 and Corollary 1 highlight which are the sources of inefficiencies in this stochas-

tic bargaining model with differences in beliefs. When agents have optimistic beliefs about

the recognition process, the sum of what the players expect to get if they delay an agreement

might be larger than the value of waiting in the single person problem; i.e., W (s) ≥ w (s).

Therefore, there might be states at which it is optimal to stop the single person problem

but at which there is no division of the surplus that satisfies both parties’ expectations (as

in Example 1 in the Introduction). In other words, players might wait for too long before

reaching an agreement, leading to inefficient delays.

Remark 2 In this paper, I assume that players have optimistic beliefs about their bargaining

power and common beliefs about the evolution of the stochastic process that drives the size

of the surplus. The assumption of common beliefs about the stochastic process allows me

to define efficiency in terms of the solution to the optimal stopping problem (6). One of the

main insights of this paper is that optimism about bargaining power may lead to inefficient

delays in this stochastic environment; i.e., that players may delay an agreement at states

at which it would be optimal to consume the surplus. One could also allow players to have

divergent beliefs about the evolution of the underlying stochastic process driving the surplus.

However, in such a setting it would not be possible to make statements about the efficiency

of the bargaining outcome without making assumptions regarding the structure of the “true”

stochastic process governing the size of the surplus.

4The efficiency result in Merlo and Wilson (1998) depends crucially on the assumption that utility is
perfectly transferable between players. Indeed, Merlo and Wilson (1995) show that inefficiencies may arise
in stochastic bargaining games with non-transferable utility. In this setting players may reach an agreement
at states at which it would be optimal to delay, since they are not able to commit to future divisions of the
surplus.
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4.1 Conditions for inefficiencies

In this subsection, I study conditions under which inefficient delays will arise in the unique

SPE. I start by analyzing a simple setting in which the surplus can take two possible values.

Then, I consider the general setting with any finite number of states.

Suppose that there are two possible states, S = {h, l}, with c (h) > c (l). In this setting,

it is always efficient to consume the surplus at state h, so h ∈ S∗. It also true that h ∈ Sa,
so players will always reach an agreement at state h. To see this, suppose by contradiction

that h /∈ Sa. Since Sa 6= ∅, it follows that Sa = l.5 Then, it must be that

c (h) < W (h) = δ (PhhW (h) + (1− Phh) c (l)) + δy (l) (1− Phh) (c (l)− φ (l)) . (10)

Since φ (l) ≥ δc (l), it follows from (10) that

W (h) ≤ δ (1− Phh) c (l) (1 + y (l) (1− δ))
1− δPhh

≤ δ (1− Phh) c (l) (2− δ)
1− δPhh

< c (l) < c (h) ,

a contradiction. Thus, it must be that h ∈ Sa. This implies that inefficient delays can only

arise in this setting if S∗ = {h, l}; otherwise, {h} = S∗ ⊇ Sa 3 h, so Sa = S∗.

Proposition 1 Suppose S = {h, l}, with c (h) > c (l) . Then, the unique SPE is inefficient

if and only if

δ (1− Pll) (1 + y (h)) c (h)

(1− δPll) (1 + δy (h)Phh) + δ2 (1− Pll) y (h) (1− Phh)
> c (l) ≥ δ (1− Pll) c (h)

1− δPll
. (11)

Proof. Suppose that the SPE is inefficient. By the discussion above, it must be that

S∗ = {h, l} and that Sa = {h}. The fact that S∗ = {h, l} implies

c (l) ≥ δ (1− Pll) c (h)

1− δPll
.

On the other hand, l /∈ Sa implies

W (l) = δ (PllW (l) + (1− Pll) c (h)) + δ (1− Pll) y (h) (c (h)− φ (h)) > c(l), (12)

φ (h) = δ (Phhc (h) + (1− Phh)W (l)) + δy (h)Phh (c (h)− φ (h)) . (13)

5If Sa = ∅ then the payoffs of both players would be zero, which cannot occur in a SPE: in this case the
proposer could always offer her opponent a share ε > 0 of the current surplus (an offer her opponent would
accept) and earn c (s)− ε.
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Combining equations (12) and (13), it follows that

W (l) =
δ (1− Pll) (1 + y (h)) c (h)

(1− δPll) (1 + δy (h)Phh) + δ2 (1− Pll) y (h) (1− Phh)
> c (l) .

On the other hand, if (11) does not hold then either Sa = S∗ = {h} or Sa = S∗ = {h, l}.

Proposition 1 provides necessary and sufficient conditions for inefficiencies in settings in

which the surplus can take two possible values. From equation (11) it follows that inefficient

delays can only arise whenever players are optimistic about their bargaining power at state

h: the inequalities in equation (11) can never hold if y (h) = 0, since in this case the left

hand side of (11) would be equal to the right hand side. That is, inefficiencies can only arise

when players are optimistic about their bargaining power at the state at which the surplus

is large. On the other hand, the conditions in (11) do not depend on y (l), so whether or not

there are inefficient delays in this setting is independent on the level of optimism at state l.

The intuition behind these results is as follows. When players reach an agreement at state

h, the player who gets to be proposer extracts a non-informational rent: she obtains a larger

payoff than what she would obtain if she was responder. If players are optimistic about their

relative bargaining power at state h, then they both expect to extract this non-informational

rent with high probability. In this case, the sum of what the players expect to get from

delaying an agreement at state l will be strictly larger than the value of waiting in the single

person optimal stopping problem. Given this large perceived value of waiting, players might

delay an agreement at state l even in situations in which it would be efficient to agree. Note

that the perceived value of waiting at state l depends only on the level of optimism at state h

(the state at which players expect to extract the non-informational rent), and is independent

of the level of optimism at state l. Thus, inefficiencies can only arise in this environment

whenever y (h) is large enough.

Consider next the general setting in which S is any finite set of states. Let c = maxs∈S c (s)

and c = mins∈S c (s) denote the largest and smallest size of the surplus, respectively. Let

y = maxs∈S y (s) denote the highest level of optimism.

Proposition 2 Suppose there exists a state s ∈ S∗ such that

δEs [w (s′) (1 + y (s′))]− δ2Es [y (s′)] (c+ y (c− δc)) > c (s) . (14)

Then, s /∈ Sa, so the SPE outcome of the bargaining game is inefficient.

12



Proof. Suppose there exists a state s ∈ S∗ such that (14) holds. Note then that

φ (s) = δEs [W (s′)] + δEs
[
y (s′) (c (s′)− φ (s′)) 1{s′∈Sa}

]
= δEs [W (s′)] + δEs [y (s′) (W (s′)− φ (s′))]

≥ δEs [W (s′) (1 + y (s′))]− δ2Es [y (s′) (c+ y (c− δc))]

≥ δEs [w (s′) (1 + y (s′))]− δ2Es [y (s′) (c+ y (c− δc))] > c (s) ,

where the second equality follows from the fact thatW (s′) = c (s′) for all s′ ∈ Sa andW (s′) =

φ (s′) for all s′ /∈ Sa, the first inequality follows from the fact that φ (s′) ≤ δ (c+ y (c− δc))
for all s′, the second inequality follows since W (s′) ≥ w (s′) for all s′ and the last inequality

follows from (14). Therefore W (s) ≥ φ (s) > c (s), so s /∈ Sa.

Proposition 2 gives sufficient conditions for inefficiencies based on the primitives of the

game: the level of optimism y (s), the possible sizes of the surplus, and the value w (s) of

the single person optimal stopping problem (which itself depends on the transition matrix

P and the possible sizes of the surplus). By equation (14), inefficiencies are more likely to

arise in settings in which players are optimistic about their bargaining power at states at

which the value function w (s) is larger; i.e., at states at which the surplus over which players

are bargaining is larger. I stress however that, unlike equation (11) in Proposition 1, the

conditions in Proposition 2 are not necessary for inefficient delays to arise in equilibrium;

they are only sufficient.

4.2 The benefits of optimism

In this subsection, I study what happens to equilibrium payoffs when one of the agents

becomes more optimistic. Let pi ∈ [0, 1]|S| be the vector specifying the beliefs of player

i about the probability with which she expects to make offers at each state s ∈ S. For

p̃i, pi ∈ [0, 1]|S|, I write p̃i ≥ pi whenever p̃is ≥ pis for all s ∈ S, with at least one strict

inequality.

Proposition 3 Assume p̃i ≥ pi, and let V and Ṽ be the SPE payoffs when beliefs about the

recognition process are given by (pi, pj) and (p̃i, pj), respectively. Then, Ṽi (z) ≥ Vi (z) and

Ṽj (z) ≤ Vj (z) for all z ∈ Z.

Proof. See Appendix A.2.
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Proposition 3 shows that there is a gain for a player who becomes more optimistic (and

whose new level of optimism becomes common knowledge). For instance, if there was an

initial stage prior to the game at which players could choose their beliefs, then by Proposition

3 it would be a weakly dominant strategy for both players to choose extremely optimistic

beliefs (i.e., to choose pis = 1 for all s ∈ S).

5 Frequent offers and efficiency

In this section, I analyze the properties of equilibrium when players can make offers arbitrarily

frequently. As usual, I can write the discounting between bargaining rounds as δ∆ = e−r∆ for

some r,∆ > 0, where r measures the rate of time preference and ∆ is the time interval between

bargaining rounds. The assumption that ∆ > 0 captures the frictions in the bargaining

process. The objective of this section is to study how the equilibrium outcome changes as

these frictions disappear (i.e., as ∆→ 0).

Fix an interval between offers ∆ > 0. For each s ∈ S, the probability that st+∆ = s when

st = s is equal to P∆
ss = e−λs∆ for some ∞ > λs ≥ 0.6 The probability that st+∆ = s′ 6= s

when st = s is equal to P∆
ss′ = αss′

(
1− e−λs∆

)
for some αss′ ≥ 0, with

∑
s′ 6=s αss′ = 1.

With this parametrization, the speed at which the Markov process moves remains roughly

constant as I change the time between rounds ∆. Let P∆ =
{
P∆
ss′

}
s,s′∈S denote the transition

matrix when the interval between bargaining rounds is ∆. Finally, for any f : S → R, let

E∆
s [f (s′)] =

∑
s′∈S P

∆
ss′f (s′) denote the expectation of f (st+∆) conditional on st = s.

Let S∗ (∆) := {s ∈ S : w∆ (s) = c (s)}, where w∆ (s) = max{c (s) , δ∆E∆
s [w (s′)]}. That

is, S∗ (∆) is the set of states at which it is optimal to stop the process in the single person

problem when the interval between periods is ∆. Let V ∆ be the SPE payoffs when the

interval between offers is ∆. For each s ∈ S, let W∆ (s) = V ∆
1 (s, k) + V ∆

2 (s, k). Hence,

Sa (∆) := {s ∈ S : W∆ (s) = c (s)} is the set of states at which there is agreement when

the interval between bargaining rounds is ∆. By Theorem 2, Sa (∆) ⊆ S∗ (∆) for all ∆ > 0.

The main result of this section is that Sa (∆) converges to S∗ (∆) as ∆ → 0. In words, the

outcome of the bargaining game converges to the efficient outcome when players can make

offers arbitrarily frequently.

For any ε > 0 and any interval between offers ∆, let

S∗ε (∆) :=
{
s ∈ S : c (s) ≥ δ∆E∆

s [w (s′)] + ε
}
.

6The restriction that λs < ∞ for all s ∈ S implies that for any ∆ > 0 there is positive probability that
the state of the Markov process next period will be the same as the state today.
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That is, S∗ε (∆) is the set of states at which it is strictly optimal (by an amount weakly larger

than ε) to stop the single person process and consume the surplus. Note that S∗ε (∆) ⊆ S∗ε′ (∆)

for any ε > ε′ ≥ 0, and that S∗0 (∆) = S∗ (∆).

Theorem 3 For every ε > 0, there exists ∆ (ε) > 0 such that S∗ε (∆) ⊆ Sa (∆) ⊆ S∗ (∆) for

all ∆ < ∆ (ε).

Proof. See Appendix A.3.

Theorem 3 shows that inefficiencies disappear when players can make offers arbitrarily

frequently. In other words, this model can only deliver inefficient delays in cases in which

there are non-negligible frictions in the bargaining process. In this sense, Theorem 3 extends

the results of Yildiz (2003) to a stochastic bargaining game. As discussed in the Introduction,

Yildiz (2003) showed that excessive optimism about the recognition process cannot be by

itself a cause of inefficient delays. Similarly, in this paper’s model inefficiencies vanish when

players can make offers arbitrarily frequently.

As a way to illustrate the content in Theorem 3, consider a setting in which the surplus

can take two possible values, c (h) and c (l) < c (h). Let P∆
ll = e−λl∆ and P∆

hh = e−λh∆, with

λs ∈ [0,∞) for s = h, l. By equation (11) in Proposition 1, for any ∆ > 0 the outcome of

this stochastic bargaining game will be inefficient if and only if

e−r∆
(
1− e−λl∆

)
(1 + y (h)) c (h)

(1− e−r∆e−λl∆) (1 + e−r∆y (h) e−λh∆) + e−2r∆ (1− e−λl∆) y (h) (1− e−λh∆)

> c (l) ≥
e−r∆

(
1− e−λl∆

)
c (h)

1− e−r∆e−λl∆
(15)

One can check that the left hand side and the right hand side of (15) both converge to

λlc (h) / (r + λl) as ∆→ 0, so there is no room for inefficiencies when players can make offers

arbitrarily frequently.

I assumed throughout this section that λs < ∞ for all s ∈ S, where λs is such that

P∆
ss = Pr(st+∆ = s| st = s) = e−λs∆. This restriction implies that there are no instantly

transient states; that is, there are no states such that once the Markov process gets into them

the probability of moving away from them in the next bargaining round is one, regardless

of how short the interval between rounds is. The proof of Theorem 3 relies strongly on this

restriction. Indeed, inefficient delays may persist even as ∆→ 0 if P∆
ss = 0 for all ∆ > 0 for

some s ∈ S, as the following example shows.

Example 3 Suppose S = {h, l}, with c (h) > c (l). Assume that P∆
hh = 0 for all ∆ and
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P∆
ll = e−λl∆ for some λl ∈ (0,∞). By equation (11) in Proposition 1, for any ∆ > 0 the

outcome of this stochastic bargaining game will be inefficient if and only if

e−r∆
(
1− e−λl∆

)
(1 + y (h)) c (h)

(1− e−r∆e−λl∆) + e−2r∆ (1− e−λl∆) y (h)
> c (l) ≥

e−r∆
(
1− e−λl∆

)
c (h)

1− e−r∆e−λl∆
. (16)

The left-hand side of (16) converges to λl (1 + y (h)) c (h) /(r+λl (1 + y (h))) as ∆→ 0, while

the right-hand side of (16) converges to λlc (h) / (r + λl) as ∆ → 0. Therefore, the limiting

equilibrium outcome will display inefficiencies if and only if

λl (1 + y (h)) c (h)

r + λl (1 + y (h))
> c (l) ≥ λlc (h)

r + λl
.

Note that there is a non-empty set of parameters for which these inequalities hold. Therefore,

inefficient delays may persist in the continuous-time limit when some states are instantly

transient.

To understand the intuition behind Theorem 3 and Example 3, consider first the case

in which there are no instantly transient states (i.e., 0 ≤ λs < ∞ for all s ∈ S). In this

case, the difference between the utility players get when they make offers and what they get

when they don’t (i.e., V ∆
i (s, i) − V ∆

i (s, j)) converges to zero as the time between periods

goes to zero. Indeed, when λs < ∞ the probability that the state will be the same in the

next bargaining round becomes arbitrarily close to one as ∆ → 0. Furthermore, a short

time between bargaining rounds also implies essentially no discounting from one round to

the next. Since a new player is recognized to be proposer at each round, the cost in terms

of discounting that the responder incurs by waiting until she becomes proposer converges

to zero as ∆ → 0, so V ∆
i (s, i) − V ∆

i (s, j) → 0 as ∆ → 0. In the continuous-time limit

each player obtains the same payoffs when she proposer and when she is responder, so the

differences in beliefs about the recognition process no longer have an impact on the sum of

what the players expect to gain by delaying an agreement. As a result, efficiency is restored.

Consider next the case in which P∆
ss = 0 for all ∆ > 0 for some s ∈ S such that c (s) > c (s′)

for all s′ 6= s (as in Example 3). In this case, if the current state is s the players know that

with probability one the state will be different from s in the next bargaining round, and that

it may take a long time for the Markov process to come back to state s. Since c (s) > c (s′)

for all s′ 6= s, the player who is making offers at state s has a great deal of bargaining power,

because if the other player rejects her offer the size of the surplus in the next bargaining

round will be significantly smaller. Moreover, even if the time interval between offers is
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small, there might still be a substantial cost of delay in waiting for the Markov process to

return to state s. In this case, the difference between the payoff a player gets at state s when

she makes offers and what she gets when she is responder (i.e., V ∆
i (s, i) − V ∆

i (s, j)) will

remain bounded away from zero even as ∆→ 0. Therefore, as Example 3 shows, in this case

inefficiencies may persist even as ∆→ 0.

6 Conclusion

This paper studies an infinite horizon bargaining game in which the size of the surplus follows

a stochastic process and in which players might have optimistic beliefs about their future

bargaining power. In a setup with a constant surplus, Yildiz (2003) showed that optimistic

players will always come to an immediate agreement provided optimism is persistent and the

number of bargaining rounds is large enough. In contrast, this paper shows that persistent

optimism about bargaining power can generate potentially long lasting inefficient delays in

settings in which players bargain over a stochastic surplus. The ultimate reason for this is

that optimism about future bargaining power has more impact when the surplus is stochastic,

since now players can be optimistic about their relative bargaining power at states at which

the surplus is large.

However, this paper also shows that these inefficiencies can only occur when bargaining

frictions are significant. As Theorem 3 shows, inefficiencies disappear when players can make

offers arbitrarily frequently. The key reason behind this is that the right to make proposals

becomes extremely transient when the time between bargaining rounds converges to zero,

since a new player is selected to make offers at each round. This implies that the non-

informational rent that a player obtains when she is proposer goes to zero when offers are

frequent: in the continuous-time limit, players get the same payoff when they are making

offers and when they are not. As a result, when offers are arbitrarily frequently optimism

about future bargaining power no longer affects the sum of the players’ continuation payoffs,

and the outcome of the game becomes fully efficient.

The reasoning in the previous paragraph suggests that, in settings in which there is some

persistence in the right to make proposals, optimism about bargaining power could potentially

generate inefficient delays even when players can make offers arbitrarily frequently. The

following example illustrates that this intuition is correct.

Example 4 Suppose S = {h, l}, with c (h) = 1 > c (l). Assume further that P∆
hh = 1 for

all ∆ > 0 and that P∆
ll = e−λl∆ for some λl ∈ (0,∞). Let δ∆ = e−r∆ denote the common
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discount factor. At each round before agreement is reached, the player making offers last

period retains the right to make offers with probability q∆ = e−γ∆ (with γ ∈ (0,∞)). With

probability 1 − q∆ natures selects a new player to be proposer. The parameter γ measures

the persistence of proposal power: γ → 0 corresponds to the case in which proposal power

is perfectly persistent, while γ → ∞ corresponds to the case in which proposal power is

transient. For simplicity, suppose that both players believe that they will be recognized to

make offers with probability 1 every time nature selects a new proposer.

One can show that, for any ∆ > 0, players will reach an immediate agreement in any

subgame that starts at state h: the proposer will obtain a payoff of V
∆

= (1 − δ∆q∆)/(1 −
2δ∆q∆ + δ∆) and the responder obtains V ∆ = δ∆(1− q∆)/(1− 2δ∆q∆ + δ∆).7 Let V ∆

i (l, k)

denote the payoff player i gets from always delaying an agreement when the size of the surplus

is l and player k is making offers:

V ∆
i (l, i) = δ∆

(
P∆
ll

(
q∆V ∆

i (l, i) +
(
1− q∆

)
V ∆
i (l, i)

)
+
(
1− P∆

ll

) (
q∆V +

(
1− q∆

)
V
) )

, (17)

V ∆
j (l, i) = δ∆

(
P∆
ll

(
q∆V ∆

j (l, i) +
(
1− q∆

)
V ∆
j (l, j)

)
+
(
1− P∆

ll

) (
q∆V +

(
1− q∆

)
V
) )

. (18)

Let W∆ (l) = V ∆
1 (l, 1) + V ∆

2 (l, 1) = V ∆
1 (l, 2) + V ∆

2 (l, 2). Note that players will delay at

state l whenever W∆ (l) > c (l), since in this case there is no agreement that can satisfy both

players’ expectations. Using (17) and (18), it follows that

W∆ (l) =
δ∆P∆

ll

(
1− q∆

)
1− δ∆P∆

ll

δ∆
(
1− P∆

ll

)
q∆

1− δ∆P∆
ll q

∆

(
V

∆ − V ∆

)
+
δ∆
(
1− P∆

ll

)
1− δ∆P∆

ll

(
q∆ +

(
1− q∆

)
2V

∆
)
.

In the continuous-time limit, it is efficient to consume the surplus at state l if and only if

c (l) ≥ λl/(r + λl). On the other hand, players will delay at state l in the continuous-time

limit if

lim
∆→0

W∆ (l) =
λlrγ

(r + λl) (r + 2γ) (r + γ + λl)
+

λl
r + λl

> c (l) .

Therefore, for any γ ∈ (0,∞) there is a non-empty set of parameters for which there will be

inefficient delays even as players can make offers arbitrarily frequently.

7Indeed, when the size of the surplus is constant the model in this example is a special case of a model
studied by Simsek and Yildiz (2009); and they show that in their more general model players will always
come to an immediate agreement regardless of the level of optimism.
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A Appendix

A.1 Proof of Theorem 1

Let F 2 (Z) be the set of bounded functions on Z taking values in R2. Let ‖·‖ denote the sup

norm on R2. For any f ∈ F 2 (Z), let ‖f‖Z = sup {‖f (z)‖ : z ∈ Z}. For any h : S → R, let

Es [h (s′)] =
∑

s′∈S Pss′h (s′) denote the expectation of h (st+1) conditional on st = s. Define

the operator A : F 2 (Z)→ F 2 (Z) as

Ai (f) (s, i) = max

{
c (s)− δEs

[
pjs′fj (s′, j) +

(
1− pjs′

)
fj (s′, i)

]
,

δEs [pis′fi (s
′, i) + (1− pis′) fi (s′, j)]

}
Ai (f) (s, j) = δEs

[
pis′fi (s

′, i) +
(
1− pis′

)
fi (s

′, j)
]
.

Lemma A1 The operator A : F 2 (Z)→ F 2 (Z) is a contraction.

Proof. Let f, g ∈ F 2 (Z). For any state (s, i) ∈ Z,

|Aj (f) (s, i)− Aj (g) (s, i)| =
∣∣δEs [pjs′ (fj (s′, j)− gj (s′, j)) +

(
1− pjs′

)
(fj (s′, i)− gj (s′, i))

]∣∣
≤ δEs

∣∣(pjs′ (fj (s′, j)− gj (s′, j)) +
(
1− pjs′

)
(fj (s′, i)− gj (s′, i))

)∣∣
≤ δ ‖f − g‖Z .

Next I show that |Ai (f) (s, i)− Ai (g) (s, i)| ≤ δ ‖f − g‖Z . Assume wlog that Ai (f) (s, i) ≥
Ai (g) (s, i). There are two possible cases: (1) Ai (f) (s, i) = c (s) − δEs[p

j
s′fj (s′, j) + (1 −

pjs′)fj (s′, i)], or (2) Ai (f) (s, i) = δEs[p
i
s′fi (s

′, i) + (1− pis′)fi (s′, j)]. In case (1),

|Ai (f) (s, i)− Ai (g) (s, i)| =
∣∣c (s)− δEs

[
pjs′fj (s′, j) +

(
1− pjs′

)
fj (s′, i)

]
− Ai (g) (s, i)

∣∣
≤

∣∣δEs [pjs′ (gj (s′, j)− fj (s′, j)) +
(
1− pjs′

)
(gj (s′, i)− fj (s′, i))

]∣∣
≤ δ ‖f − g‖Z .

On the other hand, in case (2),

|Ai (f) (s, i)− Ai (g) (s, i)| =
∣∣δEs [pis′fi (s′, i) +

(
1− pis′

)
fi (s

′, j)
]
− Ai (g) (s, i)

∣∣
≤

∣∣δEs [pis′ (fi (s′, i)− gi (s′, i)) +
(
1− pis′

)
(fi (s

′, j)− gi (s′, j))
]∣∣

≤ δ ‖f − g‖Z .

Hence, ‖A (f)− A (g)‖Z ≤ δ ‖f − g‖Z , so A is a contraction.
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For any pair M,m ∈ F 2 (Z) and for j = 1, 2, i 6= j, define

Hj (Mj,mi) (s, k) = max
{
c (s)−mi (s, k) , δEs

[
pjs′Mj (s′, j) +

(
1− pjs′

)
Mj (s′, i)

]}
.

Define the operatorH : F 2 (Z)×F 2 (Z)→ F 2 (Z) asH (M,m) = (H1 (M1,m2) , H2 (M2,m1)).

Proof of Theorem 1. To prove Theorem 1, I start out assuming that the set of SPE

payoffs is non-empty. At the end of the proof I show that the game indeed has a SPE.

Let (u, τ) be a SPE outcome and let fi (z) = Ei [δ
τui | z0 = z] be the payoff that player i

gets from this SPE when the initial state is z ∈ Z. Let M =
(
M1,M2

)
and m = (m1,m2)

denote the supremum and infimum SPE payoffs of players 1 and 2 (so that M i (z) ≥ fi (z) ≥
mi (z) for all z ∈ Z, i = 1, 2). At any state z = (s, i), player j 6= i can guarantee herself a

payoff of at least Aj
(
mj,M i

)
(s, i) = δEs[p

j
s′mj (s′, j) + (1 − pjs′)mj (s′, i)] by rejecting the

offer. Similarly, at state z = (s, j) player j’s payoff is at least as large as

Aj
(
mj,M i

)
(s, j) = max

{
c (s)− δEs

[
pis′M i (s

′, i) + (1− pis′)M i (s
′, j)
]
,

δEs
[
pjs′mj (s′, j) +

(
1− pjs′

)
mj (s′, i)

] }
,

as player i 6= j never rejects an offer of δEs[p
i
s′M i (s

′, i) + (1− pis′)M i (s
′, j)]. This implies

that, for all z ∈ Z, fj (z) ≥ Aj
(
mj,M i

)
(z) for j = 1, 2, i 6= j. For any pair M,m ∈ F 2 (Z)

and for j = 1, 2, i 6= j, let Gj (M,m) = Aj (mj,Mi). Define the operator G : F 2 (Z) ×
F 2 (Z)→ F 2 (Z) as G (M,m) = (G1 (M,m) , G2 (M,m)).

Suppose next that the state is (s, j). If player j makes an offer that player i accepts, then

fj (s, j) + fi (s, j) ≤ c (s). Since fi (s, j) ≥ mi (s, j), it follows that fj (s, j) ≤ c (s)−mi (s, j).

If player j passes or if player i does not accept her offer, then fj (s, j) ≤ δEs[p
j
s′M j (s′, j) +

(1 − pjs′)M j (s′, i)], since the right hand side of this inequality is player j’s highest possible

continuation payoff at state (s, j). On the other hand, fj (s, i) ≤ δEs[p
j
s′M j (s′, j) + (1 −

pjs′)M j (s′, i)] when the state is (s, i), as player j will always accept any offer that gives her

this much. It then follows that fj (s, k) ≤ Hj

(
M j,mi

)
(s, k) for j = 1, 2, i 6= j (where H (·, ·)

was defined above).

Next, let M ′,M ′′ and m′,m′′ (all bounded functions on Z taking values on R2) be such

that M ′
i (z) ≥ M ′′

i (z) for all z ∈ Z, i = 1, 2 and m′i (z) ≤ m′′i (z) for all z ∈ Z, i = 1, 2 .

One can check that this implies that Hi (M
′,m′) (z) ≥ Hi (M

′′,m′′) (z) for all z ∈ Z, i = 1, 2

and Gi (M
′,m′) (z) ≤ Gi (M

′′,m′′) (z) for all z ∈ Z, i = 1, 2. It what follows, for any pair

f, g ∈ F 2 (Z) I will write f ≥ g if fi (z) ≥ gi (z) for all z ∈ Z, i = 1, 2.
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Define the sequences {M r} and {mr} as follows. Let (M1,m1) =
(
M,m

)
, and for all

r ≥ 2 let (M r,mr) = (H(M r−1,mr−1), G(M r−1,mr−1)). Note that M2 = H (M1,m1) ≥ M1

and m2 = G (M1,m1) ≤ m1. It follows then by induction and using our observation in the

previous paragraph that {M r} is an increasing sequence and {mr} is a decreasing sequence.

Moreover, it must be that mr ≥ 0 for all r and M r ≤ b for all r, where b is such that b ≥ c (s)

for all s ∈ S (such a b always exists, since S is a finite set). Thus, both {M r} and {mr}
are bounded and monotonic sequences, so there exists M∗ and m∗ such that {M r} → M∗

and {mr} → m∗. Finally, since both H and G are continuous functions it follows that

H (M∗,m∗) = M∗ and G (M∗,m∗) = m∗. Therefore, m∗ ≤ m1 = m ≤M = M1 ≤M∗.

The next step is to show that M∗
i = m∗i for i = 1, 2. Since m∗ ≤ m ≤ M ≤ M∗, this

will imply that m = M , so there are unique SPE payoffs. The strategy to prove this is to

show that both (M∗
1 ,m

∗
2) and (m∗1,M

∗
2 ) are fixed points of the operator A, and to note that

by Lemma A1 the operator A is a contraction and therefore has a unique fixed point.

Consider (M∗
1 ,m

∗
2). By the analysis above, H1 (M∗

1 ,m
∗
2) = M∗

1 and G2 (M∗,m∗) = m∗2. By

definition of the operator G, m∗2 = G2 (M∗,m∗) = A2 (m∗2,M
∗
1 ). Thus, to show that (M∗

1 ,m
∗
2)

is a fixed point of A it suffices to show that A1 (M∗
1 ,m

∗
2) = M∗

1 . To see this, consider first

states z = (s, 1) in which player 1 is the proposer. For those states it must be that

m∗2 (s, 1) = A2 (m∗2,M
∗
1 ) (s, 1) = δEs

[
p2
s′m

∗
2 (s′, 2) +

(
1− p2

s′

)
m∗2 (s′, 1)

]
. (A.1)

Equation (A.1) together with the definition of operator A implies

A1 (M∗
1 ,m

∗
2) (s, 1) = max

{
c (s)−m∗2 (s, 1) , δEs

[
p1
s′M

∗
1 (s′, 1) +

(
1− p1

s′

)
M∗

1 (s′, 2)
]}

= H1 (M∗
1 ,m

∗
2) (s, 1) = M∗

1 (s, 1) .

Consider next states z = (s, 2). There are two possible cases. The first case is

m∗2 (s, 2) = c (s)− δEs
[
p1
s′M

∗
1 (s′, 1) +

(
1− p1

s′

)
M∗

1 (s′, 2)
]

≥ δEs
[
p2
s′m

∗
2 (s′, 2) +

(
1− p2

s′

)
m∗2 (s′, 1)

]
.

The second case is one in which

m∗2 (s, 2) = δEs
[
p2
s′m

∗
2 (s′, 2) +

(
1− p2

s′

)
m∗2 (s′, 1)

]
> c (s)− δEs

[
p1
s′M

∗
1 (s′, 1) +

(
1− p1

s′

)
M∗

1 (s′, 2)
]
.
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In either case, δEs[p
1
s′M

∗
1 (s′, 1) + (1− p1

s′)M
∗
1 (s′, 2)] ≥ c (s)−m∗2 (s, 2). Therefore,

H1 (M∗
1 ,m

∗
2) (s, 2) = max

{
c (s)−m∗2 (s, 2) , δEs

[
p1
s′M

∗
1 (s′, 1) +

(
1− p1

s′

)
M∗

1 (s′, 2)
]}

= δEs
[
p1
s′M

∗
1 (s′, 1) +

(
1− p1

s′

)
M∗

1 (s′, 2)
]

= A1 (M∗
1 ,m

∗
1) (s, 2) .

Hence, A (M∗
1 ,m

∗
2) = (M∗

1 ,m
∗
2). A symmetric argument shows that A (m∗1,M

∗
2 ) = (m∗1,M

∗
2 ).

Since A is a contraction with a unique fixed point, it must be that (M∗
1 ,m

∗
2) = (m∗1,M

∗
2 ).

So far I showed that if the set of SPE is not empty, then all SPE must be payoff equivalent.

Now I show that the set of SPE is indeed non-empty. To see this, let V be such that

A (V ) = V . I first construct an anonymous stationary outcome (Sa ×N, η) with payoffs

equal to V . Define φ : S → R as in the main text, and let Sa = {s ∈ S : φ (s) ≤ c (s)}. Let

η (s, j) = V (s, j) ∈ C (s, j) for all (s, j) ∈ Sa × N . One can check using standard dynamic

programing arguments that the players’ payoffs from outcome (Sa ×N, η) are equal to V .

To show that (Sa ×N, η) is the outcome induced by a SPE, consider the following strategy

profile. At any state z = (s, i), agent i proposes division η (z) = V (z) if z ∈ Sa × N and

passes otherwise. Responder j 6= i accepts any proposal which gives her a payoff of no less

than Vj (s, i) = δEs(p
j
s′Vj (s′, j) + (1 − pjs′)Vj (s′, i)), and rejects any proposal that gives her

a lower payoff. Note that this strategy profile induces outcome (Sa ×N, η). Moreover, no

player can gain by unilaterally deviating from her strategy at any state z ∈ Z.

For i = 1, 2, let Γ∗i denote the set of strategies of player i that survive iterated elimination

of conditionally dominated strategies. Let Γ∗ = Γ∗1 × Γ∗1. Since Γ∗ contains all the SPE

and since the set of SPE is non-empty, it follows that Γ∗ is non-empty. The following

result generalizes arguments in Yildiz (2003) to show that the unique SPE payoffs derived in

Theorem 1 can also be derived via iterated elimination of conditionally dominated strategies.

Proposition A1 Let (V1, V2) be the unique SPE payoffs derived in Theorem 1. Then, for

i = 1, 2, for each z ∈ Z and for each strategy profile in Γ∗, player i’s payoffs at time t with

zt = z are equal to Vi(z).

Proof. For period t with zt = z, let V i,t(z) and V i,t(z) be the infimum and supremum

payoffs of player i at time t, respectively, given that the set of remaining strategy profiles is

Γ∗ (with the infimum and supremum taken over all possible histories of play and all strategies

of player j in Γ∗j). To establish the claim, I will show that V i,t(z) = V i,t(z). As a first step,

note that the stationarity of the game implies that V i,t(z) = V i,s(z) and V i,t(z) = V i,s(z)

for any t and s such that zt = zs = z. Hence, for every state z, let V i(z) and V i(z) be the
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infimum and supremum payoffs of player i at any time t with zt = z, respectively, given that

the set of remaining strategy profiles is Γ∗.

Since V i(s
′, k) is the lowest payoff player i expects to get at state (s′, k) (given that players

use strategies in Γ∗), for any ε > 0 there exists an iteration in the elimination process such

that i expects to get at any time t + 1 with zt+1 = (s′, k) at least V i(s
′, k) − ε/δ for any

remaining strategy profile and any history of play. Hence, at any time t with zt = (s, k), any

strategy that gives i less than δEs[p
i
s′V i(s

′, i) + (1− pis′)V i(s
′, j)]− ε against any strategy of

j that remains at that iteration is conditionally dominated by not reaching an agreement.

Hence, such a strategy must be eliminated. This implies that V i(s, k) ≥ δEs[p
i
s′V i(s

′, i) +

(1− pis′)V i(s
′, j)]. Moreover, at states (s, i), for player j rejecting an offer u = (u1, u2) with

uj > δEs[p
j
s′V j(s

′, j) + (1 − pjs′)V j(s
′, i)] is conditionally dominated by accepting such an

offer. This in turn implies that V i(s, i) ≥ c(s) − δEs[pjs′V j(s
′, j) + (1 − pjs′)V j(s

′, i)]. These

two inequalities together imply that V i(s, k) ≥ Ai(V i, V j) for all (s, k) ∈ S ×N (where the

operator Ai was defined at the beginning of Appendix A.1).

Next, I show that V i(s, k) ≤ Hi(V i, V i)(s, k) for all (s, k) ∈ S × N (where the operator

Hi was defined after the proof of Lemma A1). To see this, consider first states (s, j). At

such states, player i will always accept any offer u = (u1, u2) with ui > δEs[p
i
s′V i(s

′, i) +

(1 − pis′)V i(s
′, j)]. Hence, any conditionally undominated offer of player j must give i a

payoff weakly lower than δEs[p
i
s′V i(s

′, i) + (1 − pis′)V i(s
′, j)]. On the other hand, if player

j passes on his right to make an offer, or if she makes an offer than player i rejects, then

player i’s payoff is again bounded above by δEs[p
i
s′V i(s

′, i) + (1 − pis′)V i(s
′, j)]. Consider

next states (s, i). At such states, accepting any offer that gives player j less than V j(s, i)

is a conditionally dominated strategy for j. Hence, player i cannot expect to get more than

max{c(s)−V j(s, i), δEs[p
i
s′V i(s

′, i)+(1−pis′)V i(s
′, j)]}. Combining all these arguments yields

the desired inequality.

Finally, using arguments identical to those used to prove uniqueness of SPE payoffs in the

proof of Theorem 1, one can show that there exists Vi
∗ and Vi

∗
such that Vi

∗ ≤ Vi ≤ Vi ≤ Vi
∗
,

with (V ∗1, V
∗
2) and (V

∗
1, V

∗
2) both fixed points of the operator A. Since A has a unique fixed

point, for i = 1, 2 it must be that V ∗i = V
∗
i , and hence V i = V i.

A.2 Proof of Proposition 3

Lemma A2 Let f, f ′ ∈ F 2 (Z) be such that f ′j (z) ≤ fj (z) and f ′i (z) ≥ fi (z) for all z ∈ Z.

Then, Ai (f
′) (z) ≥ Ai (f) (z) and Aj (f ′) (z) ≤ Aj (f) (z) for all z ∈ Z.
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Proof. Let f, f ′ ∈ F 2 (Z) be such that f ′j (z) ≤ fj (z) and f ′i (z) ≥ fi (z) for all z ∈ Z.

For z = (s, j), it follows immediately from the definition of operator A that Ai (f) (s, j) ≤
Ai (f

′) (s, j). Next, let z = (s, i). In this case,

Ai (f
′) (s, i) = max

{
c (s)− δEs

[
pjs′f

′
j (s′, j) +

(
1− pjs′

)
f ′j (s′, i)

]
,

δEs [pis′f
′
i (s′, i) + (1− pis′) f ′i (s′, j)]

}

≥ max

{
c (s)− δEs

[
pjs′fj (s′, j) +

(
1− pjs′

)
fj (s′, i)

]
,

δEs [pis′fi (s
′, i) + (1− pis′) fi (s′, j)]

}
= Ai (f) (s, i) .

Hence, Ai (f
′) (z) ≥ Ai (f) (z) for all z ∈ Z. Next, I show that Aj (f ′) (z) ≤ Aj (f) (z) for

all z ∈ Z. If z = (s, i), it then follows from the definition of operator A that Aj (f ′) (s, i) ≤
Aj (f) (s, i). Next, let z = (s, j). In this case,

Aj (f ′) (s, j) = max

{
c (s)− δEs [pis′f

′
i (s′, i) + (1− pis′) f ′i (s′, j)] ,

δEs
[
pjs′f

′
j (s′, j) +

(
1− pjs′

)
f ′j (s′, i)

] }

≤ max

{
c (s)− δEs [pis′fi (s

′, i) + (1− pis′) fi (s′, j)] ,
δEs

[
pjs′fj (s′, j) +

(
1− pjs′

)
fj (s′, i)

] }
= Aj (f) (s, j) .

Hence, Aj (f ′) (z) ≤ Aj (f) (z) for all z ∈ Z.

Proof of Proposition 3. Let A : F 2 (Z)→ F 2 (Z) be the operator defined in the Appendix

when beliefs are (pi, pj) and let Ã : F 2 (Z) → F 2 (Z) be the same operator when beliefs are

(p̃i, pj). Thus, A (V ) = V and Ã(Ṽ ) = Ṽ . Let {f r} be the sequence with f 1 = V and

f r = Ã (f r−1) for all r ≥ 2.

I first show that f 2
i (z) ≥ f 1

i (z) and f 2
j (z) ≤ f 1

j (z) for all z ∈ Z. To see this, take first

z = (s, i). Since f 2 = Ã (f 1), then

f 2
i (s, i) = max

{
c (s)− δEs

[
pjs′f

1
j (s′, j) +

(
1− pjs′

)
f 1
j (s′, i)

]
,

δEs [p̃is′f
1
i (s′, i) + (1− p̃is′) f 1

i (s′, j)]

}

≥ max

{
c (s)− δEs

[
pjs′f

1
j (s′, j) +

(
1− pjs′

)
f 1
j (s′, i)

]
,

δEs [pis′f
1
i (s′, i) + (1− pis′) f 1

i (s′, j)]

}
= f 1

i (s, i) ,

where the inequality follows from the fact that p̃is′ ≥ pis′ for all s′ ∈ S and from the

fact that f 1
i (s′, i) = Vi (s

′, i) ≥ Vi (s
′, j) = f 1

i (s′, j) for all s′ ∈ S. Moreover, f 2
j (s, i) =

δEs[p
j
s′f

1
j (s′, j) + (1 − pjs′)f 1

j (s′, i)] = f 1
j (s, i). Next, I consider z = (s, j). Since f 1

i (s′, i) =

Vi (s
′, i) ≥ Vi (s

′, j) = f 1
i (s′, j) for all s′ ∈ S and since p̃is′ ≥ pis′ for all s′ ∈ S, it must be that
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f 2
i (s, j) = δEs[p̃

i
s′f

1
i (s′, i) + (1− p̃is′)f 1

i (s′, j)] ≥ f 1
i (s, j). On the other hand,

f 2
j (s, j) = max

{
c (s)− δEs [p̃is′f

1
i (s′, i) + (1− p̃is′) f 1

i (s′, j)] ,

δEs
[
pis′f

1
j (s′, j) + (1− pis′) f 1

j (s′, i)
] }

≤ max

{
c (s)− δEs [pis′f

1
i (s′, i) + (1− pis′) f 1

i (s′, j)] ,

δEs
[
pis′f

1
j (s′, j) + (1− pis′) f 1

j (s′, i)
] }

= f 1
j (s, j) ,

where the inequality follows from p̃is′ ≥ pis′ for all s′ ∈ S and from the fact that f 1
i (s′, i) =

Vi (s
′, i) ≥ Vi (s

′, j) = f 1
i (s′, j) for all s′ ∈ S. Thus, f 2

i (z) ≥ f 1
i (z) and f 2

j (z) ≤ f 1
j (z) for

all z ∈ Z. By Lemma A2, it follows that f ri (z) ≥ f r−1
i (z) and f rj (z) ≤ f r−1

j (z) for all z ∈ Z
and for all r ≥ 1. Finally, since Ã is a contraction and Ṽ is its unique fixed point, it must

be that {f r} → Ṽ . Thus, Ṽi (z) ≥ Vi (z) and Ṽj (z) ≤ Vj (z) for all z ∈ Z.

A.3 Proof of Theorem 3

I first show that
∥∥W∆ − w∆

∥∥S → 0 as ∆→ 0. Note that the operators T∆ : F (S)→ F (S)

and T ′∆ : F (S)→ F (S) defined as

T∆ (f) (s) = max
{
c (s) , e−r∆E∆

s [f (s′)]
}

T ′∆ (f) (s) = max
{
c (s) , e−r∆E∆

s

[
ṽ∆ (s′) + f (s′)

]}
,

are both contractions with modulus e−r∆ < 1, and that w∆ and W∆ are their respective

unique fixed points. Moreover,

∥∥W∆ − w∆
∥∥S =

∥∥T ′∆W∆ − T∆w
∆
∥∥S ≤ ∥∥T ′∆W∆ − T ′∆w∆

∥∥S +
∥∥T ′∆w∆ − T∆w

∆
∥∥S

≤ e−r∆
∥∥W∆ − w∆

∥∥S +
∥∥T ′∆w∆ − T∆w

∆
∥∥S , (A.2)

where the first inequality is an application of the triangle inequality and the second one

follows from the fact that T ′ is a contraction with modulus e−r∆. By equation (A.2),

∥∥W∆ − w∆
∥∥S ≤ ∥∥T ′∆w∆ − T∆w

∆
∥∥S

1− e−r∆
. (A.3)

By equation (A.3), in order to show that
∥∥W∆ − w∆

∥∥S → 0 as ∆ → 0 it suffices to show

that
∥∥T ′∆w∆ − T∆w

∆
∥∥S / (1− e−r∆) → 0 as ∆ → 0. Towards proving this, note first that

T ′∆w
∆ (s) ≥ T∆w

∆ (s) ≥ c (s) for all s ∈ S. This implies that
∣∣T ′∆w∆ (s)− T∆w

∆ (s)
∣∣ = 0
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whenever T ′∆w
∆ (s) = c (s). Moreover, note that W∆ (s) = T ′∆W

∆ (s) ≥ T ′∆w
∆ (s) for all

s ∈ S. Since c (s) = W∆ (s) for all s ∈ Sa (∆), it follows that T ′∆w
∆ (s) = c (s) for all

s ∈ Sa (∆). Therefore,
∣∣T ′∆w∆ (s)− T∆w

∆ (s)
∣∣ = 0 for all s ∈ Sa (∆).

Consider next states s /∈ Sa (∆) such that T ′∆w
∆ (s) > c (s) (note that for any other state

s it must be that
∣∣T ′∆w∆ (s)− T∆w

∆ (s)
∣∣ = 0). Let s be such a state and note that

∣∣T ′∆w∆ (s)− T∆w
∆ (s)

∣∣ = e−r∆Es
[
ṽ∆ (s′) + w∆ (s′)

]
− T∆w

∆ (s)

≤ e−r∆Es
[
ṽ∆ (s′)

]
= e−r∆

(
1− e−λs∆

)∑
s 6=s′

αss′ ṽ
∆ (s′) ,

where the first inequality follows from the fact that Tw∆ (s) ≥ e−r∆Es
[
w∆ (s′)

]
and the

last equality follows from the fact that s /∈ Sa (∆) and thus ṽ∆ (s) = 0. Moreover, for all

s′ ∈ Sa (∆)

ṽ∆ (s′) = y (s′)
(
V ∆

1 (s′, 1)− V ∆
1 (s′, 2)

)
≤ y (s′)V ∆

1 (s′, 1)
1− e−r∆e−λs∆

1− e−r∆e−λs∆ (1− p1
s′)

≤ y (s′) c (s′)
1− e−r∆e−λs′∆

1− e−r∆e−λs′∆ (1− p1
s′)
, (A.4)

where the first inequality follows from V ∆
1 (s′, 2) ≥ e−r∆e−λs′∆(p1

s′V
∆

1 (s′, 1)+(1− p1
s′)V

∆
1 (s′, 2))

and the second inequality follows from the fact that V ∆
1 (s′, 1) ≤ c (s′) for all s′ ∈ Sa (∆).

Thus, for all s /∈ Sa (∆) it must be that

∣∣T ′∆w∆ (s)− T∆w
∆ (s)

∣∣ ≤ e−r∆
(
1− e−λs∆

)∑
s′ 6=s

αss′y (s′) c (s′)

(
1− e−r∆e−λs′∆

1− e−r∆e−λs′∆ (1− p1
s′)

)
.

(A.5)

Equations (A.3) and (A.5), the definition of ‖·‖S and the fact that
∣∣T ′∆w∆ (s)− T∆w

∆ (s)
∣∣ = 0

for all s ∈ Sa (∆) imply that

∥∥W∆ − w∆
∥∥S ≤ e−r∆

1− e−r∆
max

s/∈Sa(∆)

((
1− e−λs∆

)∑
s′ 6=s

αss′y (s′) c (s′)

(
1− e−r∆e−λs′∆

1− e−r∆e−λs′∆ (1− p1
s′)

))

≤ e−r∆

1− e−r∆
max
s∈S

((
1− e−λs∆

)∑
s′ 6=s

αss′y (s′) c (s′)

(
1− e−r∆e−λs′∆

1− e−r∆e−λs′∆ (1− p1
s′)

))
.

I now show that
e−r∆(1−e−λs∆)

1−e−r∆ y (s′) c (s′) 1−e−r∆e−λs′∆

1−e−r∆e−λs′∆(1−p1
s′ )
→ 0 as ∆ → 0 for every s, s′ ∈

S, which by the equation above implies that
∥∥W∆ − w∆

∥∥S → 0 as ∆ → 0. There are
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two cases to consider: (i) p1
s′ = 0 and (ii) p1

s′ > 0. In case (i) y (s′) = 0. Therefore,
e−r∆(1−e−λs∆)

1−e−r∆ y (s′) c (s′) 1−e−r∆e−λs′∆

1−e−r∆e−λs′∆(1−p1
s′ )

= 0 for all ∆ > 0. In case (ii), one can check that

lim
∆→0

e−r∆
(
1− e−λs∆

)
1− e−r∆

y (s′) c (s′)

(
1− e−r∆e−λs′∆

1− e−r∆e−λs′∆ (1− p1
s′)

)
= 0.

Thus, I conclude that
∥∥W∆ − w∆

∥∥S → 0 as ∆→ 0.

Finally, fix any ε > 0. Since maxs∈S ṽ
∆ (s) → 0 as ∆ → 0 (see equation (A.4)) and∥∥W∆ − w∆

∥∥S → 0 as ∆ → 0, there exists ∆ (ε) > 0 such that maxs∈S ṽ
∆ (s) ≤ ε

2
and∥∥W∆ − w∆

∥∥S ≤ ε
2

for all ∆ < ∆ (ε). I will show that S∗ε (∆) ⊆ Sa (∆) for all ∆ < ∆ (ε).

Take ∆ < ∆ (ε) and s̃ ∈ S∗ε (∆), so w∆ (s̃) = c (s̃) ≥ δ∆Es̃
[
w∆ (s′)

]
+ ε. Suppose by

contradiction that s̃ /∈ Sa (∆), so

W∆ (s̃) = δ∆Es̃
[
ṽ∆ (s′) +W∆ (s′)

]
> c (s̃) .

Since maxs∈S ṽ
∆ (s) ≤ ε

2
and

∥∥W∆ − w∆
∥∥S ≤ ε

2
, it follows that

c (s̃) < δ∆Es̃
[
ṽ∆ (s′) +W∆ (s′)

]
≤ δ∆ ε

2
+ δ∆Es̃

[
w∆ (s′) +

ε

2

]
< ε+ δ∆Es̃

[
w∆ (s′)

]
,

a contradiction to the fact that s̃ ∈ S∗ε (∆). Thus, it must be that s̃ ∈ Sa (∆). Hence,

S∗ε (∆) ⊆ Sa (∆) ⊆ S∗ (∆). �
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