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1 Introduction

Which security does a firm optimally issue when firm and market agree to disagree about

the firm’s cash-flow distribution? Many corporate finance theorists have employed the as-

sumption of belief disagreement between firm and investors, and in particular of optimistic

issuers. For example, Heaton (2002) analyzes the investment inefficiencies that arise when a

firm’s manager is overly optimistic about the cash-flow distribution. More recently, Landier

and Thesmar (2009) show that an entrepreneur’s degree of optimism can affect the maturity

of debt that he issues. However, these papers exogenously restrict the types of securities

that firms issue. No paper to date has studied how differences in beliefs influence a firm’s

optimal security design. We study such a model and show that disagreement in beliefs can

generate various commonly observed financial contracts. Perhaps most interestingly, when

issuer and market disagree, selling a security backed by a pool of assets can be preferred to

selling assets backed by the individual assets. Our model also explains empirical patterns in

the dynamics securities issuance that are more difficult to reconcile with existing theories.

We consider an issuer who owns an asset that will pay uncertain cash-flows at a future

date. To raise capital, the issuer designs a security which is backed by the asset’s cash flows.

Following DeMarzo and Duffie (1999), we assume the issuer discounts future cash-flows more

than the market does. Such differences in discounting arise naturally e.g. when the issuer

faces credit constraints. Lastly, we also assume that the issuer is more optimistic than the

market about the asset’s cash-flow distribution, consistent with empirical evidence (e.g.,

Bernardo and Welch, 2001; Malmendier et al., 2007, 2011). The issuer’s problem is to design

the monotonic security that maximizes her expected payoff, which is given by the market

price of the security she sells plus the expected discounted retained cash-flows.

Our analysis delivers four main results. As a baseline, we show that our framework easily

generates standard securities that the traditional literature generates with other frictions. We
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then turn to designs and issuance dynamics that are unique to disagreement. In particular,

we first show that, under mild conditions, the optimal security takes the form of a debt

contract. Second, we show that selling a security backed by a pool of several underlying

assets can be strictly preferred to selling individual asset-backed securities. Third, when

market participants disagree among themselves, selling separate tranches instead of a single

security can be optimal. Fourth, in a model with multiple financing rounds the optimal

security can be convertible preferred stock, a security commonly used in venture capital

(VC) financing.

The intuition for the optimality of debt is simple – the core tradeoff is between discounting

and underpricing. Specifically, because the issuer is more optimistic than the market, she

finds it optimal to only sell cash-flows in the left tail of the cash-flow distribution, which the

market values relatively more. By contrast, it is optimal for the issuer to retain the cash-flows

in the right tail, since the market assigns a relatively low probability (and thus value) to

these states. When the issuer’s and market’s beliefs satisfy the monotone likelihood ratio

property (MLRP) the security that implements the desired trade is debt. When MLRP fails,

it may be optimal to add a barrier option to the debt contract.1 This result may help explain

why a large fraction of corporate bonds are callable (Duffee, 1998),2 and also rationalizes

“write-off bonds” (Vallée, 2013).

We use our characterization of the optimal security to study how changes in the firm’s

balance sheet affect its issuance decisions. In particular, we show that pre-existing debt may

lead the firm to optimally stop selling securities. This prediction contrasts with that of the

traditional “pecking order” model (Myers and Majluf, 1984), in which firms never issue equity

or do so only as a “last resort.” Firms in our model sell equity when investors are confident.

The fact that firms issue equity when stock prices and sentiment are high (e.g., Marsh, 1982;

1Excessive betting between contracting parties such as discussed in Börgers (2014) does not arise in our
context as we study the design of an asset-backed security under limited liability.

2Indeed, the combination of debt plus a barrier option can be interpreted as callable debt.

2



Baker and Wurgler, 2002; Erel et al., 2011; McLean and Zhao, 2014; Farre-Mensa, 2015) and

when agreement between issuer and market is high (Dittmar and Thakor, 2007) is in line

with our model’s predictions, but appears inconsistent with the pecking order hypothesis.

For our second main result we consider an issuer who owns two underlying assets.3 We

show that, when the issuer is optimistic relative to the market, selling a security backed by

the pool of assets can be preferred to selling individual asset-backed securities. Intuitively,

while outside investors might be very pessimistic (relative to the issuer) about the probability

of an individual asset delivering high profits, they will typically be less pessimistic about the

event that at least one of several assets pays off a high return. As a result, an issuer who

owns multiple assets may find it strictly optimal to combine them and sell a “senior” security

backed by the pool of assets, because differences of opinion are then (literally) taken to a

greater power. The following example illustrates this insight.

Example 1. Consider first an issuer who owns a single asset, which can either pay a return

of 1 or a return of 0. The market believes that the probability of the asset paying off is 1
3
;

the issuer believes in an upside probability of 2
3
. The issuer discounts future cash-flows with

a factor of 0.6, whereas the market does not discount. The market is therefore willing to pay

1
3

for the asset. Since the asset is worth 2
3
· 0.6 = 0.4 to the issuer, she retains it.

Consider now an issuer who owns two of these assets with iid returns. The issuer’s payoff

from retaining the two assets is 0.8, which is strictly larger than her payoff from selling

two individual securities, each backed by an asset. Suppose instead that the issuer sells a

“senior” security backed by the pool of assets that pays 1 if at least one asset pays off and

zero otherwise. Investors are willing to pay 1 −
(
2
3

)2
= 5

9
for the security, while the issuer

assigns to it a value of
(

1−
(
1
3

)2) · 0.6 = 8
15
< 5

9
. Because the issuer retains a cash-flow

of 1 in the event that both assets pay off, her expected payoff from selling this security is

3For simplicity we focus on the case of two assets, although the results extend to the case in which the
issuer owns several assets.
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5
9

+
(
2
3

)2
0.6 ≈ 0.822.

We stress that differences in beliefs between the issuer and the market are crucial for pooling

to be optimal. Indeed, because the issuer discounts future cash-flows more than the market,

with homogenous beliefs it is always optimal for the issuer to sell the entire firm. As a result,

when issuer and market share the same beliefs, the issuer is indifferent between pooling

her assets or selling them as separate concerns. Moreover, our model has the feature that

the optimality of pooling assets breaks down when the correlation of the underlying assets

increases. This mechanism can explain the empirically observed dynamics of securitization,

discussed below.

We complement the result on pooling with a result on tranching. Here, we allow different

investors to hold different beliefs about the asset’s cash-flow distribution. Following an intu-

ition similar to Garmaise (2001), we show that it can be optimal to offer the market separate

tranches instead of a single security. This can include retention of the most junior tranche

by the issuer, as was often the case during the issuance of mortgage-backed securities in the

run-up to the recent financial crisis. It can also involve the issuance of a mezzanine tranche,

which is more difficult to achieve with several extant theories of optimal security design.

Finally, in a model with multiple financing rounds, convertible securities commonly used

in VC financing become optimal (see, e.g., Gompers and Lerner, 2001; Kaplan and Strömberg,

2003, 2004). As before, we assume that the issuer (here: the entrepreneur) is more confident

about the project’s prospects than the lender (here: the VC).4 Because the entrepreneur

assigns a relatively low probability to states in which performance is bad, she finds it rela-

tively cheap to rescind cash-flows to the VC in such states. At the time of initial contracting,

the entrepreneur also secures an option for a future financing round that enables her to

expand the project conditional on good interim performance.5 Given her optimistic beliefs,

4See Bernardo and Welch (2001); Cooper et al. (1988); Koellinger et al. (2007); Puri and Robinson (2007)
for supportive evidence.

5Our predictions do not rely on assuming that the strike of the refinancing option is determined with
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the entrepreneur values that option a lot. By contrast, the VC finds it cheap to write that

option to the entrepreneur, because the VC finds good interim performance relatively un-

likely. In addition to the optionality, the model also predicts that the VC obtains an equity

stake conditional on refinancing and expanding the project at the interim stage, which al-

lows her to break even. Importantly, the key assumption that makes the financier secure

part of the upside is that both the project’s required investment and its upside potential

are high – in other words, the payoff profile is highly skewed. Indeed, in practice many safer

entrepreneurial ventures are financed with straight (bank) debt, whereas VC financing with

convertibles are used only for projects with relatively high investment needs and high po-

tential payoffs (Cochrane, 2005). The model’s mechanics are also strongly consistent with

practitioners’ accounts of the drivers of the use of convertibles in the financing of young

firms.6

The paper proceeds as follows. Section 2 discusses the related literature. Section 3 in-

troduces the basic model and derives the optimality of debt. Sections 4 and 5 present the

results on pooling and tranching. In Section 6, convertibles naturally arise in a setting with

multiple financing rounds. Section 7 concludes. All proofs are in the Appendix.

2 Related Literature

While this paper is the first to formally investigate the role of disagreement in optimal

security design, informal mentions of the idea go back at least to Modigliani and Miller

(1958). These authors write (excerpts from p. 292): “Grounds for preferring one type of

certainty at the time of initial contracting. Indeed, the fact that disagreement is reduced by learning about
project quality over time is one of the key reasons for using convertible securities in early-stage financing,
rather than securities that require a precise agreed-upon valuation of the project at the time of contracting.

6Entrepreneurs seeking VC funding are overoptimistic: “Guy Kawasaki, a venture capitalist, says that
when an entrepreneur promises to make $50m in four years he adds one year to the delivery time and divides
the revenue by ten.” (Economist, 2014) “Convertible debt remains an attractive way to bridge the [resulting]
valuation gap.” (http://www.cognitionllp.com/convertible-debt-panacea-or-pain/)
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financial structure to another still exist within the framework of our model. If the owners

of a firm discovered a major investment opportunity which they felt would yield much more

than [the market’s discount rate], they might well prefer not to finance it via common stock.

A better course would be to finance the project initially with debt. Still another possibility

might be to [issue] a convertible debenture.”

Because there is open disagreement in our model rather than asymmetric information

between issuer and market, our paper is sharply distinguished from contributions that ratio-

nalize particular securities, including the predominance of debt, with adverse selection or an

informational advantage of insiders over the market (Myers and Majluf, 1984; Innes, 1990;

Nachman and Noe, 1994), from papers that point out the fragility of the same “pecking

order” result to the choice of specific off-equilibrium beliefs (Noe, 1988), to which agent is

privately informed (Inderst and Mueller, 2006; Axelson, 2007), and to particular distribu-

tional assumptions (e.g., Nachman and Noe, 1990, 1994; Fulghieri et al., 2013).7 Because

differences in beliefs are common knowledge in our model, the financier does not have to

screen borrowers based on their level of optimism as in Manove and Padilla (1999). Simi-

larly, the pooling results in DeMarzo (2005) rely on asymmetric information whereas ours

don’t; hence, our result is robust to the critique that informational asymmetries oftentimes

are not overcome by pooling (Arora et al., 2013). Stein (1992) uses adverse selection to derive

convertible debt. By contrast, our “convertibles” result uses only disagreement.

Our theory also makes no use of moral hazard as a driver of the optimal security anywhere.

In particular, the alignment of incentives plays no role in generating convertibles; this is in

contrast to earlier contributions by Green (1984); Admati and Pfleiderer (1994); Schmidt

(2003); Cornelli and Yosha (2003).8 Lastly, investors in our model do not suffer from limited

7In our model, the only key assumption that is necessary for the main results is that the issuer is more
optimistic than the issuer about the right tail of the cash flow distribution.

8For other models linking moral hazard and security design, see Bergemann and Hege (1998); Winton
and Yerramilli (2008); Antic (2014); Hébert (2014).
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channel capacity, which can render debt and pooling optimal (Yang, 2013), and can also

explain the use of convertibles in venture capital financing (Yang and Zeng, 2015).

Several previous papers in corporate finance invoke differences in beliefs to explain in-

vestment, financing, payout and capital structure choices (e.g., Heaton (2002); Coval and

Thakor (2005); Dittmar and Thakor (2007); Landier and Thesmar (2009)).9 However, these

papers do not study optimal security design in the sense of Allen and Gale (1988), since

they assume a constrained state space and/or contracting space.10 An exception is Garmaise

(2001), who shows that tranching can be optimal in a model in which there is disagree-

ment among investors and in which the prices of securities are determined through a first

price auction. In contrast to Simsek (2013a,b) and Brunnermeier et al. (forthcoming), the

disagreement in our model is not between different sets of traders, but between issuer and

market.

In sum, previous papers have investigated the effect of disagreement on financial decisions;

others have investigated the effect of informational and other frictions on optimal security

design. Our paper contributes to the intersection of these literatures by providing a full

and formal analysis of the effect of disagreement on optimal security design. The insight

that disagreement can generate rich predictions that previous models generated with other

frictions is important, because different empirical proxies capture these different frictions.

The paper hence contributes a starting point for a more nuanced empirical investigation of

precisely which securities firms issue, and why. Moreover, our comparatively simple model

of disagreement can generate a variety of securities for which the literature thus far has

employed separate models. Lastly, the model makes several new empirical predictions. We

9See also Hackbarth (2008); Boot and Thakor (2011); Gervais et al. (2011); Bayar et al. (2011); Thakor
and Whited (2011); Huang and Thakor (2013); Adam et al. (2014); Bayar et al. (forthcoming); Geanakoplos
(2010)

10Disagreement is related to outcome variables other than capital structure by Boot et al. (2006, 2008),
Adrian and Westerfield (2009), Dicks and Fulghieri (2015) and Shleifer et al. (2015). The observation that
the optimal securities can be sold also to employees relates our paper to Hellman and Puri (2000), Oyer and
Schaefer (2005), and Bergman and Jenter (2007).
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discuss those in what follows.

3 Basic Model

3.1 Payoffs, Beliefs, and Objectives

At date t = 0, an issuer owns a risky asset yielding state-contingent payoffs at date t = 1.

There is a finite set of possible states of nature S = {1, .., K} at t = 1, and the asset pays

an amount Xs ∈ R+ in state s ∈ S.11 We assume that Xs > 0 for all s ∈ S and that there

exists at least one pair of states s, s′ ∈ S such that Xs 6= Xs′ . Without loss of generality, we

order the states so that X1 ≤ X2 ≤ ... ≤ XK .

The issuer has to design a security F ∈ RK
+ backed by the cash-flows X = (Xs)s∈S to sell

it in the market. Thus, security F must be such that 0 ≤ Fs ≤ Xs for all s ∈ S. Let πI be the

probability distribution over S that represents the issuer’s beliefs. We assume that πIs > 0 for

all s ∈ S. Following DeMarzo and Duffie (1999) we assume that the issuer discounts retained

cash-flows at a rate that is higher than the market rate (which is normalized to 1).12 After

selling the security, the issuer retains X − F of the cash-flows generated by the asset. Thus,

the issuer attaches a value of δ
∑

s∈S π
I
s (Xs − Fs) to retained cash-flows, where δ ∈ (0, 1) is

the issuer’s discount rate. The payoff of an issuer who sells to the market a security F at a

price p is then given by p+ δ
∑

s∈S π
I
s (Xs − Fs) .

We assume that the market has different beliefs about the cash-flow distribution of the

underlying asset than the issuer. Let πM be the probability distribution over S that describes

the market’s beliefs, with πMs > 0 for all s ∈ S. We assume that the issuer is more optimistic

11The assumption that states are finite is for simplicity. Our results are robust to having a continuum of
states.

12The assumption that the issuer discounts future cash-flows at a higher rate than the market is a
metaphor, for example for a situation in which the issuer has some profitable investment opportunity. Also,
the assumption will hold if the issuer faces credit constraints or, as in the case of financial entities, minimum-
capital requirements.
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than the market, so that πI first-order stochastically dominates πM .13

The price that the market is willing to pay for security F is p(F ) :=
∑

s∈S π
M
s Fs. Overall,

the issuer’s payoff from selling security F is

U(F ) := p(F ) + δ
∑
s∈S

πIs (Xs − Fs) .

Definition 1. Say that security F is monotonic if Fs and Xs − Fs are both increasing in s.

We will assume that the issuer is restricted to sell monotonic securities. The restriction to

monotonic securities is standard in the literature of optimal security design; see, for instance,

Innes (1990); DeMarzo and Duffie (1999).14 In Appendix B we show how our results change

when we relax this restriction.

Let F be the set of feasible securities

F :=
{
F ∈ RK : 0 ≤ Fs ≤ Xs∀s ∈ S and F is monotonic

}
.

The issuer’s problem is to find the security F within the set of feasible securities F that

maximizes her payoff, taking the market’s beliefs as given. Formally, the issuer’s problem is

sup
F∈F

U (F ) . (1)

13There is an alternative interpretation for the differences in beliefs in our model: if we interpret πI and
πM as risk-neutral probabilities, then πI and πM will be different whenever issuer and market have different
preferences, even if they share the same beliefs over S. If issuer and market are expected utility maximizers
and share the same beliefs over S, then the issuer’s risk-neutral probabilities πI will first-order stochastically
dominate the market’s risk-neutral probabilities πM only under the assumption that the issuer is less risk-
averse than the market. Because the standard assumption is that the risk-bearing capacity of the market is
larger than that of the issuer, we find the heterogeneous-beliefs interpretation more adequate.

14As is well known, this assumption can be microfounded with a moral hazard problem. To avoid high
payments implied by a non-increasing security, the issuer could easily inflate cash flows, e.g., by borrowing
privately, and thus decrease payments to the investor.
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3.2 Optimal Security Design with Divergent Beliefs

In this section we present the solution to problem (1). We introduce additional notation

before presenting our results. For any s ∈ S, let As := {s, s+ 1, ..., K} be the event that

the asset yields cash-flows weakly larger than Xs. For all s ∈ S, let πI(As) :=
∑

s′≥s π
I
s′

and πM(As) :=
∑

s′≥s π
M
s′ be, respectively, the probability that the issuer and market assign

to event As. The assumption that πI first-order stochastically dominates πM implies that

πI(As) ≥ πM(As) for all s ∈ S. The following result characterizes the optimal security. In

what follows, we use the convention that F0 = X0 = 0 for all F ∈ F .

Proposition 1. The optimal security is described by:

∀s ∈ S, Fs =


Fs−1 +Xs −Xs−1 if πM(As) ≥ δπI(As),

Fs−1 if πM(As) < δπI(As).

The key value that determines the shape of the optimal security at each state s is the

ratio between πM(As) and πI(As); i.e., the ratio of the probability that the market and issuer

assign to profits being larger than Xs. If πM (As)
πI(As)

≥ δ, the optimal security F pays the largest

possible amount in state s; if πM (As)
πI(As)

< δ, the optimal security pays the least possible amount

(in both cases, subject to the constraint that F is monotonic). That is, for each state, the

issuer simply asks herself it the cash flow that obtains in that state is more valuable to herself

or to the market, and retains or sells that cash flow accordingly.

The following corollaries immediately follow.

Corollary 1. If πM(As) ≥ δπI(As) for all s ∈ S, then it is optimal to sell the entire firm;

i.e., Fs = Xs for all s ∈ S.
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Corollary 2. If πM(As) < δπI(As) for all s > 1, then risk-less debt is an optimal security;

i.e., Fs = X1 for all s ∈ S.

Corollary 3. Suppose there exists k ∈ S\{1, K} such that πM(As) ≥ δπI(As) if and only if

s ≤ k. Then, risky debt with face value Xk is an optimal security; i.e., Fs = min {Xs, Xk}

for all s ∈ S.

By Corollaries 1, 2 and 3, the optimal security can take the form of a debt contract. The

face value of the debt contract ranges from the lowest state, which makes risk-less debt the

optimal security, to risky debt with face value Xk ∈ (X1, XK), to risky debt that always

defaults (because the face value is equal to the highest possible cash-flow), which can be

interpreted as an equity issuance.

In sum, our model predicts that firms issue debt with a lower face value when there

is more belief disagreement between issuers and markets. When the market is extremely

pessimistic, the firm will issue only risk-free debt. (Once that option is exhausted, it stops

issuance altogether, as we show below.) By contrast, the issuer sells the whole firm when the

market is optimistic and there is less disagreement.

This prediction is strongly consistent with the timing of securities issuances to meet

market sentiment (e.g., Marsh (1982); Baker and Wurgler (2002), and in particular Dittmar

and Thakor (2007)). At the same time, our prediction is in stark contrast to several theories of

security design based on asymmetric information. Most prominently, the traditional “pecking

order” hypothesis holds that firms issue equity only as a “last resort” (e.g., Myers, 1984) –

hence, only the worst firms that have run out of other options issue equity. Contrasting that

prediction is the empirical evidence, which indicates that firms issue equity also (and indeed

predominantly) when not in financial distress (Frank and Goyal, 2003; Fama and French,

2005). The empirical evidence is arguably more consistent with the disagreement prediction

that the relative optimism of investors versus firms drives issuance decisions: Farre-Mensa
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(2015) analyses firms that are hit with negative cash-flow shocks and thus face a need to

issue securities (a decrease in δ in our model), and shows that firms whose stock is overvalued

issue equity, whereas undervalued firms issue debt. Similar in spirit, Erel et al. (2011) and

McLean and Zhao (2014) find that equity issuance is cyclical and higher amid positive

investor sentiment, whereas firms turn to issuing safer securities during market downturns.

Optimality of debt under MLRP

Suppose that πI and πM are such that πIs
πMs

is increasing in s; i.e., πIs
πMs

satisfies the Monotone

Likelihood Ratio Property (MLRP). Note that πIs
πMs

increasing in s implies that πM (As)
πI(As)

is

decreasing in s. In this case, if δ ∈
(
πM (AK)
πI(AK)

, π
M (A2)
πI(A2)

]
, the optimal security F is such that Fs =

min {Xs, Xk} for some k ∈ S\{1, K}. The following corollary summarizes this discussion.

Corollary 4. If πIs
πMs

satisfy MLRP and δ ∈
(
πM (AK)
πI(AK)

, π
M (A2)
πI(A2)

]
, there exists k ∈ S\{1, K} such

that debt with face value Xk is optimal.

Debt plus barrier options

The following corollary to Proposition 1 shows that securities other than straight debt can

be optimal.

Corollary 5. Suppose that there exists k, k′ ∈ S, with k+1 < k′, such that πM(As) ≥ δπI(As)

if and only if either s ≤ k or s = k′. Then, the optimal security is

Fs =


min {Xs, Xk} if s < k′,

Xk′ −Xk′−1 +Xk if s ≥ k′.

The security in Corollary 5 can be thought of as a combination of debt with face value

Xk plus a barrier option that pays Xk′ − Xk′−1 in the event that the asset yields a payoff
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weakly larger than Xk′ .
15 Such an event could be the corporation calling the bond, which is

typically associated with a positive additional cash flow to bondholders. While the prediction

of callable debt is rare in the theoretical literature, a large fraction of real-world corporate

bonds is indeed callable (Duffee, 1998). Such a security can also be interpreted as a write-off

bond: the face value, and thus the payoff, of such contracts is discontinuously higher when

cash-flows exceed a certain threshold (Vallée, 2013).

3.3 Pre-existing Debt

We now extend our baseline setting to consider the problem of an issuer who has senior

debt outstanding that is backed by the cash-flows that her asset will generate, and who is

considering to issue a new security backed by the remaining cash-flows. Formally, suppose

the issuer has debt outstanding with face value D < XK . The issuer wants to design a

security F ∈ RK
+ to sell to the market, with F backed by the remaining cash-flows she owns;

i.e., F such that 0 ≤ Fs ≤ Xs −min{Xs, D} for all s ∈ S. As before, we restrict the issuer

to design securities such that both the cash-flows that she pays and the cash-flows that she

retains are monotone in the underlying asset’s cash-flows; that is, securities F such that Fs

and Xs − Fs −min{Xs, D} are increasing in s. Let FD denote the set of feasible securities;

i.e., FD := {F ∈ RK : 0 ≤ Fs ≤ Xs −min{Xs, D}∀s ∈ S and Fs and Xs − Fs −min{Xs, D}

are increasing in s}. The issuer’s problem is

sup
F∈FD

UD(F ), (2)

15In their model with asymmetric information, Nachman and Noe (1994) also show that securities similar
to the one in Corollary 5 can be optimal.
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where for any F ∈ FD,

UD(F ) : =
∑
s∈S

πMs Fs + δ
∑
s∈S

πIs(Xs −min{Xs, D} − Fs).

Let sD = max{s ∈ S : Xs ≤ D}, and note that any security F ∈ FD must be such that

Fs = 0 for all s ≤ sD. The next proposition shows that the issuer may cease to issue any

security when she has pre-existing debt outstanding.

Proposition 2. Suppose the issuer already has debt outstanding with face value D. Then,

the security that solves (2) is described by

∀s ∈ S, Fs =


0 if s ≤ sD

Fs−1 +Xs −Xs−1 if πM(As) ≥ δπI(As) and s > sD,

Fs−1 if πM(As) < δπI(As) and s > sD.

If πM(As) < δπI(As) for all s > sD, the solution to (2) is Fs = 0 for all s ∈ S.

This result shows that the firm in our model may stop the issuance of all securities

when it becomes over-levered. This prediction contrasts with that of informational theories

of security design as well as with tradeoff models, in which the firm may start to issue equity

instead of debt when it has preexisting debt. These opposing predictions suggest a plausible

way of telling these theories apart empirically. The existing evidence supports the prediction

made here: Erel et al. (2011) show that low market sentiment can indeed lead firms not only

to stop equity issuances but to not access credit markets at all.
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4 Pooling

This section shows how an issuer who has more optimistic beliefs than the market can

strictly benefit from pooling different assets and designing a security backed by the cash-

flows generated by the pool. We begin by illustrating this by means of a simple example.

4.1 A Simple Example

Suppose the issuer owns an asset that can yield cash-flows of X1 > 0 or X2 > X1. Let

πI ∈ (0, 1) and πM ∈ (0, 1) be, respectively, the probability the issuer and market assigns

to the asset yielding cash-flows X1. As above, we assume that the issuer is more optimistic

than the market, so πI < πM .

Consider first the problem of designing a security backed by the asset described above. By

Proposition 1, an optimal security F has F1 = X1 and has F2 = X1 if δ(1−πI) > 1−πM and

F2 = X2 if δ(1−πI) < 1−πM . The market price of security F is p(F ) = πMX1 +(1−πM)F2.

Consider next the case in which the issuer has two identical assets, X1 and X2, with

iid cash-flows. Each of the assets can produce cash-flows in {X1, X2}. Assume that πM >

1− δ(1− πI), so that the optimal security backed by asset X i has Fs = X1 for s = 1, 2. The

issuer’s profits from selling two securities separately are

2p(F ) + 2δ(1− πI)(X2 − F2) = 2X1 + 2δ(1− πI)(X2 −X1). (3)

Suppose instead that the issuer pools the two assets and sells a single security backed by

the pool. Let Y = X1 + X2, let FY = min{Y,X1 + X2}. The market-price of security FY is

p(FY ) = (πM)22X1 + (1− (πM)2)(X1 +X2), and the issuer’s payoff from selling FY is

p(FY ) + δ(1− πI)2(2X2 −X2 −X1) = 2X1 + (1− (πM)2 + δ(1− πI)2)(X2 −X1) (4)
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Comparing equations (3) and (4), the issuer strictly prefers to pool the assets and sell security

FY if πM <
√

1− δ(1− (πI)2). Therefore, for πM ∈
(

1− δ(1− πI),
√

1− δ(1− (πI)2)
)

,

pooling is strictly optimal for the issuer. Intuitively, the market is relatively less pessimistic

about the event that one of the two assets yields a cash-flow of X1. By pooling the two

assets, the issuer is able to design a security that pays off a high return precisely when

this event occurs. Note that this simple example clarifies why changes in belief divergence

between issuers and the market should relate to the time-series variation in the issuance of

asset-backed securities (Chernenko et al., 2013).

4.2 General Framework

We now present a general result. Consider an issuer who owns two assets, X1 and X2, with

iid returns.16 Let S = {1, ..., K} and let {Xs}s∈S be the possible cash-flow realizations of

asset X i. Without loss of generality we assume that X1 ≤ X2 ≤ ... ≤ XK .

Let πI and πM be two probability distributions over S, with πI and πM representing,

respectively, the beliefs of issuer and market. We assume that the issuer is more optimistic

than the market, so πI first-order stochastically dominates πM . The issuer discounts future

profits at rate δ < 1, whereas the market discounts future profits at rate 1. Let Ŝ = S × S.

For any security F ∈ R|Ŝ| and any (s, s′) ∈ Ŝ, let Fs,s′ be the amount that the security pays

when assets X1 and X2 yield cash-flows Xs and Xs′ , respectively. The following definition

generalizes Definition 1 to the current environment:

Definition 2. Say that security F backed by asset Y = X1 +X2 is X1X2-monotonic if:

(i) for all s′ ∈ S, Fs,s′ and Xs +Xs′ − Fs,s′ are increasing in s, and

(ii) for all s ∈ S, Fs,s′ and Xs +Xs′ − Fs,s′ are increasing in s′.

16We focus on the case of two assets for simplicity. The results can be extended to the case of n > 2
assets.
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Recall that Ŝ = S × S, and let FY be the set of feasible securities:

FY :=
{
F ∈ R|Ŝ| : 0 ≤ Fs,s′ ≤ Xs +Xs′∀(s, s′) ∈ Ŝ and F is X1X2-monotonic

}
.

The price that the market is willing to pay for security F ∈ FY is pY (F ) :=
∑

s∈S
∑

s′∈S π
M
s π

M
s′ Fs,s′ .

The issuer’s payoff from selling security F ∈ FY is

UY (F ) := pY (F ) + δ
∑
s∈S

∑
s′∈S

πIsπ
I
s′ (Xs +Xs′ − Fs,s′) .

The optimal security backed by the pool Y = X1 +X2 solves

sup
F∈FY

UY (F ). (5)

Let F ∗ ∈ F be the optimal security backed by a single asset X i. The issuer’s payoff from

selling two individual securities, each backed by one asset, is 2U(F ∗). The following result

provides sufficient conditions under which supF∈FY UY (F ) > 2U(F ∗). As before, for each

s ∈ S let As = {s, s+ 1, ..., K} be the event that an asset pays weakly more than Xs.

Proposition 3. Pooling can be optimal. Suppose there exists k ∈ S\{K} such that

(i) πM(As) ≥ δπI(As) if and only if s ≤ k, and

(ii) πM (Ak+1)

δπI(Ak+1)
> 2−πI(Ak+1)

2−πM (Ak+1)
.

Then, supF∈FY UY (F ) > 2U(F ∗).

Proposition 3 generalizes the example of Section 4.1 to the current setting. As in the

example, pooling the assets allows the issuer to design securities that are better tailored to

the relatively pessimistic beliefs of investors. In turn, this makes the issuer strictly better off

than selling the two securities as separate concerns.
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We stress that the restrictions in Definition 2 do not necessarily imply that security

F ∈ FY will be monotonic in Y = X1 + X2; that is, F (Y ) and Y − F (Y ) need not be

increasing in Y . To restrict attention to securities that are monotonic in Y , let S̃ = {1, ..., k2}

be a relabeling of the states in Ŝ = S × S such that Y1 ≤ Y2 ≤ ... ≤ Yk2 . Let π̃I and π̃M be,

respectively, the issuer’s and market’s beliefs over S̃ (which are derived from πI and πM).

Since πI first-order stochastically dominates πM , it follows that π̃I first-order stochastically

dominates π̃M . With this notation, security F backed by asset Y is monotonic in Y if Fs̃

and Ys̃ − Fs̃ are both increasing in s̃. Let

F∗Y :=
{
F ∈ R|S̃| : 0 ≤ Fs ≤ Ys∀s ∈ S̃ and F is monotonic

}
.

When restricted to issue securities in F∗Y , the issuer’s problem is

sup
F∈F∗Y

UY (F ). (6)

Note that the solution to (6) is characterized by Proposition 1 (using beliefs π̃I and π̃M in-

stead of πI and πM). With the solution to (6) in hand, one can easily check if supF∈F∗Y UY (F ) >

2U(F ∗).17

We conclude this section by discussing how our results extend to the case in which the

underlying assets’ returns are not iid. In Appendix C we generalize the example in Section 4.1

to the case of non-zero correlations and characterize the set of parameters for which pooling is

optimal. Consistent with the time-series variation in the issuance of asset-backed securities

(Chernenko et al., 2013), pooling remains optimal as long as the correlation between the

underlying assets is not too high.

Finally, our model assumes that issuer and market disagree about the return distribution

17Note that the example in Section 4.1 already shows that supF∈F∗
Y
UY (F ) > 2U(F ∗) is possible, since

the pooled security in that example is monotonic in Y .
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of each of the underlying assets, but agree on the correlation between these assets. We stress

that disagreement about the correlation in the assets’ return can strengthen the investor’s

incentives for pooling. To see this, consider again the setting in Section 4.1. Suppose that

the market believes that the two assets are iid, while the issuer believes that the two assets

are perfectly correlated. Assume again that πM > 1− δ(1−πI), so that the optimal security

backed by asset X i has Fs = X1 for s = 1, 2. The issuer’s profits from selling the securities

separately are given by (3), while her payoff from selling security FY = min{Y,X1 + X2}

now is

p(FY ) + δ(1− πI)(X2 −X1) = 2X1 + (1− (πM)2 + δ(1− πI))(X2 −X1), (7)

where p(FY ) = (πM)22X1 + (1 − (πM)2)(X1 + X2) is the price that the market is willing

to pay for security FY . Comparing (7) with (3), pooling is strictly optimal whenever πM ∈

(1− δ(1− πI),
√

1− δ(1− πI)).

5 Tranching

We now extend our basic framework in Section 3 to allow for heterogeneity of beliefs among

investors. We show that it may be optimal to issue multiple tranches, thus complementing

our result on pooling.

As in Section 3, we consider an issuer who owns an asset which will yield state-contingent

payoffs at date t = 1. Let {Xs}s∈S be the possible cash-flow realizations of the asset, where

S = {1, ..., K} is the set of possible states of nature. Let πI be a probability distribution over

S representing the issuer’s beliefs about the possible state realizations. The issuer discounts

future cash-flows at rate δ < 1, while market participants discount them at rate 1.

There are two types of investors in the market, τ = t1, t2. The two types of investors
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differ in their beliefs about the cash-flow distribution of the asset that the issuer owns. Let

πτ be a probability distribution over S representing the beliefs of investors of type τ . We

assume that the issuer is more optimistic than both types of investors: for τ = t1, t2, π
I

first-order stochastically dominates πτ . To keep the analysis simple, we further assume that

for τ = t1, t2, there exists sτ ∈ S\{1, K} with st1 6= st2 such that πτ (As) ≥ δπI(As) if and

only if s ≤ sτ . By Corollary 3, this implies that the optimal security for the issuer when

facing a group investors with beliefs πτ is risky debt with face value Xsτ . Without further

loss of generality, assume that st1 < st2 .

For any security F ∈ F , the price that investors of type τ are willing to pay is pτ (F ) :=∑
s π

τ
sFs. The profits that the issuer gets from selling security F to investors of group τ are

U τ (F ) := pτ (F ) + δ
∑

s π
I
s(Xs − Fs). For τ = t1, t2, let F τ

s = min {Xs, Xsτ}. Note that F τ
s

solves supF∈F U
τ (F ). If the issuer designs a single security F ∈ F to sell to the market, the

largest payoff she can obtain is max{U t1(F t1), U t2(F t2)}.

Consider next an issuer who designs two different securities, F 1 and F 2, both of them

backed by the cash-flows generated by asset Xs; i.e., with 0 ≤ F 1
s + F 2

s ≤ Xs for all s ∈ S.

Definition 3. Say that securities F 1 and F 2 are jointly monotonic if F 1
s and F 2

s are increas-

ing in s and if Xs − F 1
s − F 2

s is increasing in s.

Let FT be the set of feasible securities

FT :=
{
F 1, F 2 ∈ RK

+ : 0 ≤ F 1
s + F 2

s ≤ Xs∀s ∈ S and F 1 and F 2 are jointly monotonic
}
.

For any F 1, F 2 ∈ FT , let

UT (F 1, F 2) := max{pt1(F 1), pt2(F 1)}+ max{pt1(F 2), pt2(F 2)}+ δ
∑
s

πIs(Xs − F 1
s − F 2

2 ),

be the payoff that the issuer obtains from selling this pair of securities to the market. The
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issuer’s problem is

sup
(F 1,F 2)∈FT

UT (F 1, F 2). (8)

Our goal is to identify sufficient conditions on the investors’ beliefs under which offering two

tranches is strictly better than selling one security; i.e., under which sup(F 1,F 2)∈FT U
T (F 1, F 2) >

max{U t1(F t1), U t2(F t2)}.

Assumption 1. There exists ŝ ∈ S with ŝ+ 1 ≤ st1 such that
∑

s≤s′ π
t1
s <

∑
s≤s′ π

t2
s for all

s′ ≤ ŝ and
∑

s≤s′ π
t1
s ≥

∑
s≤s′ π

t2
s for s′ ≥ ŝ+ 1, with strict inequality for s′ 6= K.

Assumption 1 states that the c.d.f’s Πτ
s :=

∑
s≤s′ π

τ
s of the two types of investors cross at

exactly one point. When the two types of investors assign the same value to the underlying

asset (i.e., when
∑

s π
t1
s Xs =

∑
s π

t2
s Xs), Assumption 1 implies that πt1 second-order stochas-

tically dominates πt2 ; i.e., type t2 investors perceive the asset to be more risky than type t1

investors. Note that Assumption 1 implies that πt1(As) > πt2(As) for all s ≤ ŝ+ 1, s 6= 1 and

πt1(As) < πt2(As) for all s > ŝ+ 1.

Proposition 4. Tranching can be optimal: under Assumption 1, sup(F 1,F 2)∈F U
T (F 1, F 2) >

max{U t1(F t1), U t2(F t2)}.

We prove Proposition 4 by showing that, when Assumption 1 holds, selling an individual

security is strictly dominated by selling securities (F 1, F 2) ∈ FT , with F 1
s = min{Xs,Xŝ+1}

(i.e., F 1 is debt with face value Xŝ+1) and

F 2
s =


0 if s ≤ ŝ+ 1,

Xs −Xŝ+1 if s ∈ (ŝ+ 1, st2 ],

Xst2
−Xŝ+1 if s > st2 .

Security F 1, which can be thought of as a senior tranche, is bought by investors of type t1.

Security F 2, which can be thought of as a junior tranche, is bought by investors of type t2.
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Finally, the issuer only retains cash-flows Xs −Xst2
at states s > st2 .

18

6 Convertibles

This section provides a simple dynamic extension of the disagreement framework. The styl-

ized version of the model presented here introduces the possibility of financing a project in

multiple stages and contracts between the issuer (here called an entrepreneur) and investor

(the bank or venture capitalist) that can depend on interim performance. We show that

convertible securities that are used in venture capital financing naturally arise under the as-

sumption that the issuer and investor’s beliefs differ; a key assumption is that the investment

project requires a relatively large investment and has high upside potential – i.e., a highly

skewed payoff profile. To be able to most clearly illustrate the role of belief differences, we

abstract away from many frictions that are relevant for VC contracting, like moral hazard,

adverse selection, taxes, etc.

The setup is as follows. The entrepreneur is endowed with an investment opportunity,

which requires an initial investment I0 at time t = 0, and offers in period t = 2 a risky payoff.

There are two states of nature, {H,L} (high or low). In the interim period, t = 1, a public

and contractible signal is observed, which we specify below. In response to the signal, there

are two options for the project:

• the project can be left as is, in which case the returns of the investment at state

s ∈ {H,L} are Xs, with XH > XL > 0;

• the project can be expanded by way of an interim investment I1 > 0, in which case

the returns of the investment at state s ∈ {H,L} are K ×Xs, where K > 1.

18The proof of Proposition 4 shows that, under Assumption 1, the solution to the issuer’s problem (8) is
to solve these two securities.
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Let πE ∈ (0, 1) and πV C ∈ (0, 1) be, respectively, the entrepreneur’s and the venture capi-

talist’s initial beliefs that the realized state at t = 2 will be H. We assume that πE > πV C ,

so the entrepreneur is more optimistic about the project’s outcome than the VC.

The interim signal at time t = 1, σ, can take either of two values: σ ∈ {h, l}. We assume

that signals σ = h, l are informative about the state of nature: the entrepreneur and the VC

believe that

P (σ = h|s = H) = P (σ = l|s = L) = α >
1

2
.

For σ ∈ {h, l} and for i = E, V C, let πi(σ) denote the probability that i assigns to the state

being H after observing signal σ; πi(l) = (1−α)πi
(1−α)πi+α(1−πi) < πi < απi

απi+(1−α)(1−πi) = πi(h).

The contract, in exchange for which the entrepreneur receives funding from a competitive

VC sector, specifies:

(i) an expansion decision 1(σ) ∈ {0, 1} to be made at t = 1 as a function of the signal σ;

1(σ) = 1 denotes expanding the firm and 1(σ) = 0 denotes not expanding the firm;

and

(ii) repayments z = (zL(σ), zH(σ)) from the entrepreneur to the VC to be made at t = 2:

for s ∈ {H,L} and σ ∈ {h, l}, zs(σ)× (1 + (K − 1)1(σ)) is the repayment at state s if

signal σ was observed at the interim stage (with zs(σ) ∈ [0, Xs]).

We make the following assumptions:

Assumption 2. (i) the VC believes that the project is profitable enough to invest I1 at

t = 1 only after observing signal σ = h:

(K − 1)
(
πV C(h)XH + (1− πV C(h))XL

)
> I1 > K

(
πV C(l)XH + (1− πV C(l))XL

)
.
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(ii) the VC believes that the project is profitable but risky:

πV CXH + (1− πV C)XL > I0 > XL.

The entrepreneur’s expected payoff from contract (z,1) is

UE (z,1) :=
[
(1− α)πE(XH − zH(l)) + α(1− πE)(XL − zL(l))

]
(1 + 1(l)(K − 1))

+
[
απE(XH − zH(h)) + (1− α)(1− πE)(XL − zL(h))

]
(1 + 1(h)(K − 1)).(9)

The VC’s payoff from this contract is

UV C (z,1) :=
[
(1− α)πV CzH(l) + α(1− πV C)zL(l)

]
(1 + 1(l)(K − 1))

+
[
απV CzH(h) + (1− α)(1− πV C)zL(h)

]
(1 + 1(h)(K − 1)) (10)

−ρl1(l)I1 − ρh1(h)I1 − I0,

where ρl and ρh denote, respectively, the probability that the VC assigns to the signal taking

values l and h, respectively, i.e., ρl = (1−α)πV C +α(1−πV C) and ρh = απV C + (1−α)(1−

πV C). The problem of the entrepreneur is

max
(z,1)

UE (z,1) s.t. (11)

UV C (z,1) ≥ 0, (BE)

K
(
πV C(σ)zH(σ) + (1− πV C(σ))zL(σ)

)
≥ I1 if 1(σ) = 1. (EC)

Constraint (BE) is the VC’s break-even condition. Constraint (EC) requires that, if the VC

expands the project at t = 1, her expected return should cover the investment cost.

Proposition 5. If Assumption 2 holds, the solution to (11) is such that:
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(i) the project is expanded if and only if σ = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) for σ ∈ {l, h}, zL(σ) = XL;

(iii) zH(l) and zH(h) are such that (BE) holds with equality.

Proposition 5 characterizes the main properties of the solution to (11). Part (i) follows

immediately from Assumption 2. Part (ii) follows from the fact that the entrepreneur is

relatively more optimistic than the VC, and so the cheapest way to satisfy the VC’s break-

even condition is to repay the entire cash-flows at the low state. (This feature is reminiscent

of the results in the optimality of debt in Section 3.2.)

Proposition 5 does not pin down what the exact payments at state H are.19 However,

under further parametric conditions, convertible preferred stock is an optimal contract:

ρHKXL + ρlXL < I0 + ρhI1 < K
[
(1− α)πV CXH + α(1− πV C)XL

]
+ ρlXL. (12)

The first inequality in equation (12) states that the VC does not break even under a contract

that specifies repayments zs(σ) = XL for s ∈ {L,H} and σ ∈ {l, h}. The second inequality

in equation (12), on the other hand, states that the VC makes a strict profit under a contract

that specifies repayments zH(l) = zL(l) = zL(h) = XL and zH(h) = XH .

Corollary 6. Suppose Assumption 2 and (12) hold. Then, the following contract solves (11):

(i) the project is expanded if and only if σ = h; i.e., 1(l) = 0 and 1(h) = 1;

(ii) zL(σ) = XL for σ ∈ {l, h}.

(iii) zH(l) = XL and zH(h) ∈ (XL, XH) such that (BE) holds with equality.

19Indeed, given the linearity of the entrepreneur and the VC’s payoffs, there is a continuum of optimal
contracts. Increasing zH(l) by ∆ allows the entrepreneur to reduce zH(h) by 1−α

α
1
K∆ (so that the break

even constraint is still satisfied with equality). This change in the contract leaves the entrepreneur indifferent
since −∆πE(1− α) + 1−α

α
1
K∆απEK = 0.
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The optimal contract in Corollary 6 can be implemented by a convertible security that

promises min{R,K ×XL} (where R is the return of the project) to the VC, and gives the

VC the following options: (i) after observing interim performance, choose whether or not to

invest in expanding the project; and (ii) if the project is expanded, choose whether or not

to convert the original security into a fraction zH(h) of equity after observing profits.

The intuition for the result is simple: because the entrepreneur is relatively optimistic

about the project’s success probability, she finds it relatively valuable to secure the option

to expand the project in the future. The VC, on the other hand, finds it relatively cheap

to write that option. Of course, VC and entrepreneur also find it optimal to leave the cash

flows to the VC in case of failure.

Discussion

The above model illustrates that a disagreement-based theory of security design can ex-

plain convertible contracts between entrepreneurs and financiers in a natural way: the en-

trepreneur’s relative optimism is the driving force not only behind the entrepreneur’s venture

itself, but also behind the financing vehicle that helps her realize the project. Aside from its

simplicity, an attractive feature of the model presented here is that highly skewed projects

(those with high investment needs and high potential payoffs when everything goes well) re-

ceive financing with convertible securities as typically used in VC; optimistic entrepreneurs

with less ambitious projects can also finance their ventures with straight debt.20

Lastly, while we emphasize the role of disagreement, other frictions including moral haz-

ard, asymmetric information, and taxes are also important for financing young firms and

can explain other more intricate features of VC contracts. Indeed, previous work on VC

financing has highlighted how these frictions shape the types of contracts that a VC will

20An additional advantage of convertibles is that they postpone having to a agree on a concrete valuation
until a later stage of the project. Because disagreement is reduced by learning, this mechanism gives an
additional reason to use convertibles in early-stage financing of relatively optimistic entrepreneurs.
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optimally offer to an entrepreneur. For instance, Schmidt (2003) shows how convertibles can

be an optimal way of inducing both the entrepreneur and the VC to put costly effort into the

project. Bergemann and Hege (1998) show that convertibles can be optimal in a dynamic

environment with moral hazard in which both the entrepreneur and the VC need to learn

about the feasibility of the project. Finally, convertible securities can be an optimal way of

allocating control rights when these rights cannot be separated from cash-flow rights (i.e.,

Marx (1998)). Our theory complements these studies by highlighting a new force that makes

convertibles optimal. Moreover, unlike theories based on control rights, convertible securities

are optimal in our theory even when control rights can be separated from cash-flow rights,

which is typically the case in real world VC financing (i.e., Kaplan and Strömberg (2003)).

7 Conclusion

This paper offers a simple but broadly applicable theory of security design based on the

premise that issuer and market openly disagree about the asset’s return. In particular, the

relative optimism of the issuer about the right tail of the cash-flow distribution determines

which security will be issued. As information about the tails, by definition, is scarce, and

therefore agreement about the characteristics of the tails is generally unlikely, we think of

the theory as widely applicable.

The most frequently issued security – debt – indeed arises as an optimal security in our

model. Risk-free debt and equity arise as special cases – the former when there is more

disagreement about the right tail, and the latter when the market is more confident about

the likelihood of right-tail outcomes and hence there is less disagreement. This feature is

strongly consistent with existing empirical results on the dynamics of issuances in general,

and the dynamics of the debt-equity mix in issuances in particular. Next, a mild variation in

distributional assumptions generates call provisions that are common features of most cor-
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porate debt contracts in the real world but are more difficult to explain with other frictions.

Moreover, we find that when the balance sheet is encumbered with pre-existing debt, the

firm may cease to issue any security.

We then show that issuing securities backed by a pool of assets (instead of issuing one

security for each asset) can be optimal. When there is disagreement among investors, the

issuer optimally sells different tranches to the market. These results contribute new testable

predictions. In particular, the pooling and tranching results can be used not only to predict

the dynamics of securitization, but can potentially also help shed light into the dynamics of

corporate events such as mergers and splits, the dynamics of the conglomerate discount, and

the issuance of mezzanine tranches.

Finally, in a stylized setting with multiple financing rounds, convertible securities similar

to those observed in typical venture capital contracts are optimal to finance high-risk projects

with right-skewed payoff profiles. Consistent with empirical realities, the model also predicts

that lower-risk projects or projects run by less optimistic entrepreneurs are financed with

straight debt.

In sum, we find that disagreement between issuer and market helps explain a variety of

real-world security designs that have thus far required multiple distinct models and frictions

as explanations. For tractability, our model abstracts away from frictions that are known

to be important for security design, such as moral hazard, adverse selection, taxes, etc.

Combining disagreement with these frictions may help researchers explain other intricate

features of real-world financial contracts that the present study leaves unaddressed. Testing

the new empirical predictions arising from our model is also left for future research.
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A Proofs

Proof of Proposition 1

Proof. For any security F ∈ F , the issuer’s payoff is

U(F ) =
K∑
s=1

πMs F s + δ

K∑
s=1

πIs(Xs − F s)

= F1 +
K∑
s=2

(
πM(As)− δπI(As)

)
(F s − Fs−1) + δ

K∑
s=1

πIsXs, (13)

where the equality follows since, for all distributions (πs)s∈S and all securities (Fs)s∈S,∑K
s=1 πsF s = F1 +

∑K
s=2 π(As)(F s−Fs−1) (recall that π(As) =

∑
s′≥s πs). Note that any se-

curity F ∈ F must be such that F1 ∈ [0, X1] and for all s > 1, F s ∈ [Fs−1, Fs−1 +Xs−Xs−1].

Moreover, any security that satisfies these conditions belongs to F . From equation (13), it is

optimal to set F1 = X1. Moreover, for all s > 1, it is optimal to set Fs = Fs−1 +Xs −Xs−1

if πM(As) ≥ δπI(As), and Fs = Fs−1 if πM(As) < δπI(As).

Proof of Proposition 2

Proof. The proof uses arguments similar to those in the proof of Proposition 1. For any

security F ∈ FD, the issuer’s payoff is

U(F ) =
K∑
s=1

πMs F s + δ
K∑
s=1

πIs(Xs −min{Xs, D} − Fs)

= F1 +
K∑
s=2

(
πM(As)− δπI(As)

)
(F s − Fs−1) + δ

K∑
s=1

πIs(Xs −min{Xs, D}), (14)

Note that any security F ∈ FD must be such that Fs = 0 and for all s ≤ sD, and F s ∈

[Fs−1, Fs−1 +Xs−Xs−1] for all s > sD. Moreover, any security that satisfies these conditions
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belongs to FD. Mechanically, any optimal security F must have Fs = 0 and for all s ≤ sD.

From equation (14), for any s > sD it is optimal to set Fs = Fs−1 +Xs −Xs−1 if πM(As) ≥

δπI(As), and to set Fs = Fs−1 if πM(As) < δπI(As).

Proof of Proposition 3

Proof. By Corollary 3, under assumption (i) the optimal security backed by a single asset

X i is F ∗ = min{Xs, Xk}. Note that selling two individual securities F ∗, each backed by one

of the assets, is the same as selling security F̃ ∈ FY such that

F̃s,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk +Xs′ if s > k, s′ ≤ k,

Xs +Xk if s ≤ k, s′ > k,

2Xk if s > k, s′ > k.

Consider security the following alternative security F ∈ FY

Fs,s′ =



Xs +Xs′ if s, s′ ≤ k,

Xk+1 +Xs′ if s > k, s′ ≤ k,

Xs +Xk+1 if s ≤ k, s′ > k,

Xk +Xk+1 if s > k, s′ > k.

Note that, for any beliefs π over S,

∑
s

∑
s′

πsπs′(Fs,s′ − F̃s,s′) =
k∑
s=1

πs

(
K∑

s′=k+1

πs′(Xk+1 −Xk)

)
+

K∑
s=k+1

πs

K∑
s′=1

πs′(Xk+1 −Xk)

= (2− π(Ak+1))π(Ak+1)(Xk+1 −Xk). (15)
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Note then that

UY (F )− 2U(F ∗) = UY (F )− UY (F̃ )

= pY (F )− pY (F̃ ) + δ
∑
s

∑
s′

πIsπ
I
s′(F̃s,s′ − Fs,s′)

=
∑
s

∑
s′

πMs π
M
s′ (Fs,s − F̃s,s′) + δ

∑
s

∑
s′

πIsπ
I
s′(F̃s,s′ − Fs,s′)

=
(
(2− πM(Ak+1))π

M(Ak+1)− δ(2− πI(Ak+1))π
I(Ak+1)

)
(Xk+1 −Xk) > 0,

where we used equation (15) and condition (ii) in the statement of the Proposition.

Proof of Proposition 4

Proof. Note that, when solving the issuer’s problem, it is without loss of optimality to

consider pair of securities (F 1, F 2) ∈ FT with the property that F 1 is bought by investors

of type t1 and F 2 is bought by investors of type t2. This is indeed without loss if the two

securities (F 1, F 2) are bought by different types of investors. If the two securities (F 1, F 2)

are bought by investors of type ti, then the issuer’s payoff from selling security (F 1, F 2) is

UT (F 1, F 2) =
∑
s∈S

πti(F 1
s + F 2

S) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s ).

Consider the pair of securities (F̃ 1, F̃ 2) with F̃ i
s = F 1

s +F 2
s for all s and F̃ j

s = 0 for all s, and

note that

UT (F̃ 1, F̃ 2) =
∑
s∈S

πtis (F 1
s + F 2

S) + δ
∑
s∈S

πIs(Xs − F 1
s − F 2

s ) = UT (F 1, F 2).

Moreover, when the issuer sells securities (F̃ 1, F̃ 2), investors of type ti buy security F̃ i and

investors of type tj (trivially) buy security F̃ j. Hence, when solving the issuer’s problem, it

31



is without loss of optimality to consider pair of securities (F 1, F 2) ∈ FT with the property

that F 1 is bought by investors of type t1 and F 2 is bought by investors of type t2.

Fix a pair of securities (F 1, F 2) ∈ FT such that, for i = 1, 2, security F i is bought by

investors of type ti. The issuer’s payoff from selling this pair of securities is

UT (F 1, F 2) =
K∑
s=1

πt1s F
1
s +

K∑
s=1

πt2s F
2
s + δ

K∑
s=1

πIs(Xs − F 1
s − F 2

s )

= F 1
1 + F 2

1 +
K∑
s=2

(
πt1(As)− δπI(As)

)
F 1
s +

K∑
s=2

(
πt2(As)− δπI(As)

)
F 2
s + δ

K∑
s=1

πIsXs.

(16)

Note that any pair of securities (F 1, F 2) ∈ FT must be such that: (i) F 1
1 + F 2

1 ∈ [0, X1], (ii)

for all s > 1, F 1
s +F 2

s ∈ [F 1
s−1+F 2

s−1, F
1
s−1+F 2

s−1+Xs−Xs−1] and (iii) for i = 1, 2, F i
s ≥ F i

s−1.

Note further that, from equation (16), it is optimal for the issuer to set F 1
1 + F 2

1 = X1, and

for s > 1, i = 1, 2, F i
s = F 1

s−1 +F 2
s−1 +Xs−Xs−1 if πti(As) ≥ δπI(As) and πti(As) > πtj(As),

and to set F i
s = F i

s−1 otherwise.

Suppose next that Assumption (1) holds. Let (F 1, F 2) ∈ FT be such that F 1
s = min{Xs, Xŝ+1}

and

F 2
s =


0 if s ≤ ŝ+ 1,

Xs −Xŝ+1 if s ∈ (ŝ+ 1, st2 ],

Xst2
−Xŝ+1 if s > st2 .

Under Assumption (1), securities (F 1, F 2) satisfy the maximizing conditions in the previous

paragraph: i.e., F 1
1 + F 2

1 = X1, and for s > 1, i = 1, 2, F i
s = F 1

s−1 + F 2
s−1 + Xs − Xs−1 if

πti(As) ≥ δπI(As) and πti(As) > πtj(As), and to set F i
s = F i

s−1 otherwise.

We now complete the proof of the proposition by showing that UT (F 1, F 2) > max{U t1(F t1), U t2(F t2)}.
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Note first that for any security F and for any beliefs π,

∑
s

πsFs = F1 +
∑
s≥2

π(As)(Fs − Fs−1) (17)

By equation (17), for τ = t1, t2,

pτ (F 1) =
∑
s

πτsF
1
s = X1 +

∑
s∈[2,ŝ+1]

πτ (As)(Xs −Xs−1),

Assumption 1 implies that pt1(F 1) > pt2(F 1); i.e., t1-investors are willing to pay more for

security F 1 than t2-investors. Similarly, using again equation (17), for τ = t1, t2,

pτ (F 2) =
∑
s

πτsF
2
s =

∑
s∈[ŝ+2,st2 ]

πτ (As)(Xs −Xs−1).

Assumption 1 implies that pt2(F 2) > pt1(F 2); i.e., t2-investors are willing to pay more for

security F 2 than t1-investors. Therefore,

UT (F 1, F 2) =pt1(F 1) + pt2(F 2) + δ
∑
s

πIs(Xs − F 1
s − F 2

s )

=X1 +
∑

s∈[2,ŝ+1]

πt1(As)(Xs −Xs−1) +
∑

s∈[ŝ+2,st2 ]

πt2(As)(Xs −Xs−1)

+ δ
∑

s∈[st2+1,K]

πI(As)(Xs −Xs−1), (18)

where the second equality in (18) follows since, by equation (17),
∑

s π
I
s(Xs − F 1

s − F 2
s ) =∑

s∈[st2+1,K] π
I(As)(Xs −Xs−1).

On the other hand, the issuer’s highest payoff from selling a single security is max{U t1(F t1), U t2(F t2)}.
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Since F τ
s = min{Xs, Xsτ},

U τ (F τ ) =pτ (F τ ) + δ
∑
s>sτ

πIs(Xs −Xsτ )

=X1 +
∑

s∈[2,sτ ]

πτ (As)(Xs −Xs−1) + δ
∑

s∈[sτ+1,K]

πI(As)(Xs −Xs−1). (19)

Using (18) and (19):

UT (F 1, F 2)− U t1(F t1) =
∑

s∈[ŝ+2,st2 ]

πt2(As)(Xs −Xs−1) + δ
∑

s∈[st2+1,K]

πI(As)(Xs −Xs−1)

−
∑

s∈[ŝ+2,st1 ]

πt1(As)(Xs −Xs−1)− δ
∑

s∈[st1+1,K]

πI(As)(Xs −Xs−1)

=
∑

s∈[ŝ+2,st1 ]

(πt2(As)− πt1(As))(Xs −Xs−1)

+
∑

s∈[st1+1,st2 ]

(πt2(As)− δπI(As))(Xs −Xs−1) > 0,

where the inequality follows since πt2(As) > πt1(As) for all s ∈ [ŝ+ 2, st1 ] (Assumption (1))

and since πt2(As) ≥ δπI(As) for all s ≤ st2 . Similarly,

UT (F 1, F 2)− U t2(F t2) =
∑

s∈[2,ŝ+1]

(πt1(As)− πt2(A2))(Xs −Xs−1) > 0,

where the strict inequality follows since πt2(As) < πt1(As) for all s ∈ [2, ŝ] (Assumption (1)).

Therefore, UT (F 1, F 2) > max{U t1(F t1), U t2(F t2)}.

Proofs of Proposition 5 and Corollary 6

Before presenting the proofs of Proposition 5 and Corollary 6, we establish two useful lemmas.

Lemma 1. Let (z,1) be a solution to (11). If zH(σ) > 0 for σ ∈ {l, h}, then it must be that
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zL(σ) = XL.

Proof. Suppose by contradiction that zH(σ) > 0 and zL(σ) < XL for σ ∈ {l, h}. Suppose

first that σ = h, and consider a contract (z̃,1) such that z̃s(l) = zs(l) for s = H,L, z̃L(h) =

zL(h) + ε and z̃H(h) = zH(h) − 1−α
α

1−πV C
πV C

ε, with ε > 0. Note that contract (z̃,1) gives the

VC the same expected payoff as contract (z,1). Note further that

UE (z̃,1)− UE (z,1) = (1 + 1(h)(K − 1))

(
απE

1− α
α

1− πV C

πV C
ε− (1− α)(1− πE)ε

)
= (1 + 1(h)(K − 1))

(1− α)ε

πV C
(
πE(1− πV C)− πV C(1− πE)

)
> 0,

where we used πE > πV C . This contradicts the assumption that (z,1) is optimal.

Suppose next that σ = l. Consider a contract (z̃,1) such that z̃s(h) = zs(h) for s = H,L,

z̃L(l) = zL(l) + ε and z̃H(l) = zH(l)− α
1−α

1−πV C
πV C

ε, with ε > 0. Note that contract (z̃,1) gives

the VC the same expected payoff as contract (z,1), and

UE (z̃,1)− UE (z,1) = (1 + 1(l)(K − 1))

(
(1− α)πE

α

1− α
1− πV C

πV C
ε− α(1− πE)ε

)
= (1 + 1(l)(K − 1))

αε

πV C
(
πE(1− πV C)− πV C(1− πE)

)
> 0.

Again this contradicts the assumption that (z,1) is optimal.

Lemma 2. Let (z,1) be a solution to (11). Under Assumption 2, zL(σ) = XL for σ ∈ {l, h}.

Proof. Let (z,1) be a solution to (11). The conditions in Assumption 2 imply that, in order

for the VC to break even, it must be that zH(h) > 0 and/or zH(l) > 0. If both of these

quantities are strictly positive, then the result follows from Lemma 1.

Suppose next that zH(h) = 0 and zH(l) > 0. By Lemma 1, zL(l) = XL. Towards a

contradiction, suppose zL(h) < XL. Let (ẑ,1) be an alternative contract with ẑL(σ) = zL(σ)

for σ = h, l, ẑH(l) = zH(l) − ε and ẑH(l) = zH(h) + 1−α
α

1+1(l)(K−1)
1+1(h)(K−1)ε, with ε > 0. Contract
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(ẑ,1) gives entrepreneur and VC the same expected payoff as contract (z,1), so it is also an

optimal contract. But this contradicts Lemma 1, since ẑL(h) = zL(h) < XL and ẑH(h) > 0.

Hence, if (z,1) is an optimal contract with zH(h) = 0 and zH(l) > 0, it must that zL(σ) = XL

for σ ∈ {l, h}.

Finally, consider the case with zH(h) > 0 and zH(l) = 0. By Lemma 1, zL(h) = XL.

Towards a contradiction, suppose zL(l) < XL. Let (ẑ,1) be an alternative contract with

ẑL(σ) = zL(σ) for σ = h, l, ẑH(l) = zH(l) + ε and ẑH(l) = zH(h) − 1−α
α

1+1(l)(K−1)
1+1(h)(K−1)ε. Again,

contract (ẑ,1) gives entrepreneur and VC the same expected payoff as contract (z,1), so it

is also an optimal contract. But this contradicts Lemma 1, since ẑL(l) = zL(l) < XL and

ẑH(l) > 0. Hence, if (z,1) is an optimal contract with zH(h) > 0 and zH(l) = 0, it must be

that zL(σ) = XL for σ ∈ {l, h}.

Proof of Proposition 5. Part (ii) follows from Lemma 2.

We now prove part (i). Note first that, under Assumption 2, any optimal contract (z,1)

must be such that 1(l) = 0: indeed, under the condition (i) in Assumption 2, there are no

feasible repayments z that satisfy constraint (EC) for σ = l when 1(l) = 1.

We now show that, under an optimal contract, 1(h) = 1. Suppose that there exists an

optimal contract (z,1) with 1(h) = 0. Let (z̃, 1̃) be an alternative contract with 1̃(h) = 1,

1̃(l) = 1(l) = 0, z̃L(σ) = zL(σ) = XL, z̃H(l) = zH(l) and

z̃H(h) =
ρhI1 + απV CzH(h) + (1− α)(1− πV C)zL(h)

KαπV C
− 1− α

α

1− πV C

πV C
zL(h)

=
ρhI1 + απV CzH(h) + (1− α)(1− πV C)XL

KαπV C
− 1− α

α

1− πV C

πV C
XL,

where the second equality follows since, under any optimal contract, zL(h) = XL. Note that

the VC’s expected payoff under contract (z̃, 1̃) is the same as her expected payoff under
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contract (z,1). Note further that

UE(z̃, 1̃)− UE(z,1) = KαπE(XH − z̃H(h))− απE(XH − zH(h))

= απE
[
(K − 1)XH + (K − 1)

1− α
α

1− πV C

πV C
XL −

ρhI1
απV C

]
=

πE

πV C
[
(K − 1)απV CXH + (K − 1)(1− α)(1− πV C)XL − ρhI1

]
> 0,

where the strict inequality follows from Assumption 2. Hence, if (z,1) is an optimal contract

it must have 1(h) = 1. This establishes part (i).

Finally, part (iii) follows since any optimal contract (z,1) must be such that UV C(z,1) =

0. Further, we note that if there exists an optimal contract (z,1) such that UV C(z,1) = 0

and such that (EC) is satisfied with slack, then there exists a continuum of optimal contracts.

Indeed, increasing zH(l) by ε allows the entrepreneur to reduce zH(h) by 1−α
α

1
K
ε while still

satisfying the VC’s break even condition. This change in the contract leaves the entrepreneur

indifferent since −επE(1− α) + 1−α
α

1
K
εαπEK = 0.

Proof of Corollary 6. Parts (i) and (ii) follow from Proposition (5). Finally, when the first

inequality in (12) holds, the VC must get strictly more than XL at state s = H when σ = l

and/or σ = h (otherwise the VC does not break even). When the second inequality in (12)

holds, there exists z ∈ (XL, XH) such that

I0 + ρhI1 = K
[
(1− α)πV Cz + α(1− πV C)XL

]
+ ρlXL. (20)

By equation (20), the VC breaks even under a contract (z,1) with 1(h) = 1, 1(l) = 0,

zL(l) = zL(h) = zH(l) = XL and zH(h) = z. Finally, since I0 > ρLXL (by Assumption (2)),
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equation (20) implies that

K
[
(1− α)πV Cz + α(1− πV C)XL

]
> ρHI1,

so that (EC) holds. Hence, by Proposition (5), contract (z,1) is optimal.

B Generalization to Non-monotonic Securities

Throughout section 3.2 we restricted the issuer to sell monotonic securities. For completeness,

we now briefly describe how our results are modified if we drop this restriction. Let

Fu :=
{
F ∈ RK : 0 ≤ Fs ≤ Xs

}
be the unrestricted set of securities backed by asset X . Without the restriction to monotonic

securities, the issuer’s problem is

sup
F∈Fu

U(F ). (21)

The following result characterizes the optimal security when we relax the restriction to

monotonic securities.

Proposition 6. The solution to (21) is described by:

∀s ∈ S, Fs =


Xs if πMs > δπIs ,

a ∈ [0, Xs] if πMs = δπIs ,

0 if πMs < δπIs .

Proof. For any s ∈ S, the payoff that the issuer gets from selling cash-flows Fs ∈ [0, Xs]
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at state s is πMs Fs, while the payoff she gets from retaining those cash-flows is δπIsFs. It is

optimal for the issuer to set Fs = Xs if πMs > δπIs , and to set Fs = 0 if πMs < δπIs . Finally,

the issuer is indifferent between setting Fs = a ∈ [0, Xs] if πMs = δπIs .

To gain intuition about the shape of the security that solves (21), suppose πIs
πMs

is increasing

in s and let k = max
{
s : πMs

πIs
≥ δ
}

. Then, by Proposition 6, the security that solves (21) is

∀s ∈ S, Fs =


Xs if s ≤ k

0 if s > k.

Hence, the restriction to monotonic securities serves the same purpose as in the existing liter-

ature: indeed, without this restriction, the same security obtains as in a standard asymmetric

information or moral hazard framework, see, e.g., Innes (1990). Finally, Simsek (2013a) de-

rives the same security in a setting with disagreement among investors.

C Generalization of the Simple Pooling Example

This appendix extends the example of section 4.1 to allow for non-zero correlation between

the assets to be securitized. As in section 4.1, suppose the issuer owns two assets, X1 and X2,

each of which can generate a return in {X1, X2} (with X1 < X2). In contrast to section 4.1,

suppose that the returns of assets X1 and X2 are correlated. Let sk ∈ Ŝ = {11, 12, 21, 22}

denote the event that asset 1’s return is Xs and asset 2’s return is Xk. The beliefs of the

issuer and market over the set of possible return realizations are, respectively, π̂I and π̂M .

For j = I,M , π̂jsk denotes the probability that j assigns to the event sk. We assume that

the assets are symmetric, so that π̂j12 = π̂j21 for j = I,M . The iid case of section 4.1 is the

special case with π̂jsk = πjsπ
j
k for j = I,M and for all sk ∈ Ŝ.

Suppose first that the issuer sells two individual securities, each backed by an asset. By
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Proposition 1 an optimal security F has F1 = X1 and F2 ≥ F1. The price that the market

is willing to pay for security F is p(F ) = X1(π̂
M
11 + π̂M12 ) + F2(π̂

M
21 + π̂M22 ); the issuer’s payoff

from selling this security is

p(F ) + δ(X2−F2)(π̂
M
21 + π̂M22 ) = X1(π̂

M
11 + π̂M12 ) +F2(π̂

M
21 + π̂M22 ) + δ(X2−F2)(π̂

I
21 + π̂I22). (22)

The issuer finds it optimal to set F2 = X1 if δ(π̂I21 + π̂I22) > π̂M21 + π̂M22 and F2 = X2 if

δ(π̂I21 + π̂I22) ≤ π̂M21 + π̂M22 . In what follows we maintain the assumption that δ(π̂I21 + π̂I22) >

π̂M21 +π̂M22 , so that an issuer who sells individual securities F 1 and F 2, each backed respectively

by asset X1 and X2, finds it optimal to set F 1
s = F 2

s = X1 for s = 1, 2.

Suppose next that the issuer pools the two assets and sells a single security backed by

cash-flows Y = X1 + X2. Consider a security FY = min{Y,X1 + X2}. The price that the

market is willing to pay for security FY is p(FY ) = π̂M112X1 + (1 − π̂M11 )(X1 + X2), and the

issuer’s payoff from selling this security is

p(FY ) + δπ̂I22(X2 −X1) = π̂M112X1 + (1− π̂M11 )(X1 +X2) + δπ̂I22(X2 −X1). (23)

Comparing (22) and (23), the issuer strictly prefers selling security FY backed by the pool

of assets than selling the two individual securities F 1
s = F 2

s = X1 for s = 1, 2 if and only if

2π̂M21 +π̂M22 = 1−π̂M11 > δ(1−πI11) = δ(2π̂I21+π̂I22). Combining this with δ(π̂I21+π̂I22) > π̂M21 +π̂M22 ,

the issuer strictly prefers to pool the assets and sell security FY if

π̂M11 ∈
(
1− δ(π̂I21 + π̂I22)− π̂M21 , 1− δ(2π̂I21 + π̂I22)

)
. (24)

If the issuer and the market both perceive the asset to be perfectly correlated (so that π̂j21 = 0

for j = 1, 2), the condition in (24) can never be satisfied, and hence pooling does not obtain.
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