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1 Introduction

Consider the problem of a planner who wishes to implement the alternative prescribed by

a social choice function f : Θ → A, where Θ is the set of possible states of nature and A

is the set of possible alternatives. A state determines the preferences of the agents over the

elements of A. The social choice function assigns an alternative to each possible state. The

state is common knowledge among the agents but is unknown to the planner. The problem

of the planner is to design a mechanism to implement the social choice function.

The most natural class of mechanisms discussed in the literature are direct mechanisms,

under which the planner asks each agent to announce the state of nature. If there are

at least three agents one can easily construct direct mechanisms such that truth-telling is

a Nash equilibrium. However, direct mechanisms will in general yield other non-truthful

equilibria. If the planner has no control over which equilibrium obtains, she cannot rely on

direct mechanisms to implement a given social choice function.

The implementation literature addresses the issue of multiple equilibria by seeking more

complicated mechanisms with richer message spaces. In other words, the literature focuses on

mechanisms that require players to make additional announcements besides the information

that is directly relevant to the environment. The most notable example of this augmentation

of the message space is Maskin’s (1999) integer game. Despite the success that the theory has

had in characterizing implementable social choice functions, the complex message spaces and

game forms required to achieve full implementation have been criticized in the literature for

their implausibility. Some researchers have also expressed concerns about the appropriateness

of Nash equilibrium as a solution concept for the games that these mechanisms induce.1

In this paper I assume that agents are white lie averse: they strictly prefer to tell the

truth whenever lying has no effect on the implemented alternative. I show that if there are

at least five agents who are white lie averse and if I impose either of two refinements of Nash

equilibrium, then a simple direct mechanism fully implements any social choice function.

Therefore, under these conditions a planner can achieve full implementation using a simple

direct mechanism, and can thus dispense with any augmentation of the message space.

The first refinement I consider is fault tolerant Nash equilibrium, introduced by Eliaz

(2002). The idea behind fault tolerant Nash equilibrium is that players may not know

whether all of their opponents are rational. Suppose that players believe that there are at

most k irrational agents in the population, but that they know neither the identity of the

irrational players, nor how irrational players behave. A k-fault tolerant Nash equilibrium

1See Jackson (1992) for an elaboration of this and related points.
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(k-FTNE) is a strategy profile that is robust to the presence of k irrational agents: under a

k-FTNE each agent has an incentive to play her equilibrium action, regardless of the identity

and actions of irrational players, as long as n− k− 1 of her opponents adhere to equilibrium

behavior.

The second refinement I consider is stochastically stable equilibrium, introduced by Kan-

dori, Mailath and Rob (1993) and Young (1993). This equilibrium concept was proposed as

a way of studying which outcomes are more likely to arise in the long-run. Suppose that a

group of agents plays a strategic game infinitely many times. Assume also that players follow

a myopic behavioral rule whenever they have an opportunity to revise their strategies, and

that they occasionally make mistakes. The stochastically stable equilibria are those strategy

profiles at which players will coordinate their actions most of the time in the long run when

the probability with which they make mistakes is low.

The direct mechanism I use is a majoritarian aggregation rule. The planner asks each

agent to announce the state of nature. If more than half the population announces the same

state θ, the mechanism’s outcome is f (θ). In any other case, the outcome is some fixed

alternative a∗. Importantly, a∗ need not be a particularly bad outcome, and it may even

be a Pareto optimal alternative. Besides its simplicity, from a practical point of view this

mechanism has the attractive feature of being anonymous (i.e., the outcome is unchanged

if agents are permuted) and completely independent of the preferences of the agents. The

strategic game that this mechanism induces may have multiple equilibria. However, if there

are at least five players and they are all white lie averse, then both fault tolerance and

stochastic stability yield the same unique prediction: all agents make truthful announcements

and the planner is able to implement the desired alternative.2

Other papers have studied implementation under the refinements that I consider. Eliaz

(2002) studies complete information implementation in k-FTNE. Adapting Maskin’s (1999)

canonical mechanism, he shows that any social choice correspondence satisfying k-monotonicity

and no veto power can be implemented in k-FTNE. In contrast, the current paper shows that

any social choice function can be implemented in k-FTNE with a simple direct mechanism

when players have a small preference for honesty. Sandholm (2007) studies implementation

in stochastically stable equilibrium in an environment with externalities in which a planner

wants the agents to choose an utilitarian action profile. Sandholm (2007) shows that the

planner can achieve this objective by introducing a simple tax scheme under which each

2In Appendix A.4 I give an example of a game in which fault tolerance and stochastic stability yield
different predictions. Therefore, these solution concepts are logically independent, and neither of them
implies the other.
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agent pays for the externalities she creates. In contrast to Sandholm (2007), the current

paper studies a general implementation problem in which transfers among individuals may

not be possible.3 Neither Eliaz (2002) nor Sandholm (2007) study implementation with white

lie averse agents.

The results in this paper provide two distinct justifications for the use of simple direct

mechanisms, each based on a different equilibrium concept. Suppose first that agents believe

that a fraction of their opponents may fail to behave optimally, but they know neither the

identity of irrational players, nor how irrational players behave. Rational players will likely

coordinate their actions at a fault tolerant Nash equilibrium in such an environment, as this

is a strategy profile that is robust to the presence of irrational agents. The results in this

paper then show that a social planner can use a majoritarian direct mechanism to implement

the desired alternative, provided there are at least five agents and they are all white lie averse.

The refinement of stochastic stability provides an evolutionary justification for simple

majoritarian mechanisms. Suppose a group of agents will repeatedly play the strategic game

induced by the mechanism that the planner puts in place. Kandori, Mailath and Rob (1993)

and Young (1993) introduced the notion of stochastic stability to predict long run behavior

in such an environment. If there are at least five agents and they all have a minimal degree

of honesty, then the results in this paper tell us that a social planner can use a majoritarian

direct mechanism to achieve full implementation in the long run.

The idea of studying implementation when agents have a minimal degree of honesty is due

to Matsushima (2008a), who considers the problem of implementing a social choice function

in a complete information setup with three white lie averse agents. He shows that, in this en-

vironment, any social choice function can be exactly implemented in iteratively undominated

strategies with a mechanism similar to the one in Abreu and Matsushima (1992). Matsushima

(2008b) considers implementation in Bayesian environments when agents have an intrinsic

preference for being honest and shows that any incentive compatible social choice function

can be fully implemented. Dutta and Sen (2012) study Nash implementation in settings in

which individuals may be partially honest. They show that any social choice correspondence

satisfying no veto power can be implemented in Nash equilibrium if there is at least one

partially honest individual in the population.

Kartik and Tercieux (2012) study implementation in Nash equilibrium when agents have

3Cabrales and Serrano (2011b) also study implementation in stochastically stable equilibrium. Focusing
on economic environments, they find sufficient conditions for implementation in stochastically stable equi-
librium of strongly Pareto efficient social choice functions. See also the results in Cabrales and Serrano
(2011a).
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to provide evidence along with their messages. They show that, in settings in which players

can fabricate evidence at a cost, any social choice correspondence satisfying cost-monotonicity

(a condition weaker than Maskin-monotonicity) and no veto power is implementable in Nash

equilibrium. The model in which individuals have to pay a small cost to produce false

evidence is equivalent to one in which individuals have a small preference for honesty. The

authors show that under this cost structure any social choice correspondence satisfies cost-

monotonicity. Thus, in this case any social choice correspondence satisfying no veto power

is implementable in Nash equilibrium.

The main message of these papers is that the set of implementable social choice functions

becomes significantly larger when agents are minimally honest. These papers derive per-

missive results using complex augmented mechanisms. For instance, Dutta and Sen (2012)

and Kartik and Tercieux (2012) derive their results using augmented mechanisms which are

modifications of Maskin’s canonical mechanism. The contribution of the current paper is to

show that, under either of two refinements, these permissive results continue to hold even

when the planner uses simple direct mechanisms. Moreover, the current paper also shows

by example that there are social choice functions satisfying no veto power that cannot be

implemented in Nash equilibrium with a direct mechanism when players are white lie averse.

This shows that the use of refinements is necessary for the results in the current paper, and

also clarifies that augmented mechanisms are needed for the permissive results in Dutta and

Sen (2012) and Kartik and Tercieux (2012).

Dutta and Sen (2012) also show that, if the environment is separable, the planner can

implement any social choice function in Nash equilibrium with a direct mechanism when all

agents are minimally honest. Holden, Kartik and Tercieux (2014) show that a planner can

implement any social choice function in two rounds of iterated deletion of strictly dominated

strategies using a simple mechanism, provided that agents have a preference for honesty and

the environment satisfies a separable punishment condition. In contrast to Dutta and Sen

(2012) and Holden, Kartik and Tercieux (2014), the results in the current paper don’t require

restrictions on the environment. On the other hand, the results in the current paper demand

stronger solution concepts.

Finally, there are other papers showing that the implementation problem becomes easier

when considering refinements of Nash equilibrium; e.g., Moore and Repullo (1988) and Palfrey

and Srivastava (1991). The permissive results in this literature are obtained using augmented
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mechanisms.4 5 This paper adds to this strand of literature by showing that two particular

refinements of Nash equilibrium allow a planner to implement any social choice function with

a simple direct mechanism when agents have a minimum degree of honesty.

2 Model

Let N = {1, .., n} be a finite set of agents and let A be a set of possible alternatives. Let Θ

be a finite set of possible states of the world. Each state θ ∈ Θ specifies the preferences of

the agents over the elements in A. The realization of the state is common knowledge among

the agents, but is unknown to the planner.

The planner’s objective is to implement a social choice function f : Θ → A. To achieve

this objective the planner designs a strategic game form
〈
N, (Si)i∈N , g

〉
, where Si is player

i’s action set and g :
∏n

i=1 Si → A is a mechanism. I restrict the planner to use mechanisms

g with Si = Θ×M for all i ∈ N , where M is a (possibly empty) set of messages. That is, the

planner can only use mechanisms under which each player announces a state of nature plus

(possibly) some other message m ∈ M . The restriction to this class of mechanisms allows

me to interpret a message s = (θ,m) ∈ Si as being truthful if θ is the true state of nature.

Note that most of the complete information implementation literature uses mechanisms that

fall into this category. A mechanism g is a direct mechanism if Si = Θ for all i ∈ N (i.e., if

M = ∅).
Let g : S → A be a mechanism, where S = (Θ×M)n is the set of possible announcement

profiles. For each i ∈ N , let ui : A × Θ × S → R be agent i’s utility function. Note

that the agents’ utility depends on the implemented alternative, the state of nature and the

announced messages. For each i, let ũi : A× Θ→ R and let η > 0 be a small number. The

function ũi represents the material payoff of player i, while η represents the cost of lying. For

any announcement profile s ∈ (Θ×M)n, let s−i denote the announcements of all players in

N\ {i}. I incorporate white lie aversion as a utility perturbation.

Assumption 1 (white lie aversion) Let g be a mechanism. For all i ∈ N , if s−i is such

that there exists s′i ∈ θ × M and s′′i /∈ θ × M with the property that ũi(g (s′i, s−i) , θ) =

4Moreover, as Chung and Ely (2003) and Aghion et al. (2012) show, the implementation results in these
papers are not robust to small perturbations in the information structure.

5For settings in which transfers among players are possible (or, more generally, if it is possible to punish an
agent while simultaneously rewarding the others), Moore and Repullo (1988) construct a simple mechanism
that implements any social choice function in Subgame Perfect equilibrium.
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ũi(g (s′′i , s−i) , θ) ≥ ũi(g (si, s−i) , θ) ∀si ∈ Θ×M , then

ui (g(s′i, s−i), θ, (s
′
i, s−i)) = ũi(g (s′i, s−i) , θ) > ui (g(s′′i , s−i), θ, (s

′′
i , s−i)) = ũi(g (s′′i , s−i) , θ)−η.

For any other s−i, ui (g (s′i, s−i) , θ, (s
′
i, s−i)) = ũi (g (s′i, s−i) , θ) ∀s′i ∈ Θ×M .

Assumption 1 states that every agent i ∈ N strictly prefers to tell the truth than to lie

if s−i is such that she cannot gain by sending a false message. Assumption 1 implies that

agents have a minimal degree of honesty, since they dislike telling lies whenever those lies do

not benefit them.

I now present the strategic form
〈
N, (Si)i∈N , gM

〉
I will use throughout the paper. Let

Si = Θ for all i ∈ N . For every θ ∈ Θ and for every s = (s1, ..., sn) ∈ Θn, let

R∗ (θ | s) = {i ∈ N s.t. si = θ}

be the set of agents who reported state θ in s.

Fix any a∗ ∈ A. The following condition characterizes mechanism gM :

gM (s) =

{
f (θ) if |R∗ (θ | s)| > n

2
for some θ ∈ Θ,

a∗ otherwise.

Mechanism gM is a majoritarian mechanism: if strictly more than half the agents announce a

state θ ∈ Θ, the mechanism implements alternative f (θ). Otherwise, the mechanism imple-

ments alternative a∗, which can be interpreted as the status quo. Note that a∗ need not be

a particularly bad outcome for the agents; indeed, a∗ could even be a Pareto optimal alter-

native. Moreover, note that besides its simplicity, from a practical point of view mechanism

gM has the attractive property of being anonymous (i.e., the outcome is unchanged if agents

are permuted) and completely independent of the agents’ preferences.

3 Implementation in fault tolerant Nash equilibrium

In this section I present the solution concept of fault tolerant equilibrium and show that

the majoritarian mechanism gM fully implements any social choice function in fault tolerant

equilibrium when agents are white lie averse. For clarity of exposition, this section focuses

exclusively on implementation in pure strategies. Appendix A.3 shows that the results in

this section continue to hold even if we allow for mixed strategies.
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Fault tolerant Nash equilibrium was introduced by Eliaz (2002). The idea behind this

equilibrium concept is that players may not know whether all of their opponents are rational.

In particular, suppose that each agent believes that at most k of her opponents may fail to

act rationally, but knows neither the identity of irrational players, nor how irrational players

behave. Standard solution concepts will in general not provide a robust prediction for this

environment, as rational players might choose to adjust their actions to take into account the

possibility that irrational agents deviate from equilibrium behavior. A fault tolerant Nash

equilibrium is a strategy profile that is robust to the presence of irrational agents, and as

such it is a good prediction of how rational players will behave in this environment.

Let
〈
N, (Si)i∈N , (ui)i∈N

〉
be a strategic game, where N = {1, 2, ..., n} is a finite set of

players, Si is the set of actions of player i and ui : Πi∈NSi → R is the utility function of

player i. For any pair of strategy profiles s, s′ ∈ Πi∈NSi, let the distance between s and s′ be

d (s, s′) = |{i ∈ N : si 6= s′i}| .

Definition 1 A strategy profile s∗ = (s∗1, ..., s
∗
n) ∈ S is a k-fault tolerant Nash equilibrium

of the strategic game
〈
N, (Si)i∈N , (ui)i∈N

〉
if, ∀i ∈ N , ui (s

∗
i , s−i) ≥ ui (s

′
i, s−i) for all s−i ∈

{s̃−i ∈ S−i : d((s∗i , s̃−i), s
∗) ≤ k} and for all s′i ∈ Si\ {s∗i }.

Definition 1 coincides with the equilibrium notion of fault tolerant Nash equilibrium in-

troduced by Eliaz (2002). For a strategy profile s∗ to be a k-fault tolerant Nash equilibrium

(k-FTNE), each agent must play an optimal strategy against any action profile of her op-

ponents with the property that at least n− k − 1 are playing their equilibrium action. Put

differently, in a fault tolerant Nash equilibrium each player has an incentive to play her

equilibrium action even in the presence of k irrational agents, regardless of the identity of

the irrational agents and of the actions that irrational agents take. Note that 0-FTNE co-

incides with Nash equilibrium. On the other hand, (n − 1)-FTNE coincides with weakly

dominant strategy equilibrium. For k ∈ (0, n − 1), k-FTNE lies between these two solution

concepts. Finally, note that k-FTNE becomes more demanding as k increases: for any k, k′

with n − 1 ≥ k′ > k ≥ 0, the set of k′-FTNE is a (possibly empty) subset of the set of

k-FTNE.

Consider next the environment of Section 2 and let
〈
N, (Si)i∈N , g

〉
be a strategic game

form. For any k ≥ 0, let Ek (g, θ) denote the set of k-FTNE of the strategic game that

mechanism g induces when the state is θ. For any s ∈ S, let B (s, k) denote the set of
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strategy profiles whose distance from s is no more than k:

B (s, k) = {s′ ∈ S : d (s, s′) ≤ k} .

Definition 2 A mechanism g implements the social choice function f : Θ→ A in k-FTNE

if for all θ ∈ Θ, g (B (s, k)) = f (θ) for all s ∈ Ek (g, θ).

By definition 2, a mechanism g implements a social choice function f in k-FTNE if it selects

the correct alternative even when irrational players deviate from equilibrium behavior.

For each θ ∈ Θ, let sθ denote the strategy profile under which every player announces

state θ, i.e., sθ = (θ, θ, ..., θ). I now present the main result of this section:

Theorem 1 Let f : Θ→ A be a social choice function and suppose that Assumption 1 holds.

If n ≥ 5, then mechanism gM implements f in 1-FTNE. Moreover, E1 (gM , θ) =
{
sθ
}

for

every θ ∈ Θ.

Proof. Suppose that θ is the true state of nature. If n ≥ 5, then the announcement profile

sθ is a 1-FTNE. Moreover, it is clear that gM
(
B
(
sθ, 1

))
= f (θ) for every θ ∈ Θ. Therefore,

to prove Theorem 1 it suffices to show that, for every s = (s1, ..., sn) 6= sθ, there exists i ∈ N ,

s′−i ∈ Θn−1 with d
((
si, s

′
−i
)
, s
)
≤ 1 and s̃i ∈ Θ\ {si} such that player i strictly prefers to

announce s̃i than to announce si whenever her opponents announce s′−i.

Consider first announcement profiles s 6= sθ such that |R∗ (θ | s)| ≥ n
2
. Note that in this

case there always exists an agent i ∈ N with si 6= θ and an announcement profile s′−i of i’s

opponents such that
∣∣R∗ (θ | si, s′−i)∣∣ ≥ n

2
+ 1 and d

((
si, s

′
−i
)
, s
)
≤ 1. Note that player i is

not pivotal when her opponents announce s′−i. Therefore, by Assumption 1 player i strictly

prefers to announce θ than any θ′ 6= θ when her opponents are playing s′−i, so s cannot be a

1-FTNE.

Next, consider announcement profiles s 6= sθ such that there exists φ 6= θ with |R∗ (φ | s)| >
n
2
. In this case, there always exists an agent i ∈ N with si = φ and a strategy profile s′−i of

i’s opponents such that
∣∣R∗ (φ | si, s′−i)∣∣ > n

2
+ 1 and d

((
si, s

′
−i
)
, s
)
≤ 1. Note that player i

is not pivotal if her opponents announce s′−i. Thus, by Assumption 1, player i strictly prefers

to announce θ than to announce φ, so s cannot be a 1-FTNE.

Consider next message profiles s 6= sθ such that |R∗ (θ′ | s)| = |R∗ (θ′′ | s)| = n
2

for

θ′, θ′′ ∈ Θ. I already considered the case with |R∗ (θ | s)| = n
2

above. Therefore, I now focus

on the case with θ′, θ′′ 6= θ. In this case, there exists i ∈ N with si = θ′ and an announcement

profile of i’s opponents s′−i with d
((
si, s

′
−i
)
, s
)

= 1 such that
∣∣R∗ (θ′′ | si, s′−i)∣∣ = n

2
+ 1 and∣∣R∗ (θ′ | si, s′−i)∣∣ = n

2
− 1 for θ′, θ′′ 6= θ. Note that in

(
si, s

′
−i
)

player i is announcing the state
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of nature that is announced the least. Moreover, player i cannot change the implemented

outcome by changing her announcement if her opponents are playing according to s′−i. It

follows from Assumption 1 that player i strictly prefers to announce θ than any other state,

so s cannot be a 1-FTNE.

Finally, consider announcement profiles s such that |R∗ (θ′ | s)| ≤ n
2

for all θ′ ∈ Θ, but

with at most one θ′ 6= θ such that |R∗ (θ′ | s)| = n
2

and with |R∗ (θ | s)| < n
2
. There are

two cases to consider: (i) there exists φ ∈ Θ such that |R∗ (φ | s)| + 1 > n
2
, and (ii) no

such φ exists. In case (ii), no agent can change the implemented outcome by changing her

announcement (i.e., the implemented alternative will still be a∗), so under Assumption 1 all

agents strictly prefer to announce θ than any θ′ ∈ Θ\ {θ}. Thus, such announcement profiles

cannot be a 1-FTNE.

Consider next case (i). Note that at least three states are being announced in s. Define

Y (s) = {φ ∈ Θ : |R∗ (φ | s)| + 1 > n
2
}. Since at least three states are being announced in

s, there always exists i ∈ N with si 6= θ such that Y (s) \ {si} is non-empty (so player i is

not announcing the true state, and there exists a state in Y (s) different from the state that

player i is announcing). Moreover, there exists an announcement profile s′−i of i’s opponents

with d
((
si, s

′
−i
)
, s
)

= 1 such that
∣∣R∗ (φ | si, s′−i)∣∣ > n

2
for some φ ∈ Y (s) \ {si}. Given s′−i,

mechanism gM will implement f (φ) regardless of player i’s announcement, so under white lie

aversion player i strictly prefers to announce the true state θ than any θ′ ∈ Θ\ {θ}. Hence,

such announcement profiles cannot be a 1-FTNE.

Theorem 1 states that mechanism gM fully implements any social choice function in 1-

FTNE: for any θ ∈ Θ, the truthful announcement profile sθ is the unique 1-FTNE of the

game induced by gM at state θ. For any k > 1, the set of k-FTNE is a subset of the set of

1-FTNE. It then follows from Theorem 1 that, for any k > 1, no strategy profile different

from the truthful announcement sθ can be k-FTNE of the game that mechanism gM induces

at state θ. Moreover, it is easy to see that when there are at least five agents and they are

all white lie averse, sθ is a k-FTNE of the game that mechanism gM induces at state θ for all

k < n
2
− 1. Finally, note also that gM(B(sθ, k)) = f(θ) for all states θ and for all k < n

2
− 1.

Therefore, gM implements f in k-FTNE for all k < n
2
− 1 when n ≥ 5 and Assumption 1

holds. The following corollary summarizes this discussion.6

Corollary 1 Let f : Θ → A be a social choice function and suppose that Assumption 1

holds. If n ≥ 5, then mechanism gM implements f in k-FTNE for all k < n
2
− 1. Moreover,

6I state Theorem 1 using 1-FTNE, instead of the more demanding k-FTNE, to conform with the general
philosophy in implementation theory of using the minimal refinement possible.
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Ek (gM , θ) =
{
sθ
}

for every θ ∈ Θ.

The intuition behind Theorem 1 and Corollary 1 is as follows. White lie averse agents have

a strict incentive to be honest whenever they are not pivotal. This implies that truth-telling

is a k-FTNE (with k < n
2
− 1) under mechanism gM if there are at least five players and they

are all white lie averse, since under this mechanism no player can change the implemented

outcome by changing her announcement when all but k < n
2
− 1 of her opponents announce

the true state. Consider next any strategy profile s 6= sθ. For s to be a k-FTNE all players

who don’t make truthful announcements under s must be pivotal, since otherwise they would

have a strict incentive to be honest. Under the majority mechanism gM , if a non-truthful

agent i is pivotal under announcement profile s, there is always a deviation by an agent j 6= i

that will make player i no longer pivotal. By Assumption 1, player i would strictly prefer to

announce the true state if j deviated in such way, so s cannot be a k-FTNE with k ≥ 1.

To see why I need n ≥ 5 in the proof of Theorem 1, suppose θ′ ∈ Θ is the true state

of nature and assume N = {1, 2, 3} (similar examples can be constructed for the case with

n = 4). Suppose further that there exists θ′′ ∈ Θ\ {θ′} with f(θ′′) 6= f(θ′) such that

ũ2 (f (θ′′) , θ′) > ũ2 (b, θ′) for all b ∈ A\ {f (θ′′)}. In this example, the truthful announcement

sθ
′
is not a 1-FTNE at state θ′. To see this, let s′ = (θ′, θ′, θ′′) and note that d

(
s′, sθ

′)
= 1. The

assumptions on preferences imply that u2(gM (θ′, θ′′, θ′′) , θ′, (θ′, θ′′, θ′′)) > u2 (gM (s′) , θ′, s′).

Hence, sθ
′

is not a 1-FTNE.

Theorem 1 shows that any social choice function is implementable with a direct mechanism

in 1-FTNE whenever there are at least five agents and they are all white lie averse. I now

argue that neither 1-FTNE nor white lie aversion by themselves are sufficient to obtain such

a permissive result. Therefore, the combination of these two is needed for Theorem 1.

Consider first the problem of implementation in k-FTNE, without assuming that agents

are white lie averse. This problem was studied by Eliaz (2002), who showed that any

social choice function that is implementable in k-FTNE must be k-monotonic.7 Since 1-

monotonicity is a stronger condition than Maskin-monotonicity, it follows that there is a

wide range of social choice functions that cannot be implemented in 1-FTNE when players

are not white lie averse.

Consider next the problem of implementation when all agents are white lie averse, but

using Nash equilibrium as a solution concept instead of the more demanding 1-FTNE. The

following example shows that, in such a setting, it is not possible to obtain a permissive

7A social choice function f is k-monotonic if whenever f(θ′) = a and f(θ′′) 6= a, there exists M ⊂ N and
b ∈ A such that |M | ≥ k+ 1, every i ∈M satisfies ui(a, θ

′) ≥ ui(b, θ′), and at least one player j ∈M satisfies
uj(b, θ

′′) > uj(a, θ
′′).
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result as in Theorem 1.

Example 1 Let f : Θ → A be a social choice function with f(θ′) = a and f(θ′′) = b 6= a

for some θ′, θ′′ ∈ Θ. Let N = {1, ..., n} be the set of agents in the population. Assume

that all players in N are white lie averse. The agents’ material preferences are such that

ũi(a, θ
′′) > ũi(c, θ

′′) for all c 6= a and all i ∈ N ; that is, at state θ′′ all players strictly prefer

alternative a to any other alternative. Appendix A.1 shows that, in this setting, the social

choice function f cannot be implemented in Nash equilibrium even when all agents are white

lie averse (regardless of the number of agents in the population).

Example 1 shows that white lie aversion by itself is not sufficient for the permissive results

in Theorem 1: in this setting, there exists no mechanism (either direct or augmented) that

implements social choice function f in Nash equilibrium when players are white lie averse.

A weakness of Example 1 is that the social choice function f violates no veto power.8 The

following example presents a social choice function satisfying no veto power that cannot be

implemented in Nash equilibrium with a direct mechanism when players are white lie averse.

Example 2 Consider a setting with N = {1, 2, 3, 4, 5}, A = {a, b, c, d} and Θ = {θ′, θ′′}.
The social choice function that the planner wants to implement is f(θ′) = a and f(θ′′) = d.

The table below shows the agents’ material preferences at each state in Θ. For instance,

at state θ′ agent 1 is materially indifferent between the four alternatives in A, while at state

θ′′ her material preferences are such that ũ1(a, θ′′) > ũ1(b, θ′′) > ũ1(c, θ′′) > ũ1(d, θ′′).

1 2 3 4 5
θ′ a b c d a b c d b c d

c d b
d b c
a a a

θ′′ a b c a b c d a b c d
b c a
c a b
d d d

Appendix A.1 shows that, in this setting, there is no direct mechanism that implements the

social choice function f in Nash equilibrium when players are white lie averse.

8A social choice function f satisfies no veto power if f(θ) = a whenever for at least n− 1 players we have
that ũi(a, θ) ≥ ũi(b, θ) for all b ∈ A.
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Dutta and Sen (2012) show that any social choice function satisfying no veto power can be

implemented in Nash equilibrium when agents are partially honest (see Kartik and Tercieux

(2012) for a related result). The mechanism that Dutta and Sen (2012) use to establish this

result is an augmented mechanism. Example 2, on the other hand, presents a social choice

function that satisfies no veto power but cannot be implemented with a direct mechanism in

Nash equilibrium when players are partially honest. This example clarifies that augmented

mechanisms are needed in order to obtain the permissive results in Dutta and Sen (2012).

4 Implementation in stochastically stable equilibrium

In this section I first present the solution concept of stochastically stable equilibrium. I

then show that the majoritarian mechanism gM implements any social choice function in

stochastically stable equilibrium if there are at least five agents who are all white lie averse.

I restrict attention to pure strategies.9

The solution concept of stochastically stable equilibrium was first introduced into the

economics literature to study which outcomes are more likely to arise in the long-run in

evolutionary settings. Therefore, I present it by thinking about an evolutionary setup in

which a group of players repeatedly interacts among each other.

Let
〈
N, (Si)i∈N , (ui)i∈N

〉
be a strategic game with |N | < ∞ and |Si| < ∞ for all i ∈ N ,

and assume that players in N repeatedly play
〈
N, (Si)i∈N , (ui)i∈N

〉
in periods t = 0, 1, 2, ....

Let si,t denote the strategy played by agent i in period t and let st = (s1,t, ..., sn,t) the strategy

profile played in period t. For every i ∈ N , let s−i,t denote the strategy profile played by all

agents but i in period t.

I now present the assumptions on how behavior evolves in this setup. At t = 0, agents play

according to some s0 ∈ Πn
i=1Si. Then, at each date t ≥ 1, every agent faces an independent

probability p ∈ (0, 1) of getting an opportunity to revise the strategy she played last period.

Suppose agent i gets a revision opportunity at date t. With probability 1−ε (with ε ∈ [0, 1])

she randomizes among the strategies that solve maxsi∈Si
ui (si, s−i,t−1). With probability ε

she makes a mistake and plays any si ∈ Si with positive probability. That is, with probability

1− ε a player who gets a revision opportunity chooses a strategy that maximizes her payoff

against s−i,t−1; with probability ε she “makes a mistake” and chooses randomly from her set

of available strategies.

9As I explain in Appendix A.3, there no natural definition of mixed strategy stochastically stable equi-
librium.
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Given an initial strategy profile s0, for each ε ∈ [0, 1] the behavioral rule outlined above

defines a Markov process over the (finite) set of strategy profiles S = Πn
i=1Si. Let P ε denote

the transition matrix of this Markov process. Following the literature on stochastic evolu-

tionary game theory, I will refer to each s ∈ S as a “state” of the Markov process. The state

s ∈ S should not be confused with the “state of nature” θ ∈ Θ.

Let s̃ ∈ S be a strict Nash equilibrium of
〈
N, (Si)i∈N , (ui)i∈N

〉
. When ε = 0 (so players

do not make mistakes), the transition matrix P 0 has an invariant distribution µs̃ such that

µs̃ (s̃) = 1 (i.e., µs̃ puts all its mass on the strict Nash equilibrium s̃). Therefore, the matrix P 0

will have multiple invariant distributions whenever the strategic game
〈
N, (Si)i∈N , (ui)i∈N

〉
has multiple strict equilibria. However, for every ε > 0 the matrix P ε is aperiodic and

irreducible and therefore has a unique invariant distribution µε. One can show that µ∗ =

limε↓0 µ
ε exists (see Young (1993) for a proof of this result). Moreover, µ∗ is one of the

invariant distributions of the unperturbed process with transition matrix P 0.

Definition 3 Let
〈
N, (Si)i∈N , (ui)i∈N

〉
be a strategic game with |N | < ∞ and |Si| < ∞ for

all i ∈ N . A strategy profile s ∈ S is a stochastically stable equilibrium of
〈
N, (Si)i∈N , (ui)i∈N

〉
if s ∈suppµ∗.

The Markov process over S is ergodic for every ε > 0. Therefore, the invariant distribution

µε describes with probability 1 the fraction of time that the Markov process spends at each

s ∈ S.10 This implies that the set of states in the support of µ∗ (i.e., the stochastically stable

equilibria) are the action profiles at which players will coordinate most of the time in the

long run when the probability with which they make mistakes is small.

Consider next the implementation environment of Section 2. At t = 0 nature chooses

θ ∈ Θ, which determines the preference profile of the agents and which remains fixed forever.

The realization of θ is common knowledge among all agents, but is not known by the planner.

The planner’s objective is to design a strategic game form
〈
N, (Si)i∈N , g

〉
with the property

that |Si| <∞ for all i ∈ N to implement a given social choice function f .

Given a strategic game form
〈
N, (Si)i∈N , g

〉
, let P ε

g (θ) denote the transition matrix over

S = Πn
i=1Si when the state of nature is θ, and let µεg (θ) denote its invariant distribution

(which is unique for every ε > 0). For every θ ∈ Θ, let µ∗g (θ) = limε↓0 µ
ε
g (θ).

Definition 4 A mechanism g implements the social choice function f : Θ → A in stochas-

tically stable equilibrium if for all θ ∈ Θ, s ∈suppµ∗g (θ) implies g (s) = f (θ).

10Formally, for any initial s0 and any s ∈ S, T−1
∑T
t=0 1s (st) → µε (s) almost surely as T → ∞, where

1s is the indicator function for s.
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As before, the invariant distribution µεg (θ) describes with probability 1 the fraction of

time that the Markov process spends at each s ∈ S. Therefore, if a mechanism stochastically

implements a social choice function f , then the planner knows that the implemented outcome

will be the correct one most of the time, provided the probability of mistakes is small.

I now present the main result of this section:

Theorem 2 Let f : Θ → A be a social choice function and suppose that Assumption 1

holds. If n ≥ 5, mechanism gM implements f in stochastically stable equilibrium. Moreover,

suppµ∗gM (θ) =
{
sθ
}

for every θ ∈ Θ.

Theorem 2 states that if agents have a minimal degree of honesty in the form of white lie

aversion, then a social planner can use a majoritarian mechanism to implement any social

choice function in stochastically stable equilibrium. In other words, under these conditions

a planner can use a simple direct mechanism to achieve full implementation and can thus

dispense with any augmentation of the message space.

The proof of Theorem 2 uses tools on stochastic dynamic systems developed by Frei-

dlin and Wentzell (1984). Foster and Young (1990) were the first to apply these tools to

evolutionary biology, while Kandori, Mailath and Rob (1993) and Young (1993) introduced

them to the economics literature. Ellison (2000) extended these techniques, uncovering useful

properties of the set of stochastically stable equilibria. I now present a brief overview of these

methods.

For two states s and s′ of the Markov process, define the cost of the transition s→ s′ as

the number of mistakes needed to complete the transition. Define a path between states s

and s′ as a sequence of states (s1, ..., sk) such that sr is an immediate precessor of sr+1 and

such that s1 = s and sk = s′. The cost of the path (s1, ..., sk) is the sum of the cost of its

transitions. Let c(s1, ..., sk) denote the cost of path (s1, ..., sk).

Let X = {X1, ..., XJ} be the recurrent classes of the Markov process, with Xk ⊆ S for

all Xk ∈ X. These classes are disjoint and satisfy the following three properties. First, from

every s ∈ S there is a path of zero cost to at least one of the recurrent classes. Second, within

each recurrent class there is a path of zero cost from every state to every other. Third, every

path starting at one recurrent class and ending outside that class has positive cost.

Let Ω be a union of one or more recurrent classes. The basin of attraction D (Ω) of Ω

is the set of initial states from which the Markov process converges to Ω with probability 1

when ε = 0. Define the radius Ra (Ω) of D (Ω) as the number of mistakes needed to leave

D (Ω) when play begins at a state in Ω. For every sets of states Z and Y , let P (Z, Y ) denote
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the set of all paths starting in Z and ending in Y . Then Ra (Ω) is given by

Ra (Ω) = min
(s1,...,sk)∈P (Ω,S\D(Ω))

c
(
s1, ..., sk

)
.

In words, the radius is a measure of how hard it is to leave a given basin of attraction. The

coradius CRa (Ω) of D (Ω) is the maximum number of mistakes needed to get into D (Ω):

CRa (Ω) = max
s/∈D(Ω)

min
(s1,...,sk)∈P ({s},Ω)

c
(
s1, ..., sk

)
.

The coradius is then a measure of how easy it is to enter a given basin of attraction.

Ellison (2000) showed that if there is a set Ω that is a union of recurrent classes such that

Ra (Ω) > CRa (Ω), then the stochastically stable equilibria are all contained in Ω. In what

follows, I will refer to this result as Ellison’s Theorem. With this result in hand, to prove

Theorem 2 it suffices to show that
{
sθ
}

is a recurrent class and that Ra
({

sθ
})

> CRa
({

sθ
})

.

For clarity of exposition, I divide the proof of Theorem 2 into two Lemmas. The first

Lemma shows that
{
sθ
}

is a recurrent class and finds a lower bound on Ra
({

sθ
})

, while

the second Lemma finds an upper bound on CRa
({

sθ
})

. These two Lemmas together with

Ellison’s Theorem will immediately imply Theorem 2.

Lemma 1 Let θ be the true state of nature and suppose that Assumption 1 holds. If n ≥ 5,

then
{
sθ
}

is a recurrent class for the game that gM induces at state θ, with Ra
({

sθ
})
≥ 2.

Proof. See Appendix A.2.

Lemma 2 Let θ be the true state of nature and suppose that Assumption 1 holds. If n ≥ 5,

then CRa
({

sθ
})
≤ 1.

Proof. See Appendix A.2.

Proof of Theorem 2. By Lemma 1,
{
sθ
}

is a recurrent class with Ra
({

sθ
})
≥ 2. By

Lemma 2, CRa
({

sθ
})
≤ 1 < 2 ≤ Ra

({
sθ
})

. Therefore, Ellison’s Theorem implies that sθ

is the unique stochastically stable equilibrium.

To see the intuition behind Theorem 2, note that white lie averse agents have a strict

incentive to be honest whenever they are not pivotal. Since under mechanism gM no agent

is pivotal at state sθ, it follows that truth-telling is always a recurrent class of the Markov

process P ε
gM

(θ). Moreover, this also implies that the radius of the truthful announcement sθ

is at least 2 whenever there are five or more agents and they are all white lie averse. Indeed,
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starting from the truthful announcement sθ, under mechanism gM no agent is pivotal after

a single mistake if n ≥ 5. Therefore, if play starts at sθ and there is a single mistake, all

players will have a strict incentive to tell the truth, and so play will revert to sθ if there are

no further mistakes.

On the other hand, Lemma 2 shows that from any strategy profile s 6= sθ there is a path

to sθ involving at most one mistake (so that the coradius of sθ is at most 1). Intuitively, for

any strategy profile different from s 6= sθ, there is a mistake that will make the non-truthful

agents non-pivotal, so that they will then have a strict incentive to be honest. These two

results, together with Ellison’s Theorem, imply that the truthful announcement is the unique

stochastically stable equilibrium.

To see why n ≥ 5 is needed in the proof of Theorem 2, consider the following example:

N = {1, 2, 3} and there exists θ′, θ′′ ∈ Θ such that, for i = 2, 3, ũi (f (θ′′) , θ′) > ũi (b, θ
′) for

all b ∈ A\ {f (θ′′)} (similar examples can be constructed for the case with n = 4). Suppose

further that f(θ′′) 6= a∗ and f(θ′′) 6= f(θ′). Let s be the announcement profile (θ′, θ′′, θ′′).

Note first that s is a strict Nash equilibrium of the strategic game that mechanism gM

induces when the state of nature is θ′. Indeed, by white lie aversion, player 1 strictly prefers

to announce θ′ than any φ 6= θ′ when players 2 and 3 are announcing θ′′ (since mechanism gM

will implement f (θ′′) regardless of player 1’s announcement). On the other hand, agents 2

and 3 strictly prefer to announce θ′′ than any other φ 6= θ′′, as they strictly prefer alternative

f (θ′′) to any b ∈ A\ {f (θ′′)}.
Since s is a strict Nash equilibrium of the game that gM induces when the state of nature

is θ′, then {s} is also a recurrent class. In particular, s /∈ D
({

sθ
′})

. Moreover, with only one

mistake the Markov process can move from sθ
′

to s. To see this, suppose the Markov process

starts at sθ
′
. If agent 2 makes a mistake and announces θ′′ instead of θ′, then agent 3 will

strictly prefer to change her announcement to θ′′ if she gets a revision opportunity. Thus,

there is a path with total cost of 1 from sθ
′

to s, so Ra
({

sθ
′})

= 1. In this case Theorem

2 will not hold. Indeed, one can show that in this example sθ
′ ∈suppµ∗gM (θ′) if and only if

s ∈suppµ∗gM (θ′).

Theorem 2 shows that, when there are five or more players and they are all white lie averse,

any social choice function can be implemented in stochastically stable equilibrium with a

simple direct mechanism. I now argue that the combination of stochastic stability and white

lie aversion is needed for this positive result. Examples 1 and 2 show that white lie aversion

by itself is not enough to obtain a positive result as in Theorem 2. The following example

shows that there are social choice functions that cannot be implemented in stochastically

stable equilibrium when players are not white lie averse.
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Example 3 Suppose there exist states θ′, θ′′ ∈ Θ such that ũi(·, θ′) = ũi(·, θ′′) for all i ∈ N ;

that is, players have the same material preferences over the alternatives in A under states θ′

and θ′′. Suppose further that the social choice function f that the planner wants to implement

is such that f(θ′) 6= f(θ′′). In this setting, for any mechanism g (either direct or augmented),

the set of stochastically stable equilibria under states θ′ and θ′′ will coincide if players are

not white lie averse. Therefore, f cannot be implemented in stochastically stable equilibrium

when players are not white lie averse.

Finally, the analysis I presented in this section is immune to the critique made by Ellison

(1993) to models of stochastic evolution. Ellison (1993) showed that convergence to the

stochastically stable equilibrium can take an extremely long period of time in models like

the one in Kandori, Mailath and Rob (1993), especially when the number of agents is large.

The reason for this is that, in these models, the number of mistakes needed to bring the

Markov process into the basin of attraction of the stochastically stable equilibrium increases

with the number of players. In this case, the predictions of the solution concept of stochastic

stability are weak, as those predictions will only materialize in the very long run. In contrast,

in the current paper’s setting, from every s 6= sθ there is a path to sθ involving at most one

mistake, regardless of the number of players. Therefore, if W
(
s0, s

θ, ε
)

denotes the expected

waiting time until the Markov process first reaches sθ when the probability of mistakes

is ε and the Markov process starts at s0, then Theorem 1 in Ellison (2000) implies that

W
(
s0, s

θ, ε
)

= O (ε−1) as ε→ 0 for any s0 6= sθ.

A Appendix

A.1 Examples 1 and 2

A.1.1 Example 1

In this appendix, I show that the social choice function in Example 1 cannot be implemented

in Nash equilibrium when players are white lie averse.

Towards a contradiction, suppose that there exists a game form
〈
N, (Si)i∈N , g

〉
with

Si = Θ × M for all i ∈ N that implements f . Then, there exists a strategy profile s =

(s1, ..., sn) ∈ (Θ ×M)n such that g(s) = a. Let N1 = {i ∈ N : si /∈ θ′′ ×M} be the set

of players who announce a state of nature different from θ′′ under strategy profile s, and let

Nnp
1 = {i ∈ N1 : i is not pivotal at s} be the set of players in N1 that are not pivotal at s (i.e.,

if i ∈ Nnp
1 , then g(s′i, s−i) = a for all s′i). If Nnp

1 = ∅, then the announcement profile s is a
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Nash equilibrium at state θ′′, since all players are getting their preferred alternative, and those

players who are not announcing the true state are pivotal (so, given their preferences, they

strictly prefer to make an untruthful announcement than to tell the truth). This contradicts

the assumption that g implements f , so it must be that Nnp
1 6= ∅. Let j1 = min{i ∈ Nnp

1 },
and let s1 = (s1

1, ..., s
1
n) ∈ (Θ ×M)n be the announcement profile such that s1

j1
= (θ′′,mj1)

(where mj1 is the message in M that j1 was announcing under s) and s1
i = si for all i 6= j1.

Since j1 is not pivotal at s, g(s1) = a.

Next, let N2 = {i ∈ N : s1
i /∈ θ′′ ×M}, and let Nnp

2 = {i ∈ N2 : i is not pivotal at s1}.
If Nnp

2 = ∅, then the announcement profile s1 is a Nash equilibrium at state θ′′, since all

players are getting their preferred alternative, and those players who are not announcing the

true state are pivotal. This contradicts the assumption that g implements f , so it must be

that Nnp
2 6= ∅. Let j2 = min{i ∈ Nnp

2 }, and let s2 = (s2
1, ..., s

2
n) ∈ (Θ ×M)n be such that

s2
j2

= (θ′′,mj2) and s2
i = s1

i for all i 6= j2. Since j2 is not pivotal at s1, g(s2) = a.

If we continue with this procedure, there will be an iteration r ≥ 1 such that either: (a)

sr is such that sri = (θ′′,mi) for all i, or (b) sr is such that all i with sri /∈ θ′′ ×M are pivotal

at sr. Moreover, in either case g(sr) = a. Note that sr is a Nash equilibrium at state θ′′,

regardless of whether the relevant case is (a) or (b): in case (a) all players are announcing

the truth and obtaining their most preferred alternative, while in case (b) all players are

obtaining their preferred alternative and those who are not announcing state θ′′ are pivotal

at sr. Therefore, g does not implement f in Nash equilibrium.

A.1.2 Example 2

In this appendix I show that there is no direct mechanism that implements the social choice

function in Example 2. For ease of exposition, I divide the argument into two claims.

Claim A1 Consider the setting in Example 2 and suppose that Assumption 1 holds. Sup-

pose further that there exists a direct mechanism g : Θ5 → A that implements f in Nash

equilibrium. Then it must be that, for θ = θ′, θ′′, sθ is a Nash equilibrium of the strategic

game that g induces at state θ, with g(sθ) = f(θ).

Proof. Since g implements f in Nash equilibrium, there must exist a strategy profile s∗ ∈ Θn

such that s∗ is a Nash equilibrium of the strategic game that mechanism g induces at state

θ′, with g(s∗) = f(θ′) = a. I now show that, under the setting in Example 2, it must be that

s∗ = sθ
′
.
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Note first that, since players 1 and 2 are materially indifferent between all the alternatives

in A, for s∗ to be a Nash equilibrium it must be that s∗1 = s∗2 = θ′; otherwise, if s∗i 6= θ′ for

i ∈ {1, 2}, by white lie aversion player i would have a strict preference to deviate and

announce θ′ instead.

Note next that at state θ′, players 3, 4 and 5 are getting their worse alternative by playing

according to strategy profile s∗. Therefore, for s∗ to be a Nash equilibrium at state θ′ it must

be that, for all i ∈ {3, 4, 5}, g(si, s
∗
−i) = a for all si 6= s∗i ; otherwise, player i ∈ {3, 4, 5} would

find it strictly optimal to change her announcement when other players are announcing s∗−i.

Assumption 1 then implies that s∗i = θ′, since otherwise player i would have a strict incentive

to announce θ′ instead of s∗i when her opponents are announcing s∗−i and the state is θ′. This,

together with the arguments in the previous paragraph, implies that s∗ = sθ
′
.

Given the symmetry of the environment at states θ′ and θ′′, a symmetric argument can

be used to establish that if s∗∗ is a Nash equilibrium of the strategic game that mechanism

g induces at state θ′′ with g(s∗∗) = f(θ′′) = d, then it must be that s∗∗ = sθ
′′

(such a Nash

equilibrium s∗∗ must exist if g implements f).

Claim A2 Consider the setting in Example 2 and suppose that Assumption 1 holds. Sup-

pose further that there exists a direct mechanism g : Θ5 → A that implements f in Nash

equilibrium. Then, the mechanism g must satisfy the following conditions:

(i) g(s) = a for all s = (s1, ..., s5) ∈ Θ5 such that s1 = s2 = θ′.

(ii) g(s) = d for all s = (s1, ..., s5) ∈ Θ5 such that s4 = s5 = θ′′.

Before proceeding to its proof, note that Claim A2 implies that there is no direct mech-

anism that implements f in Nash equilibrium, since the two conditions in the claim cannot

be satisfied simultaneously.

Proof of Claim A2. Let g be a direct mechanism that implements f in Nash equilibrium.

By Claim A1, sθ
′

is a Nash equilibrium of the strategic game that mechanism g induces

at state θ′, with g(sθ
′
) = a. This implies that g(sθ

′
−i, si) = a for all i ∈ {3, 4, 5} and all

si ∈ Θ = {θ′, θ′′}: otherwise, if g(sθ
′
−i, θ

′′) 6= a for some i ∈ {3, 4, 5}, then sθ
′

would not be a

Nash equilibrium at state θ′ since player i would have a strict incentive to announce θ′′ when

her opponents are announcing sθ
′
−i.

Next, let s̃ = (θ′, θ′, θ′′, θ′′, θ′′); i.e., s̃ is such that agents 1 and 2 announce θ′, and agents

3, 4 and 5 announce θ′′. I now show that, if g implements f in Nash equilibrium, it must be

that g(s̃) = a. Suppose by contradiction that g(s̃) 6= a. Note that by Assumption 1, at state
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θ′ players i = 1, 2 find it optimal to announce s̃i = θ′ when their opponents are announcing

s̃−i. Therefore, at state θ′ there must exist a player j ∈ {3, 4, 5} who finds it optimal to

announce θ′ when her opponents are announcing s̃−j; if no such j existed, s̃ would be a Nash

equilibrium at state θ′, which would contradict the assumption that g implements f .

Let s′ = (s̃−j, θ
′), where j ∈ {3, 4, 5} is an agent who finds it optimal to announce θ′ when

her opponents are announcing s̃−j and the true state of nature is θ′. Strategy profile s′ is

such that players 1, 2 and j are announcing θ′ and players k ∈ {3, 4, 5}\{j} are announcing

θ′′. Note that player j’s material preferences must be such that she weakly prefers g(s′) to

g(s̃) at state θ′; otherwise it would not be optimal for her to announce θ′ when her opponents

announce s̃−j. Since g(s̃) 6= a and since a is player j’s worse alternative at state θ′, it must

be that g(s′) 6= a. Note further that by Assumption 1, at state θ′ players i = 1, 2 find it

optimal to announce s′i = θ′ when their opponents are announcing s′−i. Finally, at state θ′

players k ∈ {3, 4, 5}\{j} also find it optimal to announce s′k = θ′′ when their opponents are

announcing s′−k: the mechanism’s outcome is g(s′) 6= a if k ∈ {3, 4, 5}\{j} announces s′k = θ′′

when her opponents are announcing s′−k, while the mechanism’s outcome would be a if she

announces θ′ when her opponents announce s′−k (i.e., g(s′−k, θ
′) = a).11 But this implies that

s′ is a Nash equilibrium at state θ′ with g(s′) 6= a, a contradiction to the assumption that g

implements f . Hence, it must be that g(s̃) = a.

Finally, suppose that there exists i, j ∈ {3, 4, 5} such that g(sθ
′
−ij, θ

′′, θ′′) 6= a, where

(sθ
′
−ij, θ

′′, θ′′) is the strategy profile under which players i and j announce θ′′ and the other

three players announce θ′. Let ŝ = (sθ
′
−ij, θ

′′, θ′′). Note that players k = i, j find it optimal to

announce θ′′ when their opponents are announcing ŝ−k: if k changes her announcement to θ′

the mechanism’s outcome changes to a, which is k’s worse alternative.12 Moreover, by white

lie aversion players k′ = 1, 2 also find it strictly optimal to announce θ′ when their opponents

are announcing according ŝ−k′ . Since g(ŝ) 6= a and g implements f in Nash equilibrium, player

î = {3, 4, 5}\{i, j} must find it optimal to announce θ′′ when her opponents are announcing

ŝ−î (otherwise, ŝ would be a Nash equilibrium at state θ′, and so g would not implement f).

Given the preferences of î, it must be that g(ŝ−î, θ
′′) = g(s̃) 6= a, since otherwise î would not

find it optimal to announce θ′′ when her opponents are announcing according to ŝ−î (recall

that s̃ = (θ′, θ′, θ′′, θ′′, θ′′) = (ŝ−î, θ
′′)). But this contradicts the fact that g(s̃) = a, which

was established in the previous paragraph. Hence, it must be that g(sθ
′
−ij, θ

′′, θ′′) = a for all

11To see this, let s′′ = (s′−k, θ
′) and note that s′′ is such that all players but i = {3, 4, 5}\{j, k} are

announcing θ′; i.e., s′′ = (sθ
′

−i, θ
′′). In the first paragraph of this proof I had established that g(s′′) = a for

all such announcement profiles.
12This follows because any strategy profile of the form (sθ

′

−i, θ
′′) with i ∈ {3, 4, 5} is such that g(sθ

′

−i, θ
′′) = a;

see the first paragraph of the current proof.
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i, j ∈ {3, 4, 5}.
The arguments above establish part (i) of Claim A2. Given the symmetry of the environ-

ment at states θ′ and θ′′, a symmetric argument can be used to establish that g(s) = d for

all s = (s1, ..., s5) ∈ Θ5 such that s4 = s5 = θ′′.

A.2 Proofs of Lemmas 1 and 2

Proof of Lemma 1. Under Assumption 1, sθ is a strict Nash equilibrium of the game that

mechanism gM induces. Therefore,
{
sθ
}

is a recurrent class of the stochastic process, since the

Markov process can only leave this state with the aid of a mistake. When n ≥ 5, Assumption

1 implies that every s′ with |R∗ (θ | s′)| = n − 1 belongs to D
({

sθ
})

. Indeed, at any such

s′ no agent can change the implemented outcome by changing her announcement. Thus, if

ε = 0 and the Markov process starts at such s′, eventually the agent who was announcing a

state different from θ will get a revision opportunity and will change her announcement to

θ. This implies that every path starting at sθ and ending in some state s /∈ D
({

sθ
})

must

involve at least two mistakes. Therefore, Ra
({

sθ
})
≥ 2.

Proof of Lemma 2. To prove Lemma 2, I need to show that from every s ∈ S\
{
sθ
}

there exists a path involving at most 1 mistake leading to sθ. Consider first states s1 6= sθ

such that |R∗ (θ | s1)| ≥ n
2
. With one mistake the Markov process can move to a state s2

such that |R∗ (θ | s2)| > n
2
. At s2, agents announcing a state different from θ cannot change

the implemented outcome by changing their announcements, so under Assumption 1 they all

strictly prefer to announce θ than to continue with their announcements. Therefore, from s2

the Markov process can move to sθ without any further mistakes.

Consider next states s1 such that |R∗ (φ | s1)| > n
2

for some φ 6= θ. From s1 the Markov

process can move to a state s2 such that |R∗ (φ | s2)| > n
2

+ 1 with one mistake. At s2, no

agent can change the implemented outcome by changing her announcement. Assumption 1

then implies that, given s2
−i, each agent i strictly prefers to announce θ than any θ′ ∈ Θ\ {θ},

so the Markov process can move to sθ without any further mistakes.

Consider next states s1 such that |R∗ (θ′ | s1)| = |R∗ (θ′′ | s1)| = n
2

for θ′, θ′′ ∈ Θ. I already

considered the case with |R∗ (θ | s1)| = n
2

above. Therefore, I now focus on the case with

θ′, θ′′ 6= θ. There are two possibilities: (i) there exists i ∈ N such that s1
i = θ′ and such that

ũi (f (θ′′) , θ) ≥ ũi (a
∗, θ) (so for agent i it is a best response to change her announcement

to θ′′, given the announcement profile s1
−i of her opponents), and (ii) no such i exists (so

that every player strictly prefers alternative a∗ to any other alternative that mechanism gM
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would implement if she changed her announcement). In case (i), the Markov process can

move without any mistakes to a state s2 such that |R∗ (θ′′ | s2)| > n
2
, with θ′′ 6= θ (this

occurs if only player i gets a revision opportunity and changes her announcement from θ′ to

θ′′). It follows from the previous paragraph that there is a path from s2 to sθ involving one

single mistake. In case (ii), given s1
−i it is weakly optimal for each agent i to announce any

φ /∈ {θ′, θ′′}. In particular, for every agent it is a weak best reply to announce θ. Therefore,

in this case the Markov process can move to sθ without any mistakes.

Finally, consider announcement profiles s1 such that |R∗ (θ′ | s1)| ≤ n
2

for every θ′ ∈ Θ,

but with at most one θ′ 6= θ such that |R∗ (θ′ | s)| = n
2

and with |R∗ (θ | s)| < n
2
. There

are two cases to consider: (i) there exists φ ∈ Θ such that |R∗ (φ | s1)| + 1 > n
2
, and (ii) no

such φ exists. In case (ii), no agent can change the implemented outcome by changing her

announcement (i.e., mechanism gM would still implement alternative a∗). Assumption 1 then

implies that, given s1
−i, each agent i strictly prefers to announce θ than any θ′ ∈ Θ\ {θ}, so

the Markov process can move to sθ without any mistakes.

Consider next case (i), and let Y (s1) = {φ ∈ Θ : |R∗ (φ | s1)|+ 1 > n
2
}. Since n ≥ 5, the

cardinality of Y (s1) can be at most two. Note also that at least three states of nature are

being announced in s1, so there exists at least one state of nature θ′ ∈ Θ with |R∗ (θ′ | s1)| ≤
n
2
−1 (i.e., θ′ /∈ Y (s1)). There are two subcases to consider: (i.a) there exists i ∈ N who finds

it strictly optimal to change her announcement given s1
−i (note that this implies that player

i’s best reply to s1
−i is to announce some φ ∈ Y (s1)), and (i.b) no such i exists. In case (i.a),

the Markov process can move to a state s2 such that |R∗ (φ | s2)| > n
2

without any mistakes

(this happens if only player i gets a revision opportunity and announces φ ∈ Y (s1)), and

from such a state there is a path involving one mistake leading to sθ. On the other hand,

in case (i.b) it is weakly optimal for every agent i to announce θ′ when her opponents are

announcing s1
−i (where θ′ ∈ Θ is such that |R∗ (θ′ | s1)| ≤ n

2
− 1), since all agents weakly

prefer alternative a∗ to any other alternative that the mechanism would implement if they

changed their announcements. Therefore, the Markov process can move to a state s2 with

|R∗ (θ′ | s2)| > n
2

without any mistakes, and from such a state there is a path to sθ involving

at most one mistake.

A.3 Mixed strategies

The body of the paper focuses exclusively on pure strategy equilibria. This appendix shows

that the results in Section 3 continue to hold even if we allow for mixed strategies: if there are

at least five agents and they are all white lie averse, then for generic payoffs the mechanism
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gM does not have undesirable mixed strategy 1-FTNE. This appendix, however, does not

extend the results in Section 4 to the case of mixed strategies. The reason for this is that, to

the best of my knowledge, there is no natural extension of stochastically stable equilibrium

to mixed strategies.13

I start by extending the definition of white lie aversion to the case of mixed strategies.

Assume that, for all i ∈ N , agent i’s material preferences satisfy the axioms of expected

utility, and let ũi : A × Θ → R be agent i’s utility index over alternatives in A at each

state state of nature in Θ. Let ∆(A) denote the set of lotteries over alternatives, and let

Ũi : ∆(A) × Θ → R denote agent i’s material utility over lotteries in ∆(A) at each state of

nature: for any p ∈ ∆(A) and θ ∈ Θ, Ũi(p, θ) = Ep[ũi(a, θ)], where Ep is the expectation

with respect to lottery p.

For any mechanism g : (Θ ×M)n → A, let Σi = ∆(Θ ×M) denote the set of agent i’s

mixed strategies and let Σ = Πi∈NΣi denote the set of mixed strategy profiles. For any profile

of mixed strategies σ ∈ Σ, let σ−i denote the mixed strategies of all players in N\{i}. For any

state of nature θ ∈ Θ, agent i’s material utility from a mixed strategy profile σ = (σi, σ−i) is

Ũi(g(σi, σ−i), θ) = Eσ[ũi(g(σi, σ−i), θ)], where Eσ denotes the expectation with respect to the

mixed strategy profile σ = (σi, σ−i).

Let Ui : ∆(A)×Θ×Σ→ R be agent i’s utility. For all θ ∈ Θ, let T (θ) = {σ ∈ ∆(Θ×M) :

suppσ ⊂ θ×M} be the set of mixed strategies under which the player announces state θ with

probability 1. The following definition extends Assumption 1 to the case of mixed strategies.

Assumption A1 (white lie aversion - mixed strategies) Let g be a mechanism. For

all i ∈ N , if σ−i is such that there exists σ′i ∈ T (θ) and σ′′i /∈ T (θ) with the property that

Ũi(g (σ′i, σ−i) , θ) = Ũi(g (σ′′i , σ−i) , θ) ≥ Ũi(g (σi, σ−i) , θ) ∀σi ∈ ∆(Θ×M), then

Ui (g(σ′i, σ−i), θ, (σ
′
i, σ−i)) = Ũi(g (σ′i, σ−i) , θ) > Ui (g(σ′′i , σ−i), θ, (σ

′′
i , σ−i)) = Ũi(g (σ′′i , σ−i) , θ)−η.

For any other σ−i, Ui (g (σ′i, σ−i) , θ, (σ
′
i, σ−i)) = Ũi (g (σ′i, σ−i) , θ) ∀σ′i ∈ ∆(Θ×M).

Next, I extend the definition of k-FTNE to mixed strategies. Let
〈
N, (Si)i∈N , (ui)i∈N

〉
be a strategic game, where N = {1, 2, ..., n} is a finite set of players, Si is the set of actions

of player i and ui : Πi∈NSi → R is the utility index of player i. All players in N are expected

13The tools developed in the literature to find the set of stochastically stable equilibria (i.e., Kandori,
Mailath and Rob (1993), Young (1993) and Ellison (2000)) require that the set of strategy profiles be finite.
Having a finite set of strategy profiles guarantees that the Markov chain defined by the behavioral rule that
players use to update their strategies has a finite set of states. Clearly, with mixed strategies the set of
strategy profiles would not be finite.
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utility maximizers. Let Σi = ∆(Si) be the set of mixed strategies of player i and Σ = Πi∈NΣi

be the set of mixed strategy profiles. For any σ = (σi, σ−i) ∈ Σ, let Ui(σi, σ−i) denote player

i’s expected utility from mixed strategy profile σ.

For any σ, σ′ ∈ Σ, let the distance between σ and σ′ be

d (σ, σ′) = |{i ∈ N : σi 6= σ′i}| .

Definition A1 A mixed strategy profile σ∗ = (σ∗1, ..., σ
∗
n) ∈ Σ is a k-fault tolerant Nash

equilibrium of the strategic game
〈
N, (Si)i∈N , (ui)i∈N

〉
if, ∀i ∈ N , Ui (σ

∗
i , σ−i) ≥ Ui (σ

′
i, σ−i)

for all σ−i ∈ {σ̃−i ∈ Σ−i : d((σ∗i , σ̃−i), σ
∗) ≤ k} and for all σ′i ∈ Σi\ {σ∗i }.

For any strategic game form 〈N, (Si)i∈N , g〉 and for any integer k ≥ 0, let Ẽk(g, θ) be

the set of mixed strategy k-FTNE of the strategic game that mechanism g induces when the

state is θ. For any σ ∈ Σ, let

B(σ, k) = {σ′ ∈ Σ : d(σ, σ′) ≤ k} .

Definition A2 A mechanism implements the social choice function f : Θ → A in mixed-

strategy k-FTNE if for all θ ∈ Θ, g(B(σ, k)) = f(θ) for all σ ∈ Ẽk(g, θ).

Theorem A1 Let f : Θ → A be a social choice function and suppose that Assumption A1

holds. If n ≥ 5, then for generic material payoffs the mechanism gM implements f in mixed

strategy 1-FTNE. Moreover, Ẽ1 (gM , θ) =
{
sθ
}

for every θ ∈ Θ.

Proof. Suppose the state of nature is θ. Theorem 1 shows that the unique pure strategy

1-FTNE of the strategic game that mechanism gM induces at state θ is the truthful an-

nouncement profile sθ. To establish the result I show that, for generic payoffs, such strategic

game has no mixed strategy 1-FTNE.

Towards a contradiction, suppose that at state θ there exists a mixed strategy profile

σ∗ 6= sθ such that σ∗ ∈ Ẽ1(gM , θ). By Theorem 1, it must be that at least one player is

making at least two announcements with positive probability under σ∗. Fix a player i ∈ N
who randomizes under σ∗. Since σ∗ ∈ Ẽ1(gM , θ), it must be that player i is pivotal with

positive probability when her opponents play according to σ∗−i; if she were not pivotal with

positive probability, by white lie aversion she would strictly prefer to announce the true state

with probability 1 than to randomize.

24



Note that for any θ′ ∈ suppσ∗i , player i’s material payoff from announcing θ′ is

Ũi(g(θ′, σ∗−i), θ) = Eσ∗−i
[ũi(gM(θ′, σ∗−i), θ)]

= Pr(i is pivotal|σ∗−i)Eσ∗−i
[ũi(gM(θ′, σ∗−i), θ)|i is pivotal] +

Pr(i is not pivotal|σ∗−i)Eσ∗−i
[ũi(gM(θ′, σ∗−i), θ)|i is not pivotal].(A.1)

Note further that, under mechanism gM , player i is only pivotal when the announcement of

i’s opponent s−i is such that

|R(φ|(s−i, φ))| > n

2
≥ |R(φ|(s−i, φ))| − 1

for some state φ ∈ Θ. Therefore, one of two things can happen if i is pivotal and an-

nounces θ′: (i) i’s announcement of θ′ leads to alternative f(θ′) being implemented, or (ii)

i’s announcement of θ′ leads to alternative a∗ being implemented.14

Given the strategy of i’s opponents σ∗−i, let q(σ∗−i, θ
′) ∈ [0, 1] be the probability that,

conditional on i being pivotal, i’s announcement of θ′ leads to alternative f(θ′) being imple-

mented.15 Using this notation in equation (A.1),

Ũi(g(θ′, σ∗−i), θ) = Pr(i is pivotal|σ∗−i)[q(σ∗−i, θ′)ũi(f(θ′), θ) + (1− q(σ∗−i, θ′))ũi(a∗, θ)] +

Pr(i is not pivotal|σ∗−i)Eσ∗−i
[ũi(gM(θ′, σ∗−i), θ)|i is not pivotal]. (A.2)

Since σ∗ is a 1-FTNE at state θ, it must be that for all θ′ ∈ suppσ∗i and for all σ−i such

that d((σ∗i , σ−i), σ
∗) ≤ 1, Ũi(g(θ′, σ−i), θ) ≥ Ũi(g(σ̃i, σ−i), θ) for all σ̃i ∈ Σi. This implies that,

for θ′, θ′′ ∈ suppσ∗i and for all σ−i such that d((σ∗i , σ−i), σ
∗) ≤ 1, it must be that

Ũi(g(θ′, σ−i), θ) = Ũi(g(θ′′, σ−i), θ)⇐⇒

q(σ−i, θ
′)(ũi(f(θ′), θ)− ũi(a∗, θ)) = q(σ−i, θ

′′)(ũi(f(θ′′), θ)− ũi(a∗, θ)), (A.3)

where the equality in (A.3) follows after using equation (A.2) and noting that when i is not

pivotal, i’s announcement does not influence the mechanism’s outcome and thus i’s material

payoff is the same regardless of whether she announces θ′ or θ′′. The rest of proof shows

14The first case arises when the announcement s−i of i’s opponents is such that |R(θ′|(s−i, θ′))| > n
2 ≥

|R(θ′|(s−i, θ′))| − 1. The second case arises when |R(φ|(s−i, φ))| > n
2 ≥ |R(φ|(s−i, φ))| − 1 for some φ 6= θ′.

15Let p(σ∗−i, θ
′) be the probability with which the announcement of i’s opponents s−i is such that

|R(θ′|(s−i, θ′))| > n
2 ≥ |R(θ′|(s−i, θ′))| − 1 when i’s opponents use the mixed strategy profile σ∗−i. Then,

q(σ∗−i, θ
′) =

p(σ∗−i,θ
′)

Pr(i is pivotal|σ∗−i)
.
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that, generically, the equalities in (A.3) can never be satisfied and hence there cannot be a

1-FTNE in which some players use mixed strategies.

Suppose first that ũi and q(σ∗−i, θ
′) are such that q(σ∗−i, θ

′)(ũi(f(θ′), θ) − ũi(a
∗, θ)) 6= 0

for some θ′ ∈ suppσ∗i . In this case, the equality in (A.3) cannot hold for all σ−i such that

d((σ∗i , σ−i), σ
∗) ≤ 1: if (A.3) holds for σ∗−i, then for generic payoffs and under mechanism gM

it is always possible to find a strategy profile of i’s opponents σ−i with d((σ∗i , σ−i), σ
∗) = 1

such that either q(σ−i, θ
′′) ≤ q(σ∗−i, θ

′′) and q(σ−i, θ
′) > q(σ∗−i, θ

′) or q(σ−i, θ
′′) < q(σ∗−i, θ

′′)

and q(σ−i, θ
′) ≥ q(σ∗−i, θ

′).

The arguments in the previous paragraphs imply that, for σ∗ to be a 1-FTNE, it must

be that q(σ∗−i, θ
′)(ũi(f(θ′), θ) − ũi(a

∗, θ)) = 0 for all θ′ ∈ suppσ∗i . The rest of the proof

establishes that under Assumption A1 this cannot happen in a 1-FTNE either. Note first

that since player i is white lie averse, for i to find it optimal to use strategy σ∗i when her

opponents are using σ∗−i it must be that, for all θ′ ∈ suppσ∗i ,

Ũi(g(θ′, σ∗−i), θ) > Ũi(g(θ, σ∗−i), θ)⇐⇒

q(σ∗−i, θ
′)(ũi(f(θ′), θ)− ũi(a∗, θ)) > q(σ∗−i, θ)(ũi(f(θ), θ)− ũi(a∗, θ)). (A.4)

If (A.4) did not hold, then under Assumption A1 player i would have a strict incentive to

make a truthful announcement with probability 1 when her opponents are using strategy

profile σ∗−i. An implication of (A.4) is that, if σ∗ = (σ∗1, ..., σ
∗
n) ∈ Ẽ1(gM , θ) and σ∗i is a

non-trivial mixed strategy, then σ∗i puts probability zero on the truthful announcement θ.

Let N(θ) = {j ∈ N : σ∗j (θ) = 1} be the set of players who announce state θ with

probability 1 under strategy profile σ∗. I now show that, if σ∗ is a 1-FTNE, then it must be

that |N(θ)| ≤ n
2
− 1. To see this, note that if |N(θ)| > n

2
− 1, then for every i /∈ N(θ) there

would exist a strategy profile σ−i of i’s opponents with d((σ∗i , σ−i), σ
∗) ≤ 1 such that the

number of players announcing θ with probability 1 under strategy profile (σ∗i , σ−i) is strictly

greater than n
2
. Note that agent i is never pivotal when her opponents play according to

strategy σ−i: the outcome of mechanism gM would be f(θ) regardless of i’s announcement.

This implies that σ∗ cannot be a 1-FTNE at state θ, since under Assumption A1 player i

would find it strictly optimal to announce θ with probability 1 when her opponents play

according to σ−i than to play according to the mixed strategy σ∗i . Hence, it must be that

|N(θ)| ≤ n
2
− 1.

Next, I show that if σ∗ is a 1-FTNE and if player i uses a non-trivial mixed strategy

under σ∗, then it must be that q(σ∗−i, θ) = 0. To see this, note that if i is pivotal, i’s

announcement of θ will lead to alternative f(θ) being implemented only in situations in which
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the announcement of i’s opponents s−i is such that |R(θ|(s−i, θ))| > n
2
≥ |R(θ|(s−i, θ))| − 1.

By the previous paragraph, the number of players that announce θ with probability 1 under

σ∗ is weakly lower than n
2
− 1. Moreover, equation (A.4) implies that those players who use

a non-trivial mixed strategy under σ∗ will make a truthful announcement θ with probability

zero. Therefore, if i’s opponent’s play according to σ∗−i, the probability that s−i is such that

|R(θ|(s−i, θ))| > n
2
≥ |R(θ|(s−i, θ))| − 1 is zero. Hence, it must be that q(σ∗−i, θ) = 0.

The fact that q(σ∗−i, θ) = 0, together with equation (A.4), implies that for all θ′ ∈ suppσ∗i ,

q(σ∗−i, θ
′)(ũi(f(θ′), θ)− ũi(a∗, θ)) > 0.

Theorem A1 shows that, for generic payoffs, mechanism gM implements any social choice

function in 1-FTNE even when we consider mixed strategies. The following example clarifies

why the genericity of payoffs is required for the result.

Example A1 Consider the following setting: N = {1, 2, 3, 4, 5}, Θ = {θ′, θ′′, θ′′′} and A =

{a, b, a∗}. For all i ∈ N , ũi(a, θ
′′′) = ũi(b, θ

′′′) = 1 and ũi(a
∗, θ′′′) = 0. The social choice

function that the planner wishes to implement is such that f(θ′′′) = a∗, f(θ′) = a and

f(θ′′) = b.

Suppose the planner uses mechanism gM and let a∗ = f(θ′′′) be the alternative that

this mechanism implements when no state is announced by more than half the population.

Consider the mixed strategy profile σ∗ = (σ∗1, σ
∗
2, σ

∗
3, σ

∗
4, σ

∗
5) such that, for all i ∈ N , σ∗i (θ

′) =

σ∗i (θ
′′) = 1/2. I now show that, for these specific payoffs, σ∗ is a 1-FTNE of the strategic

game that mechanism gM induces at state θ′′′. However, any minimal variation in the material

payoffs of any agent is enough for the strategic game that mechanism gM induces at state θ′′′

to have no mixed strategy 1-FTNE.

Note that under strategy profile σ∗, q(σ∗−i, θ
′) = q(σ∗−i, θ

′′) for all i ∈ N (recall that

for each θ ∈ Θ, q(σ∗−i, θ) is the probability with which, conditional on i being pivotal, i’s

announcement of θ leads to alternative f(θ) being implemented – see the proof of Theorem

A1 for more details). This, together with the fact that ũi(a, θ
′′′) = ũi(b, θ

′′′) = 1, implies that

for all i ∈ N ,

q(σ∗−i, θ
′)(ũi(f(θ′), θ′′′)− ũi(a∗, θ′′′)) = q(σ∗−i, θ

′′)(ũi(f(θ′′), θ′′′)− ũi(a∗, θ′′′)) > 0. (A.5)

Equation (A.5) in turn implies that, given σ∗−i, player i is materially indifferent between

announcing θ′ or θ′′ when the true state of nature is θ′′′. Moreover, given σ∗−i player i strictly

prefers to announce either of these than to announce the truthful state θ′′′.

For each i ∈ N , let Fi be the set of all subsets of N\{i} that have cardinality 2. The
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probability q(σ−i, θ
′) is proportional to

∑
B∈Fi

[Πj∈Bσj(θ
′)Πj /∈B(1− σj(θ′))].16 For each i ∈

N , let pi = σi(θ
′). Then, q(σ−1, θ

′) is proportional to:∑
B∈F1

[Πj∈Bσj(θ
′)Πj /∈B(1− σj(θ′))]

= p2p3(1− p4)(1− p5) + p2p4(1− p3)(1− p5) + p2p5(1− p3)(1− p4) +

p3p4(1− p2)(1− p5) + p3p5(1− p2)(1− p4) + p4p5(1− p2)(1− p3). (A.6)

The probabilities q(σ−i, θ
′) for i 6= 1 can be computed similarly.

Using equation (A.6) one can check that, for all j ∈ N\{1}, the derivative of q(σ−1, θ
′)

with respect to pj is equal to zero when all players i ∈ N\{1, j} are using strategy σ∗i (θ
′) =

pi = 1/2. That is, changing the strategy of any j 6= 1 has no effect on q(σ∗−1, θ
′) when every

player i ∈ N\{1, j} uses strategy σ∗i . Given the symmetry in the players’ strategies, the

same is true for q(σ∗−1, θ
′′). Therefore, for any σ−1 such that d((σ−1, σ

∗
1), σ∗) ≤ 1, player 1

finds it optimal to announce either θ′ or θ′′ when the other players are announcing σ−1. The

symmetry of the environment implies that the same is true for all players i 6= 1, and so

σ∗ ∈ Ẽ1(gM , θ
′′′).

The crucial property of σ∗ that makes it a 1-FTNE is that, under this strategy profile,

the probabilities q(σ∗−i, θ
′) and q(σ∗−i, θ

′′) remain constant as we change the strategy of any

single agent j 6= i. Note that finding a strategy profile σ∗ such that for all i ∈ N and for all

j ∈ N\{i}, q(σ∗−i, θ′) is constant on σ∗j (θ
′), involves finding mixing probabilities σ∗k(θ

′) for all

k ∈ N that solve a system of equations (the equations of this system are, for each i ∈ N and

each j ∈ N\{i}, the derivative of q(σ∗−i, θ
′) with respect to σ∗j (θ

′)).17

The agents’ preferences in the current example were constructed as follows: (i) find a

strategy profile σ∗ such that q(σ∗−i, θ
′) > 0 and q(σ∗−i, θ

′′) > 0 remain constant as we change

the strategy of any single agent j 6= i; (ii) find material preferences such that all players are

indifferent between announcing θ′ and θ′′ given q(σ∗−i, θ
′) and q(σ∗−i, θ

′′), and strictly prefer

to announce either of these than any other state. Clearly, for any strategy profile σ∗ that

satisfies (i), the set of material preferences that satisfy (ii) is non-generic.

16Indeed,
∑
B∈Fi

[
Πj∈Bσj(θ

′)Πj /∈B(1− σj(θ′))
]

is the probability with which exactly two of i’s opponents
announce θ′. In this case, i is pivotal and her announcement of θ′ leads to f(θ′) being implemented.

17It can be shown that, in this setting with five players, the only real solutions to this system of equations
satisfy σk(θ) = p ∈ {0, 1/2, 1} for all k ∈ N and all θ ∈ Θ.
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A.4 Fault tolerance and stochastic stability

Theorems 1 and 2 together imply that, under white lie aversion, the solution concepts of

fault tolerant Nash equilibrium and stochastically stable equilibrium give the same unique

prediction for the game that mechanism gM induces. In this appendix, I give an example of a

game in which fault tolerance and stochastic stability yield different predictions. Therefore,

these two solution concepts are logically independent, and neither of them implies the other.

To see this, consider the following example from Ellison (2000). There is a finite set of

players N = {1, 2, ..., n}, with n odd. At every period t = 0, 1, 2, ..., each player i ∈ N is

randomly matched (with uniform probabilities) with some other player to play the following

symmetric strategic game:

A B C

A 1, 1 0, 0 0, 0

B 0, 0 −4,−4 3, 3

C 0, 0 3, 3 −4,−4

Given s−i, player i’s payoff from playing si is 1
n−1

∑
j∈N\{i} u (si, sj). Players can revise their

strategies in every period, so that in every t each player chooses a best reply to the strategy

profile played t − 1. Ellison (2000) showed that the stochastically stable equilibria of this

game are sB and sC (where sB = (B,B, ..., B), and similarly for sA and sC ), provided the

number of players is large enough. That is, in the long run we should expect to see agents

alternating between playing B and C. However, neither sB nor sC are fault tolerant Nash

equilibria of the static random matching game. In fact, one can check that for k small enough,

sA is a k-FTNE of the static random matching game.
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