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Abstract

This paper constructs a continuous-time model of bilateral bargaining to study how

fluctuations in bargaining power affect the outcomes of negotiations. The paper deals

with the technical complexities that arise when modeling games in continuous time by

building strategy restrictions into the equilibrium definition. These restrictions select a

unique equilibrium, which is characterized by a system of ordinary differential equations.

This unique equilibrium corresponds to the limiting subgame perfect equilibrium of

discrete-time bargaining games with frequent offers.
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1 Introduction

In many real life negotiations the relative strength of the parties changes over time. While

one side might start bargaining from a strong position, bargaining power might change hands

as the negotiation proceeds. For instance, in wage negotiations the relative bargaining power

of firm and workers depends on the unemployment rate, a variable that fluctuates along with

the economic cycle. In legislative bargaining the ability of a political party to implement

its preferred policy depends on the number of seats it controls in Congress, a quantity that

moves over time together with the party’s political power and popularity. In mergers and

acquisitions the way in which the firms divide the gains from joint operations may also depend

on time-varying variables, such as market valuations and the general economic environment.

This paper introduces a model of bilateral bargaining to study how time-varying bar-

gaining power affects negotiation outcomes. The model’s key variable is an exogenous and

publicly observable diffusion process, which measures the player’s relative bargaining power,

and whose realization at each moment in time determines the identity of the player with pro-

posal power. The game is played in continuous time, and at each instant prior to agreement

the player with proposal power can make an offer to her opponent. There is no deadline, and

bargaining continues indefinitely until an offer is accepted.

I show that this continuous-time model has a unique equilibrium, which is characterized

by a system of ordinary differential equations. This tractable equilibrium characterization

allows me to study how different features of the environment affect bargaining outcomes. For

instance, I derive conditions under which more uncertainty about future bargaining power

benefits the weaker player. The tractability of the model makes it amenable to a variety

of extensions. I illustrate this by presenting an application of the model to study political

negotiations with supermajority rules.

There are technical difficulties that arise when modeling games with observable actions

in continuous time (e.g. Simon and Stinchcombe (1989), Bergin and MacLeod (1993)). The
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key difficulties are defining proper sub-games, and guaranteeing that a given strategy profile

gives rise to a unique path of play. Simon and Stinchcombe (1989) deal with these difficulties

by restricting players to take actions in discrete grids, and then taking limits as the grid size

goes to zero. Bergin and MacLeod (1993) introduce inertia in strategies.

When analyzing continuous-time bargaining games, a related difficulty is that subgame

perfection doesn’t refine the set of equilibria as it does when the game is played in discrete

time. In discrete-time bargaining games the responder incurs a fixed cost of delay if she

doesn’t accept the current offer, since she must wait at least one time period to reach an

agreement. This fixed cost of delay imposes restrictions on the strategies that players use

in a subgame perfect equilibrium (SPE). In contrast, the responder does not face a fixed

cost of delay when the game is in continuous time, since she can accept a new offer within

an arbitrarily short time period. This leads to a multiplicity of equilibrium outcomes. This

multiplicity of outcomes was previously noted by Bergin and MacLeod (1993), who show

that any division of the surplus can be supported as an equilibrium outcome in a bargaining

game in which players can take actions in continuous time.1

This paper deals with this multiplicity by building into the definition of equilibrium of the

continuous-time game the intuitive restriction that the responder always accepts offers equal

to her continuation payoff of waiting until she becomes proposer. I show that this additional

restriction selects a unique equilibrium. Moreover, this unique equilibrium corresponds to the

(also unique) limiting SPE of the discrete-time version of the bargaining game, when players

can make offers arbitrarily frequently. Hence, the tractable equilibrium of the continuous-

time game provides a good approximation of settings with small bargaining frictions.

The present paper relates to the literature on bargaining games in continuous time. Perry

and Reny (1993) construct a continuous-time bilateral bargaining game in which players

can strategically time their offers (see also Sakovics (1993)). Ambrus and Lu (2015) study

1As noted above, Bergin and MacLeod (1993) get around this issue by introducing inertia in the players’
strategies. Perry and Reny (1993) also note this multiplicity of equilibrium outcomes in continuous time
bargaining games, and also deal with this issue by placing restrictions on the timing of offers/counteroffers.

3



a continuous-time coalitional bargaining game with a fixed deadline in which players get

random opportunities to make proposals through a Poisson process. A common feature of

these models is the presence of restrictions on the timing of offers and counteroffers. In Perry

and Reny (1993) these restrictions appear in the form of waiting times and reaction times ;

i.e., players cannot make a new offer immediately after making a proposal, and must wait a

positive amount of time before replying to an offer. In Ambrus and Lu (2015) the restrictions

are at the heart of the model, since players can only make proposals when the Poisson process

hits. These restrictions allow these authors to sidestep the technical issues that arise when

modeling bargaining games in continuous time, and bring the analysis closer to that of

discrete-time bargaining games. In contrast, the current model features no restrictions on

the timing of offers (besides the identity of the proposer), and proposes a novel way of dealing

with the technical difficulties inherent to continuous time games.

More recently, Ortner (2017a), Daley and Green (2018) and Villamizar (2018) study

continuous-time bargaining games with one-sided incomplete information. They deal with

the technical difficulties of continuous-time bargaining games by imposing indifference re-

strictions on equilibria that are very much in the same spirit as the restrictions I impose in

the current paper. The current paper establishes the validity of this approach (within a par-

ticular environment) by showing that these restrictions select the (unique) subgame perfect

equilibrium outcome of discrete-time bargaining games with frequent offers.

Finally, Simsek and Yildiz (2014) also study a bilateral bargaining game in which the

players’ bargaining power evolves stochastically over time. They study settings in which

players have optimistic beliefs about their future bargaining power, and show that optimism

can give rise to inefficient delays if players expect bargaining power to become more durable

in the future. Simsek and Yildiz (2014) analyze a discrete-time bargaining game, and focus

on the properties of the game’s limiting SPE with frequent offers.
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2 Model

Players and preferences. Two players, i = 1, 2, bargain over how to divide a perfectly

divisible surplus of size 1; the set of possible agreements is {y ∈ R2
+ : y1 + y2 = 1}. Time is

continuous and players can reach an agreement at any time t ∈ [0,∞). Both players are risk

neutral expected utility maximizers and discount future payoffs at the common rate r > 0.

The payoff that player i gets from receiving a (possibly random) share z ∈ [0, 1] of the surplus

at a (possibly random) time τ is E[e−rτz]. If players fail to reach an agreement in finite time

they both get a payoff of zero.

Relative bargaining power and bargaining protocol. The key variable of the model

is a publicly observable stochastic process, which measures the players’ relative bargaining

power and which I denote by xt. Let B = {Bt,Ft : 0 ≤ t < ∞} be standard Brownian

motion on the probability space (Ω,F ,P).2 Process xt evolves as a Brownian motion with

constant drift µ and constant volatility σ > 0, with reflecting boundaries at −1 and 1:

dxt = µdt+ σdBt,

if xt ∈ (−1, 1); if xt reaches either −1 or 1 it reflects back.3

At each time t ∈ [0,∞) before players reach an agreement, the value of xt determines

the identity of the proposer: player 1 makes offers at t if xt ≥ 0 and player 2 makes offers

if xt < 0. Suppose for instance that x0 ≥ 0. In this case player 1 is proposer from time 0

until time τ1 := inf{t ≥ 0 : xt < 0}.4 At any moment until τ1, player 1 can make an offer

z ∈ {y ∈ R2
+ : y1 + y2 = 1} to player 2. There are no restrictions on the number or timing of

offers that player 1 can make between t = 0 and τ1. If player 2 accepts an offer before τ1 the

2Throughout the paper, the filtration Ft is assumed to be right-continuous: for all t ≥ 0, Ft = Ft+ :=
∩ε>0Ft+ε.

3In Ortner (2017b) I study a political bargaining game in which the parties’ popularity evolves as a
reflecting Brownian motion. See Harrison (1985) for a detailed analysis of diffusion processes with reflecting
boundaries.

4Note that time τ1 is a stopping time, since the filtration Ft is assumed to be right-continuous.
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Figure 1: Sample path of xt.

game ends and each player collects her payoff. If player 2 does not accept an offer between

time 0 and τ1, then player 2 becomes the proposer from τ1 until τ2 := inf{t > τ1 : xt ≥ 0}.

Bargaining continues this way, with players alternating in their right to make proposals until

a player accepts an offer. Figure 1 plots a sample path of xt.
5

Outcomes and equilibrium notion. An outcome of this bargaining game is a pair (A, η),

where A ∈ A := {A ⊆ [−1, 1] : A is closed} is an agreement region and η : A → {y ∈ R2
+ :

y1 + y2 = 1} is a function mapping the agreement region to the set of possible divisions of

the surplus.6 The agreement region A determines the set of values of the state variable xt

at which players reach an agreement: under outcome (A, η) players reach an agreement at

time τ (A) := inf{t ≥ 0 : xt ∈ A}. The function η(·) = (η1(·), η2(·)) gives the share of the

surplus that each player gets when they reach an agreement. The payoff that player i gets

5A previous version of the paper showed that the main results in this paper characterizing equilibrium
outcomes (Theorems 1 and 2) extend to settings in which xt follows a diffusion process of the form dxt =
µ(xt)dt+ σ(xt)dBt.

6The restriction that the agreement region A must belong to the set A is only to get rid of trivial
multiplicities - see footnote 9 in the Appendix.
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from outcome (A, η) when the current relative bargaining power is x is

Vi (x) = E
[
e−rτ(A)ηi

(
xτ(A)

)∣∣x0 = x
]

(1)

In what follows, I will denote an outcome (A, η) as a triplet (A, V1, V2), with A ∈ A and with

Vi satisfying (1) for i = 1, 2.

Let T1 be the set of stopping times τ such that xτ ∈ [0, 1]. Similarly, let T2 be the set of

stopping times τ such that xτ ∈ [−1, 0].

Definition 1 An outcome (A, V1, V2) is an equilibrium if, for i, j = 1, 2, j 6= i,

Vi (x) = sup
τ∈Ti

E
[
e−rτ (1− Vj (xτ ))

∣∣x0 = x
]
∀x ∈ [−1, 1]. (2)

In words, outcome (A, V1, V2) is an equilibrium if, for i = 1, 2 and for all x ∈ [−1, 1], Vi(x)

is equal to the value of the optimal stopping problem supτ∈Ti E [e−rτ (1− Vj (xτ ))|x0 = x].

The idea behind definition 1 is that the responder should be willing to accept proposals

that give her what she expects to get by waiting until she regains the right to make offers. In

other words, the responder’s acceptance threshold must be equal to her expected continuation

value. Since a proposer never offers the responder more than her acceptance threshold, the

responder’s payoff should always be equal to her expected continuation value. Definition 1

implies that this will occur under any equilibrium outcome. Indeed, suppose x0 = x is such

that player i is the responder at t = 0 and let τ (0) := inf{t ≥ 0 : xt = 0}. Note that

τ (0) ≤ τ for all τ ∈ Ti when x0 = x. Equation (2) then implies that

Vi (x) = E
[
e−rτ(0)Vi (0)

∣∣x0 = x
]
, (3)

regardless of whether players reach an agreement when xt = x or not (i.e., regardless of

whether x belongs to the agreement region A or not).

On the other hand, when player i is proposer she takes player j’s acceptance threshold
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Vj (x) as given. At each moment in time before she loses the right to make proposals, player

i has to decide whether to make an acceptable offer of Vj (xt) to her opponent and end the

bargaining (keeping 1− Vj (xt) for herself), or to delay the agreement until she can strike a

better deal. Definition 1 says that an outcome (A, V1, V2) is an equilibrium if the proposer

always finds it optimal to delay when xt /∈ A, and always finds it optimal to make an

acceptable offer when xt ∈ A.

On bargaining games played in continuous time. It is well known that there are

technical issues when modeling games in continuous time (e.g., Simon and Stinchcombe

(1989)). One of these difficulties is that subgame perfection has less bite in continuous-

time bilateral bargaining games than in their discrete-time counterparts. In discrete-time

bargaining games à la Rubinstein (1982) the responder incurs a fixed cost of delay if she

rejects the current offer, since she must wait one period to reach an agreement. This fixed

cost of delay imposes restrictions on the strategies that players use in a subgame perfect

equilibrium (SPE). In particular, in any SPE the responder will always accept offers that

leave her indifferent between accepting or waiting until she becomes proposer.

In contrast, the responder doesn’t face a fixed cost of delay when the game is in continuous

time, since she can always accept a new offer within an arbitrarily short time period. As a

result, in continuous time there are equilibria in which the responder doesn’t accept offers

equal to her expected continuation payoff of waiting until she becomes proposer. For instance,

in continuous time the outcome in which player 1 always gets the entire surplus, regardless

of the level of bargaining power, can be supported as an equilibrium. In this equilibrium

player 1 only accepts offers that give her the entire surplus when she is responder, and only

makes such offers when she is proposer. Against this strategy of player 1, player 2 can do

no better than to always offer her opponent the entire surplus when she is proposer, and to

accept offers that give her zero payoff when she is responder.

The ideas in the previous paragraph are not new. For instance, Bergin and MacLeod
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(1993) noted that in a continuous-time bargaining game with no restrictions on the timing

of offers, any division of the surplus can be supported as an equilibrium outcome. Indeed,

the division (z, 1− z) with z ∈ [0, 1] can be supported by the strategy in which each player

offers z for player 1 and 1− z for player 2 at every time t ≥ 0.

Beyond these complications, it is well-known that there are other difficulties analyzing

games with observable actions in continuous time. As noted in the introduction, previous

papers (e.g. Simon and Stinchcombe (1989), Bergin and MacLeod (1993)) deal with these

difficulties by introducing frictions in the timing of moves (i.e., discrete grids, or inertia

strategies). In contrast, in this paper I deal with these complexities by analyzing bargaining

outcomes directly, and by building into the definition of equilibrium the restriction that the

responder always accepts offers equal to her expected continuation value of waiting until she

becomes proposer, just as in a SPE of a discrete-time bargaining game.

3 Analysis

3.1 Equilibrium

This section characterizes the equilibria of the model in Section 2. As a first step, the following

result establishes that every equilibrium outcome must involve immediate agreement. All

proofs are in the Appendix.

Proposition 1 (Immediate Agreement) Let (A, V1, V2) be an equilibrium outcome. Then,

it must be that A = [−1, 1].

Define A∗1 := [0, 1], A∗2 := [−1, 0] and A∗ := [−1, 1]. Note that A∗i is the set of values of x

at which player i has proposal power. Recall that τ(0) = inf{t ≥ 0 : xt = 0}.
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Corollary 1 Let (A, V1, V2) be an equilibrium outcome. Then, for i, j = 1, 2, i 6= j,

Vi (x) =

 1− Vj (x) if x ∈ A∗i ,

E
[
e−rτ(0) (1− Vj (0))

∣∣x0 = x
]

if x /∈ A∗i .

Corollary 1 provides a partial characterization of the payoffs that can arise in an equilib-

rium of this model: player i’s payoff when she is responder is given by the expected discounted

value of waiting until xt reaches 0 and getting 1−Vj (0) of the surplus at that point. On the

other hand, when player i is making proposals she immediately makes an acceptable offer to

her opponent, thus receiving a payoff of 1− Vj (x).

The next result builds on Proposition 1 and Corollary 1 and shows that there is a unique

equilibrium.

Theorem 1 There is a unique equilibrium outcome (A∗, V ∗1 , V
∗

2 ). For i = 1, 2, V ∗i (·) solves

rV ∗i (x) =

 µ(V ∗i )′(x) + 1
2
σ2(V ∗i )′′(x) if x /∈ A∗i ,

r + µ(V ∗i )′(x) + 1
2
σ2(V ∗i )′′(x) if x ∈ A∗i ,

(4)

with (V ∗i )′(−1) = (V ∗i )′(1) = 0, limx↑0 V
∗
i (x) = limx↓0 V

∗
i (x) and limx↑0(V ∗i )′(x) = limx↓0(V ∗i )′(x).

Equation (4) has the following interpretation. The left-hand side is player i’s payoff

measured in flow terms. When player i is responder, her flow payoff is equal to the expected

change in her continuation value, which is µ(V ∗i )′(x)+ 1
2
σ2(V ∗i )′′(x). When player i is proposer,

her flow payoff is equal to the flow rent r she extracts from her ability to make offers plus

the expected change in her continuation value. The boundary conditions at 0 imply that

V ∗i is continuous and differentiable on [−1, 1]. The boundary conditions at −1 and 1 are a

consequence of the process xt: since xt has reflecting boundaries, party i’s payoff becomes

flat as x approaches either −1 or 1.

10



Equation (4) has a unique solution satisfying the boundary conditions in Theorem 1,

given by

V ∗i (x) =

 aie
−αx + bie

βx if x /∈ A∗i ,

1 + cie
−αx + die

βx if x ∈ A∗i ,

where α = (µ +
√
µ2 + 2rσ2)/σ2, β = (−µ +

√
µ2 + 2rσ2)/σ2, and where (ai, bi, ci, di) are

constants determined by the four boundary conditions; see equation (A.6) in the Appendix

for the full expression of V ∗1 (x).

The last result of this section presents comparative statics of V ∗i with respect to the

volatility of bargaining power. Recall that A∗1 = [0, 1] and A∗2 = [−1, 0].

Definition 2 The bargaining environment is favorable for player 1 (for player 2) if µ ≥ 0

(if µ ≤ 0).

Proposition 2 Suppose the bargaining environment is favorable for player 2 (for player 1).

Then, there exists x∗ ≥ 0 (x∗ ≤ 0) such that V ∗1 (x) (V ∗2 (x)) is increasing in σ for all x < x∗

(for all x > x∗) and decreasing in σ for all x > x∗ (for all x < x∗).

The intuition behind Proposition 2 is as follows. When the bargaining environment is

favorable to the proposer, an increase in volatility raises the chances that the responder will

recover bargaining power. This improves the responder’s bargaining position, and allows her

to obtain a better deal in the negotiations. Figure 2 illustrates for the special case with

µ = 0.

The next result provides comparative statics with respect to the drift µ of xt.

Proposition 3 For all x ∈ [−1, 1], V ∗1 (x) is increasing in µ and V ∗2 (x) is decreasing in µ.
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Figure 2: Payoffs V ∗1 . Parameters: µ = 0 and r = 0.05.

3.2 Political bargaining with supermajority rules

This section uses the model above to study political bargaining with supermajority rules.

Two political parties, i = 1, 2, have to bargain over which policy in [0, 1] to implement. For

i = 1, 2, party i’s preference over policies z ∈ [0, 1] are represented by ui(z), with u1(z) = 1−z

and u2(z) = z. Parties are expected utility maximizers and discount future payoffs at the

common rate r > 0.

The bargaining protocol is the same as above. Process xt evolves as Brownian motion

with drift µ, volatility σ > 0 and with reflecting boundaries at −1 and 1. At each time

t ≥ 0, party 1 has proposal power if xt ≥ 0 and party 2 has proposal power if xt < 0. In this

political bargaining setting, I interpret the process xt as measuring the fraction of legislators

supporting each party at any moment in time: party 1 has the support of a majority of
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legislators when xt > 0, while party 2 has the support of a majority when xt < 0. The

assumption that the parties’ legislative support is time-varying approximates a setting in

which the parties’ popularity is changing over time, and in which these changes in popularity

influence the party that each individual legislator chooses to support.7

Supermajority rules. A supermajority rule is a number φ > 0 such that party 1 can

unilaterally implement a policy at time t if xt ≥ φ and party 2 can unilaterally implement

a policy at time t if xt ≤ −φ. Under a supermajority rule a party with enough support can

implement policies unilaterally, without the approval of its opponent. On the other hand,

parties need to bargain over which policy to implement when neither of them has enough

support (i.e., when xt ∈ (−φ, φ)).

Theorem A1 in Appendix A.2 shows that this model has a unique equilibrium outcome,

and characterizes the parties’ equilibrium payoffs. Here, I focus on how supermajority rules

affect the parties’ equilibrium payoffs. To emphasize the dependence on the supermajor-

ity requirement, in what follows I write V φ
i (·) to denote party i’s equilibrium payoff under

supermajority rule φ.

Proposition 4 Fix two supermajority rules φ < 1 and φ′ ∈ (φ, 1]. Then, there exists x̃ ∈

(−φ, φ) such that V φ′

1 (x) > V φ
1 (x) for all x ∈ (−φ, x̃) and V φ′

2 (x) > V φ
2 (x) for all x ∈ (x̃, φ′).

Proposition 4 shows that more stringent supermajority rules benefit weaker parties (and hurt

stronger parties): a party whose political power is low enough always prefers a supermajority

rule that is harder to reach. Intuitively, an increase in φ makes it is less likely that the

stronger party will obtain the required supermajority.

7In Ortner (2017b), I use a similar model to study how upcoming elections affect the outcomes of political
negotiations.
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4 Discrete-time game

In this section I study the discrete-time version of the continuous-time model in Section 2.8

The goal is to show that the equilibrium of the continuous-time formulation corresponds to

the limiting subgame perfect equilibrium of the discrete-time bargaining game, when players

can make offers arbitrarily frequently. Hence, the tractable equilibrium of the continuous-

time game provides a good approximation of settings with small bargaining frictions.

The discrete-time game is as follows. Two players, i = 1, 2, bargain over how to divide a

perfectly divisible surplus of size 1. Time is continuous but players can only make offers at

points on the grid T (∆) = {0,∆, 2∆, ...}, where ∆ > 0 measures the time between bargaining

rounds. As in Sections 2 and 3.1, xt evolves as a Brownian motion with drift µ and volatility

σ > 0, with reflecting boundaries at −1 and 1.

The bargaining protocol is as follows. At any time t ∈ T (∆) the realization of xt deter-

mines the identity of the proposer: player 1 is proposer at time t if xt ≥ 0, and player 2 is

proposer at time t if xt < 0. The proposer makes an offer z ∈ {y ∈ R2
+ : y1 + y2 = 1}. The

responder can either accept or reject the offer. If the responder accepts the offer, the game

ends and players collect their payoffs. If the responder rejects the offer, the game moves

to period t + ∆. Players are risk neutral expected utility maximizers and share the same

discount factor e−r∆ (with r > 0).

Let Γ∆ denote the bargaining game with time interval ∆ > 0. Recall that A∗1 = [0, 1] and

A∗2 = [−1, 0]. The following result characterizes the unique SPE of Γ∆.

Theorem 2 For any ∆ > 0, Γ∆ has a unique SPE. In the unique SPE players reach an

immediate agreement.

For i = 1, 2, let V ∆
i (x) denote player i’s SPE payoff at a subgame in which players

have not yet reached an agreement and in which current bargaining power is x. Then, for

8For brevity, I don’t analyze the discrete-time version of the model in Section 3.2.
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i, j = 1, 2, j 6= i,

V ∆
i (x) =

 e−r∆E
[
V ∆
i (xt+∆)

∣∣xt = x
]

if x /∈ A∗i ,

1− e−r∆E
[
V ∆
j (xt+∆)

∣∣xt = x
]

if x ∈ A∗i ,
(5)

The content of Theorem 2 can be described as follows. In a subgame perfect equilibrium

the responder only accepts offers that give her a payoff at least as large as her expected

continuation value of waiting one period. Knowing this, the proposer always makes the

lowest offer that the responder is willing to accept, and the game ends with an immediate

agreement.

The last result shows that the unique SPE of Γ∆ converges to the equilibrium in Theorem

1 as ∆→ 0.

Theorem 3 For i = 1, 2, V ∆
i converges uniformly to V ∗i as ∆→ 0.

A Appendix

A.1 Proofs of Section 3.1

Proof of Proposition 1. Suppose (A, V1, V2) is an equilibrium and assume by contradiction

that A is a strict subset of [−1, 1]. Since [−1, 1]\A is open (because A ∈ A = {A ⊆ [−1, 1] : A

is closed}), there exists an open interval (y, y) ⊂ [−1, 1] such that (y, y) * A, so τ (A) > 0

whenever x0 ∈ (y, y).9 Define W (x) := V1 (x) + V2 (x) = E
[
e−rτ(A)

∣∣x0 = x
]
, and note that

W (x) < 1 for all x ∈ (y, y). Thus, V1 (x) + V2 (x) < 1 for all x ∈ (y, y). But this implies

that, when xt ∈ (y, y), proposer i is better off offering Vj (xt) to her opponent (and obtaining

a payoff of 1 − Vj (xt) > Vi (xt) for herself) than delaying. Therefore, (A, V1, V2) cannot be

an equilibrium outcome.

9If I allow for agreement regions A that don’t belong to the set A, then there would be equilibrium
agreement regions of the form R\Z, where Z is a set of measure zero. The restriction to A ∈ A rules out this
(trivial) source of multiplicity.
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Proof of Corollary 1. Let (A∗, V1, V2) be an equilibrium outcome. Equation (3) then

implies that, for all x /∈ A∗i ,

Vi (x) = E
[
e−rτ(0)Vi (0)

∣∣x0 = x
]

= E
[
e−rτ(0) (1− Vj (0))

∣∣x0 = x
]
,

where I used V1 (x) + V2 (x) = 1 for all x (which follows from Proposition 1). Finally,

Proposition 1 also implies that Vi (x) = 1− Vj (x) for all x ∈ A∗i .

Before moving to the proof of Theorem 1, I present two preliminary lemmas. For any

y, z ∈ (−1, 1), let τy := inf{t : xt = y} and τyz = inf{t : xt = y or xt = z}.

Lemma A1 Let g : R→ R be a bounded function, and let f(·) be the solution to

rf(x) = µf ′(x) +
σ2

2
f ′′(x). (A.1)

(i) If f ′(−1) = 0 and f(y) = g(y), then for all x ∈ [−1, y], f(x) = E[e−rτyg(y)|x0 = x].

(ii) If f ′(1) = 0 and f(y) = g(y), then for all x ∈ [y, 1], f(x) = E[e−rτyg(y)|x0 = x].

(iii) If f(x) = g(x) for x = y, z with 0 ≤ y < z ≤ 1, then for all x ∈ [y, z], f(x) =

E[e−rτyzg(y)|x0 = x].

Proof. I prove part (i) of the Lemma. The proofs of parts (ii) and (iii) are symmetric

and omitted. Suppose f(·) solves the differential equation and boundary conditions in the

statement of the Lemma. By Ito’s Lemma, for all xt ∈ [−1, y],

d(e−rtf(xt)) = e−rt(−rf(xt) + µf ′(xt) +
σ2

2
f ′′(xt))dt+ f ′(−1)dLt + e−rtf ′(xt)σdBt

= e−rtf ′(xt)σdBt,

where Lt is the “regulator process” that controls reflection at x = −1 (see Harrison (1985)
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for details). Since e−rtf(xt) = f(x0) +
∫ t

0
d(e−rtf(xt)), it follows that

e−rτyf(xτy) = f(x0) +

∫ τy

0

e−rsf ′(xs)σdBs. (A.2)

Note that
∫ t

0
e−rsf ′(xs)σdBs is a Martingale with expectation zero. Since E[τy] < ∞ and

since f ∈ C2 and has bounded support, it follows from the Optional Sampling Theorem

(Kallenberg (2006), Theorem 7.29) that E[
∫ τy

0
e−rsf ′(xs)σdBs] = 0. The result then follows

from taking expectations in both sides of (A.2) and noting that f(xτy) = f(y) = g(y).

An implication of Lemma A1 is that the function f(x) = E[e−rτyg(y)|x0 = x] solves (A.1)

for all x ∈ [−1, y] and with boundary conditions f ′(−1) = 0 and f(y) = g(y), and solves

(A.1) for all x ∈ [y, 1] and with boundary conditions f ′(1) = 0 and f(y) = g(y).10

The following Lemma, which I use in the proofs of Theorem 1 and of Proposition 2,

studies properties of solutions to the ODE in equation (A.1).

Lemma A2 Let U be a solution to (A.1) with parameters (µ̂, σ̂) and with U ′′(x) > 0 for all

x, and let W be a solution to (A.1) with parameters (µ̃, σ̃), with σ̃ ≥ σ̂, and with W ′′(x) > 0

for all x.

(i) Suppose that µ̃ ≥ µ̂, and that U ′ ≥ 0 and W ′ ≥ 0. If U(y) ≥ W (y) and U ′(y) ≥ W ′(y)

for some y, with at least one inequality strict if (µ̃, σ̃) = (µ̂, σ̂), then U ′(x) > W ′(x) for

all x > y, and so U(x) > W (x) for all x > y.

(ii) Suppose that µ̃ ≤ µ̂, and that U ′ ≤ 0 and W ′ ≤ 0. If U(y) ≥ W (y) and U ′(y) ≤ W ′(y)

for some y, with at least one inequality strict if (µ̃, σ̃) = (µ̂, σ̂), then U ′(x) < W ′(x) for

all x < y, and so U(x) > W (x) for all x < y.

Proof. I prove part (i) of the lemma. The proof of part (ii) is symmetric and omitted. To

prove part (i), I start by showing that there exists η > 0 such that U ′(x) > W ′(x) for all

10This follows because differential equation (A.1) with boundary conditions in part (i) or part (ii) of
Lemma A1 has a unique solution.
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x ∈ (y, y + η). Since U,W are continuously differentiable, this is true when U ′(y) > W ′(y).

Suppose that U ′(y) = W ′(y). Since U and W solve (A.1) (with parameters (µ̂, σ̂) and (µ̃, σ̃),

respectively),

W ′′(y) =
2(rW (y)− µ̃W ′(y))

σ̃2
<

2(rU(y)− µ̂U ′(y))

σ̂2
= U ′′(y),

where the strict inequality follows since (µ̃, σ̃) ≥ (µ̂, σ̂), U(y) ≥ W (y) (with at least one

inequality strict), U ′′,W ′′ > 0, and U ′,W ′ ≥ 0. Since U ′(y) = W ′(y) and U ′′(y) > W ′′(y),

there exists η > 0 such that U ′(x) > W ′(x) ∀x ∈ (y, y + η).

Suppose next that part (i) in the lemma is not true and let y1 be the smallest point

strictly above y with U ′(y1) = W ′(y1). By the paragraph above, y1 ≥ y + η > y. It follows

that U ′(x) > W ′(x) for all x ∈ (y, y1), so U(y1) > W (y1). Note then that

W ′′(y1) =
2(rW (y1)− µ̃W ′(y1))

σ̃2
<

2(rU(y1)− µ̂U ′(y1))

σ̂2
= U ′′(y1),

where the inequality follows since U(y1) > W (y1), (µ̃, σ̃) ≥ (µ̂, σ̂), U ′′,W ′′ > 0 and U ′,W ′ ≥

0. Since U ′(y1) = W ′(y1) and U ′′(y1) > W ′′(y1), it must be that U ′(y1 − ε) < W ′(y1 − ε) for

ε > 0 small, a contradiction. Thus, U ′(x) > W ′(x) ∀x > y.

Proof of Theorem 1. Let (A∗, V1, V2) be an equilibrium outcome. By Corollary 1, for

i = 1, 2 and for all x /∈ A∗i it must be that Vi (x) = E
[
e−rτ(0) (1− Vj (0))

∣∣x0 = x
]
. By Lemma

A1, for all x /∈ A∗i , Vi(x) solves

rVi (x) = µV ′i (x) +
1

2
σ2V ′′i (x) (A.3)

with boundary conditions Vi (0) = 1−Vj (0) and V ′1 (−1) = V ′2 (1) = 0. Since Vi(x) = 1−Vj(x)
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for all x, this implies that, for i = 1, 2

rVi(x) =

 µV ′i (x) + 1
2
σ2V ′′i (x) if x /∈ A∗i ,

r + µV ′i (x) + 1
2
σ2V ′′i (x) if x ∈ A∗i ,

(A.4)

with V ′i (−1) = V ′i (1) = 0 and limx↑0 Vi (x) = limx↓0 Vi (x). The general solution to (A.4) is

Vi(x) =

 Cie
−αx +Die

βx if x /∈ A∗i ,

1 + Eie
−αx + Fie

βx if x ∈ A∗i ,
(A.5)

where α = (µ +
√
µ2 + 2rσ2)/σ2 > 0 and β = (−µ +

√
µ2 + 2rσ2)/σ2 > 0, and where

(Ci, Di, Ei, Fi) are constants. For i = 1, 2, let V ∗i be the unique solution to (A.4) satisfying

the boundary conditions in the statement of Theorem 1. It can be checked that

V ∗1 (x) =


βe−αx+eα+βαeβx

(α+β)(1+eα+β)
if x ∈ [−1, 0),

1− eα+ββe−αx+αeβx

(α+β)(1+eα+β)
if x ∈ [0, 1],

(A.6)

and V ∗2 (x) = 1 − V ∗1 (x). Note that (V ∗1 )′′(x) > 0 for all x ∈ [−1, 0), and that (V ∗2 )′′(x) > 0

for all x ∈ (0, 1] (these inequalities follow since α > 0 and β > 0).

To establish that (A∗, V ∗1 , V
∗

2 ) is an equilibrium, I show that, for all x ∈ A∗1, V ∗1 (x) solves

V ∗1 (x) = sup
τ∈T1

E
[
e−rτ (1− V ∗2 (xτ ))

∣∣x0 = x
]
. (A.7)

The proof that V ∗2 also solves the optimal stopping problem is symmetric and omitted. To see

that V ∗1 solves (A.7), let G2(x) be a solution to the ODE in equation (A.1), with boundary

conditions G2 (1) = V ∗2 (1) and G′2 (1) = (V ∗2 )′(1) = 0. The solution to this differential

equation is

G2(x) =
eα+ββe−αx + αeβx

(α + β)(1 + eα+β)
. (A.8)
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Note that, for all x ∈ [0, 1], G2(x) = V ∗2 (x). Consider the optimal stopping problem

G1 (x) = sup
τ∈T

E
[
e−rτ (1−G2 (xτ ))

∣∣x0 = x
]
, (A.9)

where T is the set of all stopping times. Since G2 (x) = V ∗2 (x) for all x ∈ [0, 1] and since T1 is

the set of stopping times τ such that xτ ∈ [0, 1], G1 (x) ≥ supτ∈T1
E [e−rτ (1− V ∗2 (xτ ))|x0 = x].

Therefore, in order to show that V ∗1 solves (A.7), it suffices to show that V ∗1 (x) = G1(x).

The function V ∗1 is twice differentiable, with a continuous first derivative. Note that

V ∗1 (x) ≥ 1 − G2 (x) for all x ∈ [−1, 1], with strict inequality for all x ∈ [−1, 0). Indeed,

V ∗1 (x) = 1−V ∗2 (x) = 1−G2 (x) for all x ∈ [0, 1]. Moreover, note that (V ∗1 )′(0) = −(V ∗2 )′(0) =

−G′2(0) (the first equality follows since V ∗1 (x) + V ∗2 (x) = 1∀x and the second follows since

G2(x) = V ∗2 (x)∀x ∈ [0, 1]). Since V ∗1 (x) is convex for all x ∈ [−1, 0) and 1−G2(x) is concave

for all x (see equations (A.6) and (A.8)), it follows that −G′2(x) > (V ∗1 )′(x) for all x < 0, and

so V ∗1 (x) > 1−G2(x) for all x < 0. Finally, note that V ∗1 (x) satisfies

−rV ∗1 (x) + µ(V ∗1 )′ (x) +
1

2
σ2(V ∗1 )′′ ≤ 0, with equality on x ∈ [−1, 0).

Therefore, by standard verification theorems (e.g., Theorem 3.17 in Shiryaev (2007)), V ∗1 is

the value function of the optimal stopping problem (A.9). Hence, V ∗1 also solves (A.7).

Next, I show that (A∗, V ∗1 , V
∗

2 ) is the unique equilibrium. By Proposition 1, any equilib-

rium outcome (A, V1, V2) must have A = A∗ = [−1, 1]. Let (A∗, V1, V2) be an equilibrium

outcome different from (A∗, V ∗1 , V
∗

2 ). The discussion at the beginning of the proof implies that,

for i = 1, 2, Vi solves (A.4), with V ′i (−1) = V ′i (1) = 0 and limx↑0 Vi (x) = limx↓0 Vi (x). Since

(V1, V2) 6= (V ∗1 , V
∗

2 ), it must be that limx↑0 V
′
i (x) 6= limx↓0 V

′
i (x). Since V1(x) + V2(x) = 1∀x,

there are two cases to consider: (i) limx↑0 V
′

1 (x) < limx↓0 V
′

1 (x) = limx↓0−V ′2 (x), or (ii)

limx↑0 V
′

1 (x) > limx↓0 V
′

1 (x) = limx↓0−V ′2 (x).

Consider case (i). For every ε ∈ (0, 1] let τ ε := inf{t ≥ 0 : xt ≥ ε} and note that τ ε ∈ T1.

Let V ε
1 (x) := E[e−rτ

ε
(1− V2 (xτε)) |x0 = x]. By Lemma A1, for all x ≤ ε, V ε

1 (x) solves the
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ODE in equation (A.1) with (V ε
1 )′(−1) = 0 and V ε

1 (ε) = 1 − V2(ε) = V1(ε). One can check

that, for all x ≤ ε, V ε
1 (x) = V1(ε)

βe−αε+αeα+βeβε
(βe−αx + αeα+βeβx). Note that (V ε

1 )′(x) > 0 and

(V ε
1 )′′(x) > 0.

Let F1(x) be the solution to the ODE in equation (A.1), with F ′1(−1) = V ′1(−1) = 0 and

F1(−1) = V1(−1). Note that F1(x) = V1(x) for all x ≤ 0. Moreover, since limx↑0 V
′

1 (x) <

limx↓0−V ′2 (x), there exists ε > 0 small enough such that F1(ε) < V ε
1 (ε) = 1 − V2(ε). I now

use this to show that, for all x < 0,

V ε
1 (x) = E[e−rτ

ε

(1− V2 (xτε)) |x0 = x] > E[e−rτ(0)(1− V2(0))|x0 = x] = V1(x) = F1(x).

(A.10)

Note that the inequality in (A.10) implies that V1 (x) is not a solution to the optimal stopping

problem (2). Hence, if (A.10) holds, (A∗, V1, V2) cannot be an equilibrium outcome.

To show that the inequality in (A.10) holds, I start by showing that V ε
1 (−1) > F1 (−1).

Note first that it cannot be that V ε
1 (−1) = F1 (−1). Indeed, F1 and V ε

1 both solve the ODE

in (A.1), with F ′1(−1) = 0 = (V ε
1 )′(−1). If V ε

1 (−1) = F1 (−1), then V ε
1 and F1 would both

be the solution to the same ODE, with the same boundary conditions. This would imply

that V ε
1 (x) = F1(x) for all x ≤ ε, a contradiction to F1(ε) < V ε

1 (ε). Suppose next that

V ε
1 (−1) < F1 (−1). Since F ′1(−1) = 0 = (V ε

1 )′(−1), Lemma A2(i) implies that V ε
1 (x) < F1(x)

for all x ∈ (−1, ε], which contradicts V ε
1 (ε) > F1(ε). Hence, V ε

1 (−1) > F1 (−1). Finally, since

V ε
1 (−1) > F1 (−1) and (V ε

1 )′(−1) = F ′1 (−1) = 0, Lemma A2(i) implies that V ε
1 (x) > F1 (x)

for all x < 0.

In case (ii), a symmetric argument establishes that there exists ξ > 0 such that V ξ
2 (x) =

E[e−rτ
ξ

(1− V1 (xτξ)) |x0 = x] > V2 (x) for all x > 0, where τ ξ := inf{t ≥ 0 : xt ≤ −ξ}.11

Hence, in this case (A∗, V1, V2) cannot be an equilibrium outcome either.

11The symmetric argument for this uses Lemma A2(ii) instead of Lemma A2(i).
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Proof of Proposition 2. Suppose µ ≤ 0. Using equation (A.6), it can be shown that

∂V ∗1 (0)

∂σ
= −µ

4e
2
√
µ2+2rσ2

σ2 µ2
√
µ2+2rσ2+rσ2

−1+e
4
√
µ2+2rσ2

σ2

σ2+4e
2
√
µ2+2rσ2

σ2
√
µ2+2rσ2


1+e

2
√
µ2+2rσ2

σ2

2

σ3(µ2+2rσ2)3/2

≥ 0,

where the inequality follows since µ ≤ 0. Fix σ̂ < σ̃ and let V̂ ∗1 and Ṽ ∗1 be player 1’s payoff

when the volatility of xt is σ̂ and σ̃, respectively. By the derivative above, Ṽ ∗1 (0) ≥ V̂ ∗1 (0).

By Theorem 1, V̂ ∗1 and Ṽ ∗1 solve (A.1) on [−1, 0] (but with different values of volatility),

with (Ṽ ∗1 )′(−1) = (V̂ ∗1 )′(−1) = 0. Moreover, by (A.6), V̂ ∗1 and Ṽ ∗1 are strictly convex and

increasing for all x < 0.

I now show that Ṽ ∗1 (x) > V̂ ∗1 (x) ∀x[−1, 0). Note first that it must be that Ṽ ∗1 (−1) >

V̂ ∗1 (−1): if V̂ ∗1 (−1) ≥ Ṽ ∗1 (−1), then Lemma A2 (i) and the fact that (Ṽ ∗1 )′(−1) = (V̂ ∗1 )′(−1) =

0 would imply that V̂ ∗1 (0) > Ṽ ∗1 (0), a contradiction. Suppose next that the set {x ∈ (−1, 0) :

V̂ ∗1 (x) ≥ Ṽ ∗1 (x)} is non-empty, and let z be the smallest point in that set. By continuity

of V̂ ∗1 and Ṽ ∗1 , V̂ ∗1 (z) = Ṽ ∗1 (z). Since V̂ ∗1 (x) < Ṽ ∗1 (x) for all x ∈ [−1, z), it must be that

(V̂ ∗1 )′(z) > (Ṽ ∗1 )′(z). Lemma A2 (i) then implies that V̂ ∗1 (x) > Ṽ ∗1 (x) for all x ∈ (z, 0], a

contradiction. Hence, Ṽ ∗1 (x) > V̂ ∗1 (x) ∀x ∈ [−1, 0). Therefore, there must exist x∗ ≥ 0 such

that Ṽ ∗1 (x) ≥ V̂ ∗1 (x) for all x ≤ x∗, with strict inequality for x < x∗.

Suppose that x∗ ∈ [0, 1). I now show that Ṽ ∗1 (x) < V̂ ∗1 (x) for all x > x∗. Note first

that (V̂ ∗1 )′(x∗) > (Ṽ1)′∗(x∗). Towards a contradiction, suppose that there exists y > x∗ with

Ṽ ∗1 (y) ≥ V̂ ∗1 (y), and let x′ = inf{y > x∗ : Ṽ ∗1 (y) ≥ V̂ ∗1 (y)}. By continuity, Ṽ ∗1 (x′) = V̂ ∗1 (x′).

Then, by Theorem 1, Ṽ ∗1 and V̂ ∗1 both solve ODE rV (x) = r + µV ′(x) + 1
2
σ2V ′′(x) on

x ∈ (x∗, x′), with boundary conditions Ṽ ∗1 (x∗) = V̂ ∗1 (x∗) and Ṽ ∗1 (x′) = V̂ ∗1 (x′). Since this

ODE has a unique solution, it must be that Ṽ ∗1 (x) = V̂ ∗1 (x) for all x ∈ (x∗, x′). But this

cannot be, since (V̂ ∗1 )′(x∗) > (Ṽ1)′∗(x∗). Hence, it must be that Ṽ ∗1 (x) < V̂ ∗1 (x) for all x > x∗.

The proof that there exists x∗ ≤ 0 such that V ∗2 (x) is increasing in σ for all x ∈ [x∗, 1]

and decreasing in σ for all x ∈ [−1, x∗] when µ ≥ 0 follows from a symmetric argument (but
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using part (ii) of Lemma A2 instead of part (i)).

Proof of Proposition 3. Since V ∗1 (x) + V ∗2 (x) = 1 for all x, to prove Proposition 3 it

suffices to show that V ∗1 is increasing in µ for all x ∈ [−1, 0] and that V ∗2 is decreasing in µ

for all x ∈ [0, 1]. Using equation (A.6), it can be shown that

∂V ∗1 (0)

∂µ
=

(
−1 + exp

4
√
µ2+2rσ2

σ2

)
rσ4 + 2 exp

2
√
µ2+2rσ2

σ2 µ2
√
µ2 + 2rσ2(

1 + exp
2
√
µ2+2rσ2

σ2

)2

σ2(µ2 + 2rσ2)3/2

> 0.

Fix µ̂ < µ̃ and let V̂ ∗1 and Ṽ ∗1 denote player 1’s payoff when the drift of xt is µ̂ and µ̃,

respectively. By the inequality above, V̂ ∗1 (0) < Ṽ ∗1 (0). By Theorem 1, V̂ ∗1 and Ṽ ∗1 solve

equation (A.1) on [−1, 0] (but with different values of drifts), with (Ṽ ∗1 )′(−1) = (V̂ ∗1 )′(−1) =

0. Moreover, by (A.6), V̂ ∗1 and Ṽ ∗1 are strictly increasing and convex for all x < 0.

I now show that Ṽ ∗1 (x) > V̂ ∗1 (x) ∀x[−1, 0]. Note first that it must be that Ṽ ∗1 (−1) >

V̂ ∗1 (−1): if V̂ ∗1 (−1) ≥ Ṽ ∗1 (−1), then Lemma A2 (i) and the fact that (Ṽ ∗1 )′(−1) = (V̂ ∗1 )′(−1) =

0 would imply that V̂ ∗1 (0) > Ṽ ∗1 (0), a contradiction. Let z > 0 be the smallest point such

that V̂ ∗1 (z) = Ṽ ∗1 (z), and suppose by contradiction that z < 0. Since Ṽ ∗1 (x) > V̂ ∗1 (x) for all

x < z, it must be that (V̂ ∗1 )′(z) > (Ṽ ∗1 )′(z). Lemma A2 (i) then implies that V̂ ∗1 (x) > Ṽ ∗1 (x)

for all x ∈ (z, 0], which contradicts the fact that Ṽ ∗1 (0) > V̂ ∗1 (0). Hence, Ṽ ∗1 (x) > V̂ ∗1 (x)

∀x ∈ [−1, 0]. The proof that V ∗2 is decreasing in µ for x ∈ [0, 1] follows from a symmetric

argument (but using part (ii) of Lemma A2 instead of part (i)).

A.2 Proofs of Section 3.2

Consider the model in section 3.2. As before, an outcome is a pair (A, η), where A is the

agreement region and η : A → [0, 1] a policy function. Party i’s payoff from outcome (A, η)

is

Vi (x) = E
[
e−rτ(A)ui

(
η
(
xτ(A)

))∣∣x0 = x
]
, (A.11)
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where τ (A) := inf {t : xt ∈ A}.

Under supermajority rule φ ≤ 1, an equilibrium outcome (A, η) must satisfy the following

conditions: (i) A ⊇ [−1,−φ] ∪ [φ, 1], (ii) η (x) = 0 for all x ∈ [φ, 1], and (iii) η (x) = 1 for

all x ∈ [−1,−φ]. Indeed, a party with a supermajority always finds it strictly optimal to

implement its preferred policy immediately and earn a payoff of 1. For each φ ∈ (0, 1], let

Oφ denote the set of outcomes satisfying conditions (i)-(iii).

Recall that T1 is the set of stopping times τ such that xτ ∈ [0, 1], and that T2 is the set

of stopping times τ such that xτ ∈ [−1, 0]. Let τφ = inf{t : xt /∈ (−φ, φ)} be the first time a

party obtains a supermajority. The following definition adapts Definition 1 to this model.

Definition 3 Under supermajority rule φ an outcome (A, V1, V2) ∈ Oφ is an equilibrium if,

for i, j = 1, 2, j 6= i,

Vi (x) = sup
τ∈Ti

E
[
e−rmin{τ,τφ} (1− Vj (xmin{τ,τφ}

))∣∣∣x0 = x
]
∀x ∈ [−1, 1] (A.12)

Theorem A1 For any φ ∈ (0, 1] there is a unique equilibrium
(
Aφ, V φ

1 , V
φ

2

)
. The equi-

librium agreement region is Aφ = [−1, 1]. For all x ∈ (−φ, φ), equilibrium payoffs V φ
i (x)

solve

rV φ
i (x) =

 µ(V φ
i )′(x) + 1

2
σ2(V φ

i )′′(x) if x /∈ A∗i ,

r + µ(V φ
i )′(x) + 1

2
σ2(V φ

i )′′(x) if x ∈ A∗i ,
(A.13)

with V ∗1 (−φ) = V ∗2 (φ) = 0, V ∗1 (φ) = V ∗2 (−φ) = 1, limx↑0 V
φ
i (x) = limx↓0 V

φ
i (x) and

limx↑0(V φ
i )′(x) = limx↓0(V φ

i )′(x).

Proof. By the same arguments as in Proposition 1, any equilibrium (A, V1, V2) has A = Aφ =

[−1, 1]. Recall that A∗1 = [0, 1] and A∗2 = [−1, 0]. For i = 1, 2, let τ(A∗i ) = inf{t : xt ∈ A∗i }.
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Let τφ = inf{t : xt /∈ (−φ, φ)}. Using equation (A.12), for all x /∈ A∗i , Vi(x) satisfies

Vi (x) = E
[
e−rmin{τ(A∗i ),τφ} (1− Vj (xmin{τ(A∗i ),τφ}

))∣∣∣x0 = x
]

= E
[
e−rmin{τ(0),τφ} (1− Vj (xmin{τ(0),τφ}

))∣∣∣x0 = x
]
,

with V1(φ) = V2(−φ) = 1, V1(−φ) = V2(φ) = 0 and Vi(0) = 1 − Vj(0) (the equality in the

equation follows since τ(A∗i ) = τ(0) whenever x0 /∈ A∗i ). Note that, for all x /∈ A∗1 (i.e., for

all x ∈ [−1, 0]), min{τ(0), τφ} = τ−φ0 = inf{t : xt /∈ (−φ, 0)}. Similarly, for all x /∈ A∗2 (i.e.,

x ∈ [0, 1]), min{τ(0), τφ} = τ0φ = inf{t : xt /∈ (0, φ)}. By Lemma A1(iii), for all x ∈ [−φ, 0],

V1(x) solves

rV1(x) = µV ′1(x) +
1

2
σ2V ′′1 (x),

with boundary conditions V1(−φ) = 0 and V1(0) = 1 − V2(0). Similarly, for all x ∈ [0, φ],

V2(x) solves

rV2(x) = µV ′2(x) +
1

2
σ2V ′′2 (x),

with boundary conditions V2(φ) = 0 and V2(0) = 1− V1(0).

Let Aφ1 := [0, φ] and Aφ2 [−φ, 0]. Since Vi(x) = 1− Vj(x)∀x, the equations above imply

rVi(x) =

 µV ′i (x) + 1
2
σ2V ′′i (x) if x ∈ Aφj ,

r + µV ′i (x) + 1
2
σ2V ′′i (x) if x ∈ Aφi ,

(A.14)

with boundary conditions V1(φ) = V2(−φ) = 1, V1(−φ) = V2(φ) = 0 and limx↑0 Vi(x) =

limx↓0 Vi(x). The same arguments as in the proof of Theorem 1 can be used to show that

any equilibrium must be such that limx↑0 V
′
i (x) = limx↓0 V

′
i (x).

Proof of Proposition 4. For i = 1, 2, let V φ̃
i (·) be party i’s payoff under supermajority

φ̃. Note that V φ′

1 (−φ) > V φ
1 (−φ) = 0 and V φ′

1 (φ′) < V φ
1 (φ) = 1. Let x1 := inf{x ∈ [−φ, φ] :

V φ′

1 (x) ≤ V φ
1 (x)} and x2 := sup{x ∈ [−φ, φ] : V φ′

1 (x) ≥ V φ
1 (x)}. To prove the proposition, it

suffices to show that x1 = x2.
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Suppose first that x1 ≤ 0. Note that V φ′

1 (x1) = V φ
1 (x1) and (V φ′

1 )′(x1) < (V φ
1 )′(x1).

Since V φ′

1 (·) and V φ
1 (·) both solve (A.1) on [−φ, 0] (Theorem A1), Lemma A2 implies that

V φ′

1 (x) ≤ V φ
1 (x) for all x ∈ [x1, 0] and (V φ′

1 )′(0) < (V φ
1 )′(0). This in turn implies that V φ′

2 (0) =

1 − V φ′

1 (0) ≥ V φ
2 (0) = 1 − V φ

1 (x) and that (V φ′

2 )′(0) = −(V φ′

1 )′(0) > (V φ
2 )′(0) = −(V φ

1 )′(0).

Since V φ′

2 (·) and V φ
2 (·) both solve (A.1) on [0, φ], Lemma A2 implies that V φ′

2 (x) > V φ
2 (x)

for all x ∈ (0, φ). This in turn implies that V φ′

1 (x) = 1− V φ′

2 (x) < 1− V φ
2 (x) = V φ

1 (x) for all

x ∈ (x1, φ], and so x1 = x2.

Suppose next that x1 > 0. Note that V φ′

1 (x1) = V φ
1 (x1) and (V φ′

1 )′(x1) < (V φ
1 )′(x1).

Hence, V φ′

2 (x1) = 1 − V φ′

1 (x1) ≥ V φ
2 (x1) = 1 − V φ

1 (x1) and (V φ′

2 )′(x1) = −(V φ′

1 )′(x1) >

(V φ
2 )′(x1) = −(V φ

1 )′(x1). Since V φ′

2 (·) and V φ
2 (·) both solve (A.1) on [x1, φ], Lemma A2 implies

that V φ′

2 (x) > V φ
2 (x) for all x ∈ (x1, φ). This in turn implies that V φ′

1 (x) = 1 − V φ′

2 (x) <

1− V φ
2 (x) = V φ

1 (x) for all x ∈ (x1, φ], and so x1 = x2.

A.3 Proofs of Section 4

Let F 2 be the set of bounded and measurable functions on [−1, 1] taking values on R2. Let

‖·‖2 denote the sup norm on R2. For any f ∈ F 2, let ‖f‖ = supx∈[−1,1] ‖f (x)‖2. Fix ∆ > 0

and r > 0. Recall that A∗1 = [0, 1] and A∗2 = [−1, 0]. Define the operator ψ : F 2 → F 2 as

follows: for any f = (f1, f2) ∈ F 2 and for i, j = 1, 2, i 6= j,

ψi (fi, fj) (x) =

 e−r∆E [fi (xt+∆) |xt = x] if x /∈ A∗i ,

1− e−r∆E [fj (xt+∆) |xt = x] if x ∈ A∗i ,

Note that ψ is a contraction of modulus e−r∆ < 1. Indeed, for any f, g ∈ F 2, ‖ψ(f)− ψ(g)‖ ≤

e−r∆ ‖f − g‖. Therefore, ψ has a unique fixed point.

Proof of Theorem 2. To prove Theorem 2, I start out assuming that the set of SPE of Γ∆

is non-empty. At the end of the proof I show that Γ∆ has a SPE. Fix a SPE of Γ∆ and let fi(x)

be player i’s payoff from this SPE when x0 = x. Let U =
(
U1, U2

)
∈ F 2 and u = (u1, u2) ∈ F 2
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be the players’ supremum and infimum SPE payoffs, so fi(x) ∈ [ui(x), U i(x)] ∀x ∈ [−1, 1].

Note that for all x ∈ A∗i player i’s SPE payoff is bounded below by 1−e−r∆E[U j(xt+∆)|xt =

x], since in any SPE player j always accepts an offer that gives her a payoff equal to

e−r∆E[U j(xt+∆)|xt = x]. On the other hand, for all x /∈ A∗i player i’s payoff is bounded

below by e−r∆E[ui(xt+∆)|xt = x], since player i can always guarantee this payoff by rejecting

party j’s offer. Thus, for all x ∈ [−1, 1] it must be that fi(x) ≥ ui(x) ≥ ψi
(
ui, U j

)
(x).

At states x /∈ A∗i , player i’s payoff is bounded above by e−r∆E[U i(xt+∆)|xt = x], since

player j will never make an offer that gives player i a payoff larger than this. Consider next

states x ∈ A∗i , and note that fi(x) + fj(x) ≤ 1. This inequality follows since the sum of the

players SPE payoffs cannot be larger than what they get by agreeing immediately. Moreover,

by the arguments in the previous paragraph, fj(x) ≥ e−r∆E[uj(xt+∆)|xt = x] for all x ∈ A∗i .

These two inequalities imply that fi(x) ≤ 1 − e−r∆E[uj(xt+∆)|xt = x] for all x ∈ A∗i . Thus,

fi(x) ≤ U i(x) ≤ ψi
(
U i, uj

)
(x) ∀x ∈ [−1, 1].

The two paragraphs above imply that, for i = 1, 2, i 6= j, and for all x ∈ [−1, 1],

U i(x)− ui(x) ≤ ψi
(
U i, uj

)
(x)− ψi

(
ui, U j

)
(x)

≤ max
k∈{1,2}

e−r∆E
[
Uk (xt+∆)− uk (xt+∆) |xt = x

]
,

where the last inequality follows from the definition of ψi. Since the inequality above holds

for i = 1, 2 and for all x ∈ [−1, 1], ||U − u|| ≤ e−r∆||U − u||. Hence, U = u and SPE payoffs

are unique. Let V ∆ = (V ∆
1 , V ∆

2 ) ∈ F 2 be the unique SPE payoffs. Since ψi
(
U i, uj

)
≥ V ∆

i ≥

ψi
(
ui, U j

)
and since U = u, it follows that V ∆ is the unique fixed point of ψ. Note that V ∆

1

and V ∆
2 and satisfy equation (5) in Theorem 2.

The arguments above show that all SPE of Γ∆ are payoff equivalent. I now show that there

exists a unique SPE. Since V ∆
1 (x) +V ∆

2 (x) = 1 for all x ∈ [−1, 1], in any SPE players always

reach an immediate agreement, and their payoffs from this agreement are (V ∆
1 (x0), V ∆

2 (x0)).

I now use this to construct the unique SPE. Consider the following strategy profile. At every
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x ∈ A∗i , player i makes an offer that gives players a payoff equal to (V ∆
1 (x), V ∆

2 (x)), and

player j 6= i only accepts offers that give her a payoff at least as large as V ∆
j (x). The players’

payoffs from this strategy profile are (V ∆
1 , V ∆

2 ). Moreover, it is easy to see that no player can

gain by deviating from its strategy at any x ∈ [−1, 1]. Hence, this strategy profile is a SPE

of Γ∆.

Proof of Theorem 3. By equation (5) in Theorem 2, player i’s payoff for all x ∈ A∗i

satisfies

V ∆
i (x) = 1− e−r∆E

[
V ∆
j (xt+∆)

∣∣xt = x
]

= 1− e−r∆ + e−r∆E
[
V ∆
i (xt+∆)

∣∣xt = x
]
,

where the second equality follows since V ∆
1 (x) + V ∆

2 (x) = 1 for all x ∈ [−1, 1]. Since

V ∆
i (x) = e−r∆E

[
V ∆
i (xt+∆)

∣∣xt = x
]

for all x /∈ A∗i , it follows that

V ∆
i (x) = (1− e−r∆)1{x∈A∗i } + e−r∆E

[
V ∆
i (xt+∆)

∣∣xt = x
]
. (A.15)

Setting t = 0 and solving equation (A.15) forward yields

V ∆
i (x) = E

[(
1− e−r∆

) ∞∑
k=0

e−rk∆1{xk∆∈A∗i }

∣∣∣∣∣x0 = x

]
=

1− e−r∆

∆

∞∑
k=0

∆e−rk∆Pi(∆k, x), (A.16)

where, for all s ≥ 0 and all x ∈ [−1, 1], Pi(s, x) := E[1{xs∈A∗i }|x0 = x] is the probability with

which player i has proposal power at time s conditional on x0 = x.

For all s > 0 and all x, y ∈ [0, 1], let p(x, y, s) = Prob(xs = y|x0 = x) be the transi-

tion density function of the process xt. It is well known that p(x, y, s) solves Kolmogorov’s

backward equation (e.g., Bhattacharya and Waymire (2009), chapter V.6),

∂

∂s
p(x, y, s) = µ

∂

∂x
p(x, y, s) +

1

2
σ2 ∂

2

∂x2
p(x, y, s), (A.17)

with lims↓0 p(x, y, s) = 1{y=x} and ∂
∂x
p(x, y, s)|x=−1 = ∂

∂x
p(x, y, s)|x=1 = 0 for all s > 0. Note
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that for all s > 0 and for i = 1, 2, Pi(s, x) = E[1{xs∈A∗i }|x0 = x] =
∫
A∗i
p(x, y, s)dy. Since

p(x, y, s) solves (A.17) with ∂
∂x
p(x, y, s)|x=−1 = ∂

∂x
p(x, y, s)|x=1 = 0 and lims↓0 p(x, y, s) =

1{y=x}, it follows that Pi(s, x) also solves (A.17), with lims↓0 Pi(s, x) = Pi(0, x) = 1{x∈A∗i }

and ∂
∂x
Pi(s, x)|x=−1 = ∂

∂x
Pi(s, x)|x=1 = 0 for all s ≥ 0.12 Note that Pi(·, x) is contin-

uous on (0,∞) (being differentiable). Hence, e−rsPi(s, x) is Riemann integrable, and so∑∞
k=0 ∆e−rk∆Pi(∆k, x) →

∫∞
0
e−rtP (t, x)dt as ∆ → 0. It then follows from (A.16) that

V ∆
i (x) converges pointwise to Wi(x) := r

∫∞
0
e−rtP (t, x)dt as ∆→ 0.

I use the following Lemma:

Lemma A3 For i = 1, 2, Wi (·) is continuous.

Proof. For i = 1, 2 and for every ε > 0, let V ε
i (x) := r

∫∞
ε
e−rtPi(t, x)dt. Since Pi(t, ·) is

continuous for all t > 0 (being differentiable), V ε
i (·) is continuous for all ε > 0. To show

that Wi(·) is continuous, it suffices to show that V ε
i (x) → Wi(x) uniformly as ε → 0. For

any ε > 0 and any x ∈ [−1, 1], |Wi(x)− V ε
i (x)| = r

∫ ε
0
e−rtPi(t, x)dt ≤ r

∫ ε
0
e−rtdt = 1− e−rε

(since Pi(t, x) ∈ [0, 1]). Since limε→0 1− e−rε = 0, V ε
i (·)→ Wi(·) uniformly as ε→ 0.

Note that, for all t > 0, P1(t, x) is increasing in x, since player 1 is more likely to have

proposal power at t > 0 if x0 = x is larger. Similarly, P2(t, x) is decreasing in x. Therefore,

by (A.16), for all ∆ > 0 V ∆
i (·) is monotone on [−1, 1]. Since Wi(·) is continuous, it follows

that V ∆
i (·)→ Wi(·) uniformly as ∆→ 0.

I now complete the proof of Theorem 3. By the arguments above, V ∆
i (x) → Wi(x) =

r
∫∞

0
e−rtP (t, x)dt uniformly as ∆→ 0. Integrating by parts, for all x 6= 0

Wi (x) = r

∫ ∞
0

e−rtPi (t, x) dt = −e−rtPi (t, x)
∣∣∞
0

+

∫ ∞
0

e−rt
∂

∂t
Pi (t, x) dt.

Note that −e−rtPi (t, x)|∞0 = Pi(0, x) = 1{x∈A∗i }. Hence, ∀x 6= 0, Wi (x) = 1{x∈A∗i } +

12Since p(x, y, s) satisfies (A.17), for all x ∈ [−1, 1] and all s > 0, ∂
∂sPi(s, x) =

∫
A∗

i

∂
∂sp(x, y, s)dy =

µ
∫
A∗

i

∂
∂xp(x, y, s)dy + 1

2σ
2
∫
A∗

i

∂2

∂x2 p(x, y, s)dy = µ ∂
∂xPi(s, x) + 1

2σ
2 ∂2

∂x2Pi(s, x).
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∫∞
0
e−rt ∂

∂t
Pi (t, x) dt . Since ∂

∂t
Pi(t, x) = µ ∂

∂x
Pi(t, x) + σ2

2
∂2

∂x2Pi(t, x) for all t > 0 (see footnote

(12)), it follows that for all x 6= 0,

rWi (x) = r × 1{x∈A∗i } + r

∫ ∞
0

e−rt
(
µ
∂

∂x
Pi (t, x) +

1

2
σ2 ∂

2

∂x2
Pi (t, x)

)
dt

= r × 1{x∈A∗i } + µW ′
i (x) +

1

2
σ2W ′′

i (x) , (A.18)

where the second equality follows since W ′
i (x) = r

∫∞
0
e−rt ∂

∂x
Pi (t, x) dt and since W ′′

i (x) =

r
∫∞

0
e−rt ∂

2

∂x2Pi (t, x) dt. Therefore, W ∗
i (·) solves the same differential equation than V ∗i (·) for

all x 6= 0. To pin down the boundary conditions, note that W ′
i (x) = r

∫∞
0
e−rt ∂

∂x
Pi (t, x) dt.

Since ∂
∂x
Pi (t, x) |x=−1 = ∂

∂x
Pi (t, x) |x=1 = 0 for all t ≥ 0, it follows that W ′

i (−1) = W ′
i (1) = 0.

Since Wi(·) is continuous (Lemma A3), it must be that limx↑0Wi(x) = limx↓0Wi(x).

Finally, integrating both sides of (A.18) yields

∫ z

−1

rWi(x)dx =

∫ z

−1

r1{x∈A∗i }dx+ µ(Wi (z)−Wi(−1)) +
1

2
σ2((Wi)

′ (z)− (Wi)
′ (−1)).

Note that the two integrals in the equation above are continuous in z. Since Wi(·) is also

continuous, W ′
i (·) must be continuous as well, and so limx↑0W

′
i (x) = limx↓0W

′
i (x).

The paragraphs above imply that Wi(·) and V ∗i (·) both solve the same differential equa-

tion, with the same boundary conditions. Since this differential equation has a unique solu-

tion, Wi(·) = V ∗i (·).
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