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Abstract

We discuss ways to apply the model for endogenous productivity when there are no firm-level

output price indices available, a limitation of many data bases. Including the demand of the

firm in the estimation allows us to obtain a "composite" of productivity, demand elasticity, and

demand heterogeneity. This unobservable, often called "revenue productivity", is the estimate

of productivity used by most scholarly studies. We find that this composite does not behave as

productivity and, in particular, neither is greater for firms that perform R&D nor its distribution

shows stochastic dominance. Its persistence and returns also give different results. Our findings

highlight that results based on revenue productivity can be highly misleading about the returns

of firm investments.
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1. Introduction

Endogenous productivity results from the investments in R&D and innovation of firms, in imper-

fectly competitive markets, to reduce their costs and compite with better prices as well as to enhance

directly the demand for their products. The explicit recognition that productivity is endogenous is

important to measure it precisely and to assess the impact of these investments. Several recent pa-

pers have adopted this direction.1 Important goals are assessing the impact of R&D and innovation

expenditures, compare the resulting productivity of firms with and without these expenditures, and

measure the returns. These assessments are decisive at the time to define policies.

This paper explores ways to estimate endogenous productivity using a rich data set, the 23 years

of firm-level data generated by the Spanish ESEE survey (1990-2012). We replicate the estimation

of the model in Doraszelski and Jaumandreu (2013), henceforth DJ, using the more than double

years of data now available (the original model was estimated with the 10 years of the period

1990-1999). We compare the estimated coefficients, the results of the stochastic dominance tests,

and the returns, verifying that they stay the same despite the additional 13 years included in the

present paper. Then we briefly assess how important is the endogenenous treatment of inputs

and productivity by comparing the results with the productivity measurements obtained using two

traditional nonparametric approaches that treat them as exogenous: the productivity rates of growth

of the Solow residual (Solow, 1957), and the productivity levels obtained with the Multilateral index

of Caves, Christensen and Diewert (1982). DJ produces better production function estimates and

more precise and contrsated productivity measures, that reflect the impact of the investments.

The insights of the DJ model are produced using firm-level output price indices that are available

in the ESEE. However, many data bases have no information on output prices and only industry

deflators are available. This is particularly true for many Latin American countries, and is the main

motive of our paper. The estimates without firm-level output prices are prone to the criticisms

raised by Klette and Griliches (1996). We discuss ways to apply the DJ model when there are no

firm-level prices available. This is done by including in the estimation the demand function of the

1See, for example, Doraszelski and Jaumandreu (2013); Arx, Roberts and Xu (2011); De Loecker (2013); Peters,

Roberts, Vuong and Fryges (2017); Boler, Moxnes and Ullveit-Moe (2015); Maican and Orth (2015) and Bilir and

Morales (2016).
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firm to make up for output prices, as Klette and Griliches (1996) suggested and De Loecker (2011)

applied recently. It creates the possibility of estimation of a "composite" of productivity, demand

elasticity, and demand heterogeneity, sometimes called "revenue productivity", that is being taken

as an estimate of productivity in many recent works.2

This is, however, far away from being an ideal solution. On the one hand, it treats the composite as

a Markov process although it is likely not to be such thing (if heterogeneity of production and demand

function are characterized by distinct Markov processes, their sum cannot be a Markov process).

On the other, it conveys in productivity three unobservables that are likely to be correlated among

them, two of them distinct from productivity.3 Estimation gives a prominent role to the estimation

of demand elasticity since it nests the estimation of the production function in the demand function.

Demand elasticity weights the sum of the unobservables productivity and demand heterogeneity.

This paper shows ways to estimate an endogenous productivity model without firm output prices

despite all its problems. Then applies it to the data and analyzes the results. We look at the estimates

of the coefficients of the production function, elasticity of demand, productivity and returns to

R&D. The main conclusion that emerges is that the composite of productivity, unobserved demand

heterogeneity and demand elasticity does not behave as a measure of productivity. To anticipate the

main results let us say that the composite means are not systematically greater for R&D firms, and

the distribution of the composite does not show stochastic dominance for the firms that invest in

R&D. The implication is that researchers using this measure in applied trade, industrial organization

or reallocation analysis, to cite a few areas, hardly can be reassured that they are getting results

that describe the behavior of productivity.

The rest of this paper is organized as follows. Section two presents the data and Section three

estimates productivity, tests stochastic dominance and estimates returns to R&D, with the exogenous

indices. Section four is dedicated to the replication of the DJ exercise. Section five explains how

to estimate the model without prices and its theoretical consequences, and Section six carries out

its estimation and examines the results. Section seven is dedicated to compare the effects of R&D.

Section eight concludes.

2Works that adopt the estimation of this composite are, for example, Hsieh and Klenow (2009); Gandhi, Rivers

and Navarro (2013); Asker, Collard-Wesler and De Loecker (2014); Boler, Moxnes and Ullveit-Moe (2015); Peters,

Roberts, Van Ahn and Fryges (2016) and Bilir and Morales (2016). On the contrary, Jaumandreu and Yin (2017)

separate the unobservables with a method based on the availability of more than one market for each firm.
3 Jaumandreu and Yin (2017) document the presence of a negative relationship between productivity and demand

heterogeneity with a sample of Chinese firms.
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2. Data

We use the Encuesta Sobre Estrategias Empresariales (ESEE) data corresponding to the period

1990-2012. It is a firm-level survey of Spanish manufacturing sponsored by the Ministry of Industry.

At the beginning of the survey, about 5% of firms with up to 200 workers were sampled randomly

by industry and size strata. All firms with more than 200 workers were included in the survey,

and 70% of these larger firms responded. Firms disappear over time from the sample due to either

exit (shutdown or abandonment of activity) or attrition. To preserve representativeness, samples of

newly created firms were added to the initial sample almost every year. Over time, some additions

counterbalanced attrition too.

We keep the firms for which we have enough information available and at least three consecutive

years of observation. This gives a dataset with 3,026 firms and 26,977 observations. Detailed sample

size and variable definitions can be found in the Data Appendix. We group the firms in the ten

broadly defined industries also used in DJ.4 Table A1 gives the industry definitions and Table A2

provides descriptive statistics, reporting means of the individual values in the industries.

There is an important peculiarity of the new data as compared with the one used in DJ. Firms’

output fell sharply around 2008 in all industries, although with different intensity. Materials followed

this output movement, but this was not the case for labor, and especially capital. Figure A1 depicts

a few examples of this evolution in rates of growth. It reflects the behavior of firms’ demand for

inputs confronted to a sudden and unexpected fall in demand. It contrasts in deepness with the

also acute previous recession in 1993. Recovery was complex and deserves further attention. From

the point of view of the estimation of a production function and productivity, this is likely to create

a significant underutilization of the inputs capital and labor that, if untreated, is likely to bias the

estimated elasticities.

We have dealt with the event in two different ways. First we tried to employ the indicators

of utilization of capacity, but we abandoned this method because of the likely endogeneity of this

variable. Second, we have allowed for a change in the value of all the terms in capital and labor

for the year 2008 by means of interacting yearly dummies. The value of the coeffients of these

dummiesmay be interpreted as the estimated correction to be done to the observed input values to

preserve the structural relationship.

4We add industry 5, absent in the original paper.
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3. Estimating productivity with indices

In this section, we briefly comment on the application of two nonparametric measures of produc-

tivity: the Solow residual (rates of growth) and the Multilateral index (levels). The first measure is

due to Solow (1957). Hall (1990) developed the way to apply Solow’s idea with imperfect competi-

tion. The second measure is due to Caves, Christensen and Diewert (1982) who built an index in

levels extending Solow’s idea. Van Biesebroeck (2007 and 2008) summarizes these measures, among

many other, and compares their performance. These measures are typically used in studies without

focus on endogenous productivity.

Both measures have in common to be nonparametric estimates that approximate the input elastic-

ities from observed input shares. In the absence of information on the economies of scale, it is usual

to assume long run constant returns to scale. Then, assuming cost minimization, if one computes

the input shares from total cost (as opposed to revenue), the Solow residual and the Multilateral

index are robust to imperfect competition (Hall, 1990). The most usual method of calculation is to

add an estimate of the cost of capital to variable costs.

Assume the production function is

 =  ( ) exp( + ) (1)

where  is quantity produced,   and  stand for the inputs capital, labor and materials

respectively,  is persistent Hicks neutral productivity, and  an error uncorrelated with all the

information when the firm takes the decisions on output and inputs (e.g. an observational error).

This is the general setting considered by the recent papers aimed at the estimation of the production

function under the presence of persistent productivity.5 These papers take capital as given and labor

and materials as variable in the short run.

The Solow residual is

\( − −1) = (−−1)−(1−−)(−−1)−(−−1)−(−−1)

where the variables are in logs and the input shares are computed as

 =
 + −1

2
  = 

5Olley and Pakes (1996); Levisohn and Petrin (2003); Ackerman, Caves and Frazer (2015). Gandhi, Rivers and

Navarro (2013) can be considered a paper in this line but circumscribed itself to the estimation of production functions

under perfect competition.
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The multilateral index is

\( − )

= ( − )− (1− ̃ − ̃)( − )− ̃( − )− ̃( −)

where the variables are in logs, and

 =
1



P


1



P


ln  = 

̃ =
 + 

2
  = 

with  being the number of firms and  the number of time observations of firm .

These measures have a main drawback: the estimation of the elasticities, in which the computa-

tions are based, is in general not consistent. Input shares in cost are independent of Hicks neutral

productivity, but they are only a proper measure of elasticities if there are not adjustment costs

(estimation also neglects ). As capital is subject to high adjustment costs, and the same is likely

to be the case for labor and materials (although adjustment costs of materials are generally con-

sidered smaller), the elasticities are likely to be biased in several directions. We do not know how

these biases relate to productivity, and in particular endogenous productivity, and hence how the

Solow residual and the Multilateral index going to perform with respect to the measurement of

productivity. This is why these measurements have limited usefulness. But we can take them as a

first approximation to have an idea of the main trends present in the data.

Tables 1 and 2 show the results of computing the Solow residual and the Multilateral index using

the ESEE data base. We compute shares from total cost after adding an estimate of the cost of

capital to variable costs. The user cost of capital is calculated from firm-level data on the interest

rate paid for investments, an industry estimate of depreciation and the yearly rate of variation of the

price of investment (see the Data Appendix). The tables show first the estimated input shares and

then apply to the productivity measures the same tests that we will later apply to the parametric

estimates. The tables show that shares are very similar, so we will focus on the productivity results.

Before comenting the results, let us make some remarks that are valid for all the tables of this

paper in which we compute the tests. First, we compute the mean productivity for the subsample

of observations with and without R&D, then we compute the statistic reported in page 1365 of DJ

of the difference of means. A column gives the difference of means, another the value of the statistic

and a third the probability value. The null hypothesis is that the mean of R&D is greater, and

a probability for the value of the test below 5% is taken as the rule to reject it. We apply the

test separately for the subsamples of firms with 200 workers or less and more than 200 workers,
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to respect the different representativity of the data for these two strata. Second, we compare each

whole distribution ( 200 workers or less and more than 200 workers) by means of the Kolgomorov-

Smirnov test of stochastic dominance reported in page 1367 of DJ. We first test the null hypothesis

of equality of the distributions and then the null hypothesis that the distribution of the observations

with R&D stochastically dominates. We apply the test using the mean productivity over time of

each firm to avoid statistical dependence of the observations. Again, we split the sample for each

industry in firms with 200 workers and less and firms with more than 200 workers. We only apply

these tests when the subsamples of R&D and non R&D firms have at least 20 firms each.6 Notice

that Table 1 applies these tests to the Solow growth rates and Table 2 to the productivity levels

computed with the Multilateral index.

Table 1 shows in columns (4) and (5) that average productivity growth is around 1% for the

smaller firms and a little less than 0.5% for firms with 200 workers and more. The differences

between the mean growth of productivity for firms with and without R&D are very small. Column

(6) shows that average productivity growth is greater for firms with R&D in 11 cases out of 20.

There is not discernible pattern across industries or sizes. But the average differences are so small in

relation to the variance of productivity that in columns (7) and (8) is only possible to reject that the

growth is higher for firms with R&D in 2 cases out of 20. The difficulty at the time of distinguishing

the distributions of productivity becomes apparent in columns (9) and (10): the equality of the

distributions of productivity growth can be rejected only in 2 cases out of 12. Given this result, the

fact that stochastic dominance cannot be rejected in 10 out of 12 cases in columns (11) and (12) is

unimportant. In only one out of these 10 cases the distributions are distinguishable.

In Table 2 the multilateral index gives in column (4) differences in the levels of productivity that

range between -7.5% and 9% for the firms with and without R&D. Productivity is greater for R&D

firms in 14 out of 20 cases, 7 out of 10 for the smallest firms and 7 out of 10 for the biggest. Here

the negative mean differences are again small with repect to the variance of productivity, so that

it is only possible to reject in 1 case out of the 20 that the firms with R&D do not have greater

productivity. Columns (7) and (8) show that the equality of the distributions can be rejected in 5

cases out of 12. Consequently it is only partially informative that in columns (9) and (10) we cannot

reject the stochastic dominance of the distribution of productivity for the firms with R&D in any

industry. This is a much stronger statistical assessment if we have arrived to the conclusion that the

6This produces a total of 12 tests across industries against the 10 used in DJ because we have added industry 5

and we have now enough firms with more than 200 workers in industry 10.
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distributions are distinct, and this happens only for 5 industries.

In summary, the indices show that firms with and without R&D seem to diverge in their levels

of productivity, although this is imprecisely estimated. Average differences in productivity levels

are below 9% and only fully significant in around half of the industries. But the Solow indice is

not able to indicate any significant difference in the rates of growth. At this point it is hard to say

if this is due to the absence of a greater growth of productivity for R&D firms or to the method

applied to compute the growth. Later, we compare these results with the parametric results obtained

controlling for endogeneity of the inputs and productivity.

4. Estimating endogenous productivity with output prices (DJ model)

We replicate the estimation of the model in DJ, using the 23 years of data now available. In this

section, we briefly remind the model, report a few necessary small changes in the specification and

describe the results.

DJ assumes a Cobb-Douglas production function and a Markov process for productivity  of the

form  =  + (−1 −1) +  where −1 = ln is the log of expenditures in &.

Plugging this process in the production function (1), taking logs and using the inverted demand for

labor7 −1 to replace −1, we have

 =  +  +  +  + (−1 −1) +  +  (2)

where we omit the constant for simlicity. This corresponds, with some slight and self-evident changes

in notation, to equation (6) in DJ. Notice that we use an in-homogeneous Markov process, by

specifying the time dummies  We expect very little change, and this specification avoids to have

21 time dummies outside and inside the (·) function with constrained coefficients that have to be
treated as nonlinear parameters.

The inverted demand for labor is

 = −  + (1−  −  )

+(1−  )( − ) +  ( − )− ln
µ
1− 1

( )

¶
 (3)

where  is a constant,   and  represent wage, price of materials and output price, respec-

tively, and  stands for the firm-specific demand shifter. The demand shifter plays the role of a

varying demand intercept. (·) is a flexible function of the price and the shifter.
7The inverted demand for materials can also be used.
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To allow the function (−1 −1) to differ when the firm has chosen −1 = 0, we specify it,

as in DJ, as

1(−1 = 0)(00 + 01( − )) + 1(−1  0)(10 + 11( −  −1))

We introduce two small changes in the specification. First, we reduce the terms of the polynomial

that models (·) in DJ from 9 to 6. To avoid excessive collinearity, we drop the terms featuring

powers of . Second, we deal with the sharp variation in utilization of capacity in the year 2008

by including dummies interacted with the terms in capital and labor (see the Data section).

Estimation is by nonlinear GMM. We form the moments by using the constant, dummies and

polynomials of the exogenous variables as instruments. The complete list is formed by the following

instruments. First, the constant, 21 time dummies and the indicator of lagged R&D expenditures.

Second, the 6 terms of the polynomial in lagged price and lagged demand shifter (all the terms of

a complete polynomial of order three minus the square and cube of the demand shifter). Then we

use  −1 a polynomial of order three in −1 and a polynomial of order three in the variables

−1 (−1 − −1) and (−1 − −1), but often we drop some cross-terms and powers that

exacerbate errors in variables.8 We add interactions of the indicator of lagged R&D expenditures

with variables −1 −1 (−1 − −1) and (−1 − −1) and the amount of the lagged

R&D expenditures with −1 −1 (−1− −1) (−1− −1) −1 and −19 There

are 46 parameters to estimate. With the dropping of some instruments according to industries the

degrees of freedom range from 10 to 32. So we estimate with somewhat less instruments than in the

original article.

Table 3 reports the results. Columns (1) to (3) report the estimates of the production function

parameters. They are reasonable and precisely estimated.10 All returns to scale (except industry

7) are, as expected, slightly below unity. The smallest values are reached for industries 3 and 6,

8We avoid the powers of  and −1 because they often create problems. This is why in some cases we drop the

quadratic and cubic terms of the polynomial in −1 and different cross terms and powers of the complete polynomial

in −1 (−1 − −1) and (−1 − −1) Specifically, we only use −1 in industries 3, 9 and 10, and we

replace the polynomial of order three by a polynomial in −1 and the terms (−1 − −1) and (−1 − −1)

in industry 6, the term −1 and polynomials in (−1 − −1) and (−1 − −1) in industries 7 and 8, and

the terms −1 (−1 − −1) and (−1 − −1) in industry 10.
9But we drop the interaction of the indicator with −1 in industries 7 and 8, and the whole interactions in

industries 9 and 10. Similarly we drop the ineraction with the amount of the expenditures with −1 in industry 1,

and with −1 and −1 in industries 2,4,7 and 8.
10From here on we adopt the practice to report first stage GMM estimates. We only use the second stage to compute

the specification test.
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slightly below 0.9. The estimates for the elasticities are very close to the estimates of the original

article for materials, but tend to be a little smaller for capital and a little greater for labor. We

are not aware of any particular reason for this. The sharp changes in input utilization around 2008,

already mentioned and difficult to model, seem to be reasonably controlled by the year-specific point

dummies. The specification tests (columns (5) and (6)), presumably more difficult to be satisfied

with a 23 years sample, are passed at the 5% significance level in all industries but 5, 8 and 9.

The elasticity of demand (column (4)) is estimated around an absolute value of two for all indus-

tries. This meets the threshold that we expect from theory (absolute elasticity above unity) but it

is a somewhat low value that does not show a high variation. However, the elasticity of demand is

residual in this model, and the estimates were already not very good in the original DJ. Probably,

they can be improved trying a richer estimation of the function (·) or, even better, using a sepa-
rated markup equation to estimate it (see next section). It is however not clear how much could

this improve the general results.

The productivity results are quite similar to the results in DJ. Figure 1 depicts the productivity

distributions for firms without and with &. Column (7) reports the difference in the mean

productivity for the firms performing R&D and for the firms that have no R&D expenses. The

differences are positive in 10 out of 20 cases, but many negative difference are small and/or subject

to a high variance, so the null hypothesis according to which the mean of productivity of the firms

performing & is greater can not be rejected in 16 out of the 20 cases.

Columns (10) and (11) show that we can reject the equality of the distributions of productivity in

8 out of 12 cases. Stochastic dominance of productivity of the firms with R&D is tested in columns

(12) and (13), showing that it cannot be rejected in 10 out of the 12 cases. Notice that in 7 out of

the 10 cases with stochastic dominance the distributions are significantly different, so these are the

strongest results with respect to the role of R&D. In the original DJ stochastic dominance could not

be rejected with distributions significantly different in only 5 cases ou of the total 10.

We now compare these results with the results of the application of the Multilateral index. The

value of the estimated elasticities are clearly different from the approximations of the elasticities

of the Multilateral index. In the estimation of endogenous productivity, the elasticity of capital

is greater and the elasticity with respect to labor is lower (except in industry 7). This is usually

interpreted as the result of controlling for the endogeneity of the inputs (see, e.g., Olley and Pakes,

1996). On the other hand, the difference of mean productivity for firms with R&D with respect to

firms without R&D is positive in some fewer cases, but these differences are quite often estimated
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greater. The endogenus productivity estimation leads to statistical difference between the distribu-

tions of productivity for R&D and no R&D firms in more cases (8 out of 12 against 5 out of 12), and

gives stochastic dominance of the productivity of firms with R&D conditional to the distribution

being different in more cases (7 out of 12 against 5 out of 12). In addition, it is important to notice

that the correlation of cases is not perfect. The intersection of these 7 and 5 industries is only 3

industries.

Summarizing, treating inputs and productivity as endogenous produces different input coefficients,

discriminates more the distributions of productivity, and estimates larger differences in many cases

in which mean productivity of the & firms is greater.

5. Estimating endogenous productivity without output prices

Output price plays two key roles in the above estimation. First, it allows specifying the production

function directly since we can construct the quantity index , obtained by deflating revenue.

Second, as equation (3) makes clear, the output price is an argument of the inverse demand for

labor through marginal revenue. In the absence of output price, we need to replace it by observable

variables. In what follows we discuss how.

A model without prices

We need to specify the demand for the ouput of the firm. Let us write

 = 0
−
 exp(+  + ) (4)

where 0 is a constant,  is a vector of observed demand shifters,  represents the effect of all

the unobserved shifters, and  is an observational error uncorrelated with the included variables.

We are going to consider  as persistent as productivity  This is the effect ususally know as

"demand heterogeneity". Its likely importance was first pointed out by Foster, Haltiwanger and

Syverson (2008). For a review of literature and an asessment see Jaumandreu and Yin (2017).

Notice that we are specifying a varying elasticity of demand This is important to make the

model fullycomparable to DJ, an we later explain how to identify this varying elasticity. Multiplying

equation (4) by , we get a relationship for revenue 

 = 0
−(−1)
 exp(+  + )

Recall the production function of equation (1). To simplify notation, let us use the shorthand

 for  (·). The production function implies, under cost minimization, a dual marginal cost that
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we can write separating the part computable in terms of observable variables from unobservable

productivity

 =
 

( +  )
exp(−) exp()

= (  ) exp(−) exp()
=  exp(−) exp()

where  is a disturbance that comes from possible observational problems in   (which, for

example, may stem from the presence of adjustment costs not fully accounted for), and  is a

short hand for the function (  )

Profit maximization implies that  =


−1.
11 Replacing  in the revenue relationship,

using as marginal cost the expression introduced above, we get the equation

 = 0(


 − 1
)−(−1) 

−(−1)
 exp(+ ( − 1) +  − ( − 1) + )

The replacement of output price induces the presence of the persistent unobserved variable ( −
1)+ , a composite of productivity, demand elasticity, and demand heterogeneity. Many recent

papers have recognized the relevance of this composite unobservable.12 If we want to estimate this

relationship we need to control for this unobservable that we will call abbreviately ̃. In logs, we

can write the revenue equation as

 = ln0 +  − ( − 1) + + ̃ + 

where  = −(− 1) ln 
−1 and  = −(− 1)+  A constrained version of this equation

has been used, for example, by Aw, Roberts and Xu (2011). By inverting the starting demand and

multiplying by  it is possible to get another potentially usable relationship similar to the one

employed by De Loecker (2011).13

Let us assume that ̃ follows an (in-homogeneous) endogenous Markov process, i.e. ̃ =

 + (̃−1 −1) + . This is an unsatisfactory assumption because, if the components follow

11This is the relevant relationship under static (non-dynamic) pricing. Virtually all the literature on productivity

assumes static pricing. See Jaumandreu and Lin (2017) for a departure of this assumption.
12 See the introduction.
13 Inverting demand, we have

 = (0)
1
 

− 1


 exp(
+  + 


)

and multiplying by 

 = (0)
1
 

1− 1
 exp(

+  + 


)
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separately Markov processes, the sum of two Markov processes is not in general a Markov process.

Let us keep this in mind when we analyze the results. We replace ̃−1 by a function of observable

variables (), with shorthand −1 (note that we slightly abuse of notation by writing the function

without tilde for simplicity). The revenue equation becomes

 = ln0 +  − ( − 1)(  ) + +  + (−1 −1) +  +  (5)

This equation is an alternative to equation (2) where we can try to estimate, without using out-

put prices, the parameters of the production function, the elasticity of demand and the composite

unobservable.

To obtain the function ̃ = (), we can invert either the FOC for materials or the FOC for

labor. In both cases, we can use the corresponding FOC only or solve for the system of the two

FOCs obtaining and inverting the demand for either materials or labor. Although this gives four

possibilities, in practice we have found that the best results are obtained solving for the system

and inverting the demand for labor. The reasons are likely to be that the inclusion of both input

prices lessens a little the problems of multicollinearity and that the labor input is subject to less

measurement problems. We have hence used

 = +
0


+( + )− ( − 1) − ( − 1) ( − )− ( − 1)( +  ) −  (6)

where  = − ln and 
0
 = −( − 1) ln −  ln


−1 (again there is some abuse of

notation in writing ) 

From equation (6), we can recover  − , that estimates ̃ up to a constant. Pluggin (6)

into (5) allows to recover (−1 −1) up to a constant as well. The difference between  and

(−1 −1) is an estimate of .

Identifying 

Equations (4) and (5) show how important becomes the estimation of the elasticity of demand in

the absence of ouput price. Estimates of a sort of equation (5) have been carried out, for example,

The revenue relationship is

 = (0)
1
 

1− 1


 exp(
+ ( − 1) +  + 


)

The composite ( − 1) +  shows up divided by  In practice, this equation seems to have identification

problems.
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in De Loecker (2011) and Peters, Roberts, Van Ahn and Fryges (2016). De Loecker (2011) estimates

an industry constant  using the industry data (in opposition to firm-specific data). Peters, Roberts,

Van Ahn and Fryges (2016) assume that  +  = 1 (constant short-run marginal cost) and use

the average margin of the firms in an industry to estimate the elasticity of demand. Both solutions

amount to substitute a given previous estimate for parameter 

A more satisfactory procedure is to estimate simultaneously the elasticity of demand, as Jauman-

dreu and Yin (2017) do in another context. Using the expression  =
 

(+ )
exp(+ )

and the optimal pricing rule  =


−1, we obtain



 

=
1

 + 



 − 1
exp( + ) (7)

an equation for the observed price-average cost margin (ln

 

' − 
 

=
− 



 


). The

observed margin depends on two unobservable variables of interest: the short run elasticity of scale

( +  ) and the elasticity of demand . Equation (7) alone cannot identify them separately,

but equations (7) and (5) can be arranged into the system⎧⎨⎩  −  = − ln( +  ) + ln


−1 +  + 

 =  +  − ( − 1) + + (−1 −1) +  + 
(8)

which contains the parameters  and  and the elasticity of demand in both equations (−1

includes   and −1). In this paper we will identify these parameters in the following way.

We will write and estimate the relevant part of the first equation of the system as − ln( +  ) +

ln


−1 = 0 + 1 ≡  where  are relevant variables to explain the margin 0 and 1

parameters. Then we will impose the values of the elasticity  =
(+ ) exp()

(+ ) exp()−1 as a nonlinear

restriction linking parameters   and  in the second equation.

6. Results from the model without prices

The first equation of the system is estimated by NLS, the second by nonlinear GMM. In the first

equation estimation that follows we are going to use a unique variable , the state of the specific

market of the firm or market dynamism We first tried to model  as a constant, but the data

strongly reject this specification. The reason is that price-average cost margin varies intensely during

the period, particularly since the economic crisis of 2008.

The specification requires to introduce in the second equation the relevant observed demand

shifters. We include the age of the firms, measured in years, the total expenditure in advertising
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and (again) the indicator of market dynamism Notice that we also use this variable at the time of

modelling the elasticity of demand, so it can have two effects on demand: on its expansion and in

the variation of its elasticity.

We form again the moments by using the constant, dummies and polynomials of the exogenous

variables as instruments. The complete list is formed by the following instruments. First, the con-

stant, 21 time dummies and the indicator of lagged R&D expenditures. Second we use a polynomial

of order three in  and lagged −1 adding  and polynomials in the lagged price of

the inputs −1 and −1 Then we use  or −1 together with a polynomial of order three

in −1 and −114 We add a polynomial in lagged R&D expenditures and interactions of lagged

R&D expenditures with variables −1 and  In this case there are 44 parameters to estimate.

With the dropping of some instruments according to industries the degrees of freedom range from 7

to 14.

Table 4 presents the results of estimating the model without firm-level output price. The estimates

of the parameters of the production function are, in the case of labor and materials, very similar to

the estimates of the DJ model. However, the coefficient on capital is here greater in all industies.

The sum of the coefficients on labor and materials is almost always under but close to unity (except

in three industries in which it sligthly exceeds one). But, with a greater coefficient on capital, this

means that the long run elasticity of scale is here clearly above the estimate with DJ. This can be

related to the imperfect control of the unobservable by means of a unique Markov process. There

may be some persistent demand effects, positively correlated with capital, that determine some

upward bias of its coeffient.

The model without prices estimates significantly greater elasticities of demand. As we now have

a distribution of elasticities we report the median elasticity. Its value implies more realistic (lower)

profitability rates that the estimates of the DJ model. Taking into account that the short-run rate

of economic profitability can be written as



= 1 −  + 


 it is easy to see that it ranges from

9% to 15%. The specification test is in turn passed in all industries except 8, in which we are not

able to estimate the second GMM stage.

Recall that what we get in this model is an estimate of the composite e = ( − 1) + 

Unlike the DJ model, this composite is not a measure of productivity, it is a mix of productivity

14We replace the polynomial in −1 and −1 by a polynomial of order three in each one of the variables in

industries 5,6,8; by −1 and a polynomial in −1 in industry 10, and by −1 and −1 in industry 7. We use

 in indudtries 1,2,5,6,7 and 9; −1 in industries 3,4,8, and both variables in industry 10. In 5 and 6 we use in

fact a polynomial in the capital variable.
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and unobserved demand heterogeneity weighted by the elasticity of demand. This makes it difficult

to compare the results between the two models and explains the presence of important differences

in the results. Notice that, taking the three involved variables   and  as randon variables,

the expectation of the composite unobservable is

[( − 1) + ] = ( − 1)() +() + ( − 1 )

To analyze the results, we scale the unobservable by  = (), so the distributions that we

draw and compare with the estimates of productivity obtained in DJ are
(−1)+


 One can

understand the results as showing an approximation to () plus the component ()  added

by the introduction of the demand relationship, plus the effect of the scaled covariance between

productivity and elasticity of demand.

In the model without output prices, average productivity of the firms with R&D is greater than

average productivity of the firms without R&D only in 4 cases out of 20 (against 10 cases out of 20

in the DJ estimation). On the other hand, now the equality of the distributions of the composite is

rejected only in 4 out of 12 cases (against 8 cases out of 12 in the DJ estimation). In fact there is

only 1 case (against 7 in the DJ estimation) in which the stochastic dominance can be established

at the same time that the difference of the distributions. Hence, in addition of not being a measure

of productivity, the composite does not behave as a measure of productivity.

To gain intuition about what can explain our results we first took a look at the distribution of the

demand elasticity for firms with and without R&D. Both the shape of the distribution and average

elasticity are, however, quite similar for both types of firms. This excludes the different elasticity

of demand as the explanation for the frequent reversion of e with respect to the value that is
expected for a measure of productivity.

We should consider two types of possible biases. The first is related to the unsatisfactory asumption

that the composite e follows a Markov process. Our estimate of the composite may have the
theoretical form stated above plus a bias induced by its wrong specification. The second, is the

bias as a measure of  The expectation of the scaled e even estimated without bias, diverges
from  for two motives: the presence of the (scaled) demand effect  and the presence of a bias

determined by the (scaled) covariance between elasticity of demand and productivity.

The estimates of  available elsewhere point to a negative correlation between  and 

(Jaumandreu and Yin, 2017), with greater  for the R&D firms, so it would be a little surprising

that this term is the responsible for the reversion of the stochastic dominance. A more likely reason

16



is differences in the covariance term between R&D and no R&D firms. For example, firms reacted

in Spain to the recession in domestic demand exporting more, and hence selling more in more

competitive markets with higher elasticities of demand and lower margins. If this correlation is

bigger for the set of no R&D firms, this would imply -according to the formula- a positive bias in

the measurement of their productivity when we are not using firm-level output prices. In any case,

the detailed study and test for all these biases is out of the scope of this paper and left for further

research.

7. The effects of R&D.

Tables 5 and 6 summarize what models DJ and without firm-level output prices say, respectively,

about the effects of R&D on productivity. We are going to discuss in turn the derivatives of ouput

with respect to R&D and already attained productivity, productivity growth and the return to R&D.

The partial derivatives
(−1−1)

−1
and

(−1−1)
−1

are, in both models, the elasticity of

output (through expected productivity or expected composite unobservable) with respect to R&D

expenditure and with respect to already attained productivity or composite unobservable. We have

found that the statistics of these derivatives are not very sensitive to the trimming of extreme values,

so we report them without any trimming.

Columns (1) to (4) of each table report the quartiles of the distribution of the elasticity with

respect to R&D and a mean of these elasticities weighted by the sales of firms. The elasticities of

output with respect to R&D in the DJ model are quite comparable to the results of the original

article (although in three particular industries the estimated values are much greater). The presence

of three slightly negative mean elasticities (only one in the original model) may be related to what has

become recently clear in other papers. With differentiated products, more R&D can be associated

to more quality of the goods, and hence less "net productivity" (productivity once quality has been

deduced) as it is the productivity measured in this model (see Jaumandreu and Yin, 2017). In the

case of the model with no firm-level output prices, the mean elasticity is negative in half of the cases

and by an important amount. This confirms that the composite unobservable is not behaving as

productivity.

Columns (5) to (10) of each table report the quartiles of the distribution of the elasticity with

respect to attained productivity, splitted for R&D and no R&D firms. The elasticity of output with

respect to already attained productivity in the DJ model diverges somewhat from the one in the
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original article. In contrast with the article, in which persistence of productivity (measured by a high

derivative) was greater for the no R&D firms, now the pattern of the distributions are quite similar

for performing and non-performing firms. Persistence has in fact tended to decrease for all firms, and

more so for the no R&D firms. The most likely interpretation is that the 2000’s, and in particular

the crisis of 2008, sharply increased the uncertainty of productivity evolution, especially for the

firms non performing R&D. The elasticity of output with respect to the composite of unobservables

picked up by the model without firm-level output prices is very low, reflecting a dramatically smaller

persistence for all kind of firms. This reflects that the heterogeneity of demand, and the own elasticity

of demand, add an important source of random variability that lowers persistence.

Columns (11) to (13) show the expected productivity growth ( ) − (−1 −1) as

estimated by the models, total, and also split into R&D performers and non performers. In the

case of the DJ model this is a real rate of productivity growth. In the case of the model without

firm-level prices, our deflation of the composite unobservable by the consumer price index implies a

sort of real rate as well.

The variation of expected productivity in the DJ model gives, for all firms, very reasonable rates of

growth, a little greater than the productivity growth as measured by the Solow residual. Industry 2

shows no productivity growth, but this industry was already the one with the smallest growth when

measured with the Solow residual. The growth of the expected part of the composite of unobservables

picked up by the model without firm-level output prices is, for all firms and on average, greater.

This is likely to reflect the evolution of the heterogeneity not included in the model for productivity.

When we compute the rates of growth for R&D and no R&D firms, two important facts emerge.

First that productivity growth of the R&D firms is greater, in contrast with its level, only in three

out of ten industries. Firms with R&D have greater productivity, but the growth of productivity is

not necessarily greater. The second is that the growth of productivity according to the composite

unobservable, despite we observe five cases of greater growth for R&D firms, seems not reliable for

productivity. The measurements coincide in the ranking only in one industry.

Finally, in column (14) we report for both models net rates of return to R&D. We compute rates

of return for each R&D performing firm as [( ) − (−1 −1)]



 where  is the

average over time of the firm expenditures in R&D and  the average over time of the firms value

added. We use in the denominator an average of R&D expenditures to avoid a big volatily of the

rates. As in DJ, we use value added to make the rates more comparable to classical estimates. To

avoid the impact of the most extreme rates we only consider values between ±2000%We report the
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average weighted rates, using as a weight the R&D expenditures lagged two periods.

The rates of return computed with the DJ model are different, but basically comparable to the ones

obtained with the original model. If the span of the data has more than doubled it seems sensible

to assume that the rates have changed. The rates computed with the composite unobservable give

some very high and some negative values, questioning the ability of this measure to provide any

sensible indication about the returns to the investment in R&D.

8. Concluding remarks

We have explored ways to estimate endogenous productivity using the Spanish ESEE data base

(1990-2012). First, we have replicated the estimation of the original model in DJ, using the additional

13 years of data now available, looking at the estimates and the results of the stochastic dominance

tests. Results and tests are essentially the same as in the original article. Then, we have compared

the results by applying two nonparametric measures (Solow residual and the Multilateral index),

which take inputs and productivity as exogenous. The conclusion of this comparison is that treating

inputs and productivity as endogenous produces better production function estimates and different,

more discriminating, productivity measurements.

But many data bases do not have available firm-level prices, a key information used by DJ (and

in the indices we have computed). In the absence of firm-level prices, we show that it is possible

to estimate a compound of productivity and demand heterogeneity, weighted by the elasticity of

demand. The estimation of this measure is however not straightforward. We need to estimate the

elasticity of demand and the parameters of the production function, which introduces a significant

problem of identification that has been only avoided until now with very restrictive solutions. Thus

also implies to adopt the doubtful assumption according to which the unobservable composite follows

a Markov process.

The composite of productivity and demand heterogeneity does not behave as productivity. It is in

fact the result of two unobservables and an estimated weight, which may be correlated among them

in non-obvious ways. In practice, the distribution of the composite for R&D firms doesn’t show

stochastic dominance over the distribution for no R&D firms. The elasticity of output with respect

to R&D, the persistence of the composite, its growth and the returns to R&D give misleading values

as well.
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Data Appendix

We observe firms for a maximum of 23 years between 1990 and 2012. The sample is restricted

to firms with at least three years of observations on all variables required for the estimation of the

model. The number of firms with 3, 4,. . . , 23 years of data is 398, 298, 279, 278, 290, 324, 122,

111, 137,96, 110, 66, 66, 98, 66, 40, 37, 44, 37, 42 and 87 respectively. Table A1 gives the industry

labels along with their definitions in terms of the ESEE, National Accounts, and ISIC classifications

(columns (1)—(3)). Table A2 reports detail on the sample size and descritive statistics on the main

variables.

Variable definitions are the same as in Doraszelski and Jaumandreu (2016), with the variables

extended to the longer period of time 1990-2012:

• Revenue (R). Value of produced goods and services computed as sales plus the variation of
inventories.

• Price of output (P). Firm-level price index for output. Firms are asked about the price changes
they made during the year in up to five separate markets in which they operate. The price

index is computed as a Paasche-type index of the responses.

• Output (Q). Value of produced goods and services computed as sales plus the variation of
inventories deflated by a firm-specific price index of output.

• Investment (I). Value of current investments in equipment goods (excluding buildings, land,
and financial assets) deflated by the price index of investment. The price of investment is the

equipment goods component of the index of industry prices computed and published by the

Spanish Ministry of Industry.

• Capital (K). Capital at current replacement values e is computed recursively from an initial

estimate and the data on current investments in equipment goods e. We update the value
of the past stock of capital by means of the price index of investment  as e = (1 −
) 

−1
e−1 + e−1, where  is an industry-specific estimate of the rate of depreciation.

Capital in real terms is obtained by deflating capital at current replacement values by the

price index of investment as  =
e


.

• Labor (L). Total hours worked computed as the number of workers times the average hours
per worker, where the latter is computed as normal hours plus average overtime minus average

20



working time lost at the workplace.

• Materials (M). Value of intermediate goods consumption (including raw materials, compo-

nents, energy, and services) deflated by a firm-specific price index of materials.

• Variable cost (VC). Wage bill plus the cost of materials minus all the expenditures destinated
to advertising and R&D.

• Wage (W). Hourly wage cost computed as total labor cost including social security payments
divided by total hours worked.

• Price of materials (PM). Firm-specific price index for intermediate consumption. Firms are
asked about the price changes that occurred during the year for raw materials, components,

energy, and services. The price index is computed as a Paasche-type index of the responses.

• User cost of capital (PK). Computed as ( +  − ), where  is the price index of

investment,  is a firm-specific interest rate,  is an industry-specific estimate of the rate of

depreciation, and  is the rate of inflation as measured by the consumer price index.

• Advertising (Adv). Total expenditure in advertising.

• R&D expenditures (R&D). R&D expenditures include the cost of intramural R&D activities,

payments for outside R&D contracts with laboratories and research centers, and payments for

imported technology in the form of patent licensing or technical assistance, with the various

expenditures defined according to the OECD Frascati and Oslo manuals.

• Market dynamism (mdy). Firms are asked to assess the current and future situation of the

main market in which they operate. The demand shifter codes the responses as 0, 0.5, and 1

for slump, stability, and expansion, respectively.

• Age (age). Years elapsed since the foundation of the firm with a maximum of 40 years.

• Firm size (size). Number of workers in the year the firm enters the sample.
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Table 1. Solow residual. Testing productivity growth of R&D and no R&D firms.

Diff. of Kolgomorov-Smirnov tests

Shares Prod. growth means Mean with Distributions Distribution with

   ≤ 200 200 (≤ 200) R&D is greater are equal R&D dominates

Industry (s. d.) (s.d.) (s. d.) (s.d.) (s.d.) ( 200)   val. 1  val. 2  val.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

1. Metals and metal products 0.037 0.303 0.660 0.010 0.006 0.007 -0.990 0.839 1.398 0.040 0.602 0.484

(0.026) (0.145) (0.153) (0.133) (0.067) -0.001 0.084 0.467

2. Non-metallic minerals 0.056 0.300 0.645 0.006 0.001 0.010 -0.851 0.802 0.842 0.478 0.140 0.961

(0.038) (0.138) (0.145) (0.144) (0.062) -0.021 2.271 0.012

3. Chemical products 0.036 0.243 0.721 0.010 0.009 0.002 -0.219 0.587 0.749 0.629 0.749 0.326

(0.024) (0.122) (0.129) (0.107) (0.077) 0.001 -0.078 0.531

4. Agric. and ind. machinery 0.029 0.334 0.637 0.011 0.004 0.012 -1.204 0.885 0.940 0.340 0.940 0.171

(0.021) (0.140) (0.147) (0.140) (0.065) 0.012 -0.781 0.782

5. Electrical goods 0.032 0.307 0.661 0.011 0.005 -0.007 0.831 0.203 0.840 0.481 0.307 0.828

(0.022) (0.142) (0.146) (0.128) (0.079) -0.007 0.490 0.312

6. Transport equipment 0.040 0.286 0.674 0.009 0.008 0.006 -0.554 0.710 0.828 0.500 0.774 0.302

(0.026) (0.151) (0.160) (0.104) (0.089) -0.006 0.513 0.304

7. Food, drink and tobacco 0.037 0.232 0.731 0.008 0.001 -0.002 0.278 0.390 1.749 0.004 1.749 0.002

(0.025) (0.148) (0.157) (0.110) (0.077) 0.003 -0.421 0.663 0.736 0.650 0.233 0.897

8. Textile, leather and shoes 0.032 0.346 0.622 0.009 0.002 0.000 -0.005 0.502 0.519 0.950 0.369 0.761

(0.024) (0.211) (0.216) (0.157) (0.047) -0.016 1.832 0.034 1.283 0.075 1.283 0.037

9. Timber and furniture 0.036 0.282 0.682 0.015 0.003 -0.015 0.925 0.180

(0.024) (0.143) (0.148) (0.151) (0.049) -0.034 1.382 0.087

10. Paper and printing products 0.050 0.300 0.650 0.013 0.003 0.006 -0.398 0.654 1.247 0.089 0.846 0.239

(0.033) (0.132) (0.142) (0.116) (0.068) 0.010 -0.873 0.808 1.242 0.091 0.587 0.503

All industries 0.037 0.294 0.669 0.010 0.004

(0.027) (0.155) (0.162) (0.130) (0.068)

 Input shares are estimated from total cost. Imperfect competition and constant returns to scale are assumed.
 Applied to a firm’s average expected productivity when each sample has more than 20 firms.



Table 2. Multilateral index. Testing productivity levels of R&D and no R&D firms.

Diff. of Kolgomorov-Smirnov tests

Shares means Mean with Distributions Distribution with

   (≤ 200) R&D is greater are equal R&D dominates

Industry (s. d.) (s.d.) (s. d.) ( 200)   val. 1  val. 2  val.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1. Metals and metal products 0.037 0.315 0.648 0.087 -6.661 1.000 1.292 0.071 0.045 0.996

(0.013) (0.073) (0.077) 0.023 -1.051 0.853

2. Non-metallic minerals 0.054 0.302 0.644 0.046 -2.255 0.987 1.508 0.021 0.051 0.995

(0.020) (0.073) (0.078) -0.007 0.278 0.391

3. Chemical products 0.035 0.249 0.716 0.077 -6.627 1.000 1.586 0.013 0.000 1.000

(0.012) (0.062) (0.066) 0.040 -1.539 0.937

4. Agric. and ind. machinery 0.028 0.342 0.630 0.071 -5.038 1.000 1.112 0.169 0.418 0.705

(0.011) (0.073) (0.077) -0.029 1.005 0.159

5. Electrical goods 0.031 0.320 0.649 -0.002 0.073 0.471 1.595 0.012 0.186 0.933

(0.011) (0.071) (0.074) 0.048 -1.999 0.976

6. Transport equipment 0.039 0.299 0.661 0.067 -3.958 1.000 1.177 0.125 0.358 0.774

(0.014) (0.078) (0.083) 0.024 -1.490 0.931

7. Food, drink and tobacco 0.036 0.244 0.719 0.079 -5.558 1.000 2.135 0.000 0.314 0.821

(0.013) (0.076) (0.081) 0.018 -1.200 0.884 0.813 0.524 0.364 0.767

8. Textile, leather and shoes 0.031 0.351 0.617 0.084 -7.317 1.000 1.943 0.001 0.056 0.994

(0.012) (0.106) (0.109) 0.055 -3.078 0.999 1.129 0.156 0.095 0.982

9. Timber and furniture 0.036 0.286 0.678 -0.022 0.866 0.195

(0.013) (0.072) (0.075) -0.074 1.577 0.061

10. Paper and printing products 0.049 0.308 0.643 -0.070 3.315 0.001 1.069 0.203 1.069 0.102

(0.017) (0.067) (0.072) 0.034 -1.396 0.918 0.863 0.446 0.035 0.998

All industries 0.036 0.303 0.661

(0.014) (0.078) (0.082)

 Input shares are estimated from total cost. Imperfect competition and constant returns to scale are assumed.
 Applied to a firm’s average expected productivity when each sample has more than 20 firms.



Table 3. Estimating and testing productivity: DJ model of endogenous productivity.

Diff. of Kolgomorov-Smirnov tests

GMM means Mean with R&D Distrib. Distrib. with

    2  val. (≤ 200) is greater are equal & dominates

Industry (s. e.) (s.e.) (s. e.) (s.e) () ( 200)   val. 1  val. 2  val.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1. Metals and metal products 0.066 0.229 0.699 1.978 27.656 0.376 -0.001 0.023 0.491 1.460 0.028 0.837 0.246

(0.033) (0.067) (0.015) (0.081) (26) -0.011 0.392 0.348

2. Non-metallic minerals 0.058 0.244 0.688 2.007 31.117 0.120 0.040 -1.515 0.934 1.653 0.008 0.131 0.966

(0.058) (0.075) (0.020) (0.227) (23) -0.043 1.548 0.061

3. Chemical products 0.066 0.109 0.711 2.019 30.215 0.455 0.202 -7.021 1.000 2.305 0.000 0.121 0.971

(0.041) (0.109) (0.031) (0.058) (30) 0.118 -2.674 0.996

4. Agric. and ind. machinery 0.100 0.167 0.654 1.880 28.244 0.207 0.110 -6.842 1.000 1.831 0.002 0.706 0.369

(0.039) (0.095) (0.037) (0.059) (23) -0.006 0184 0.427

5. Electrical goods 0.085 0.278 0.631 1.949 52.633 0.012 -0.029 1.998 0.023 0.608 0.853 0.357 0.775

(0.039) (0.095) (0.037) (0.095) (32) 0.033 -1.385 0.916

6. Transport equipment 0.063 0.147 0.669 1.998 19.283 0.375 0.116 -5.571 1.000 2.009 0.001 0.085 0.986

(0.032) (0.050) (0.026) (0.114) (18) 0.001 -0.048 0.519

7. Food, drink and tobacco 0.098 0.279 0.761 2.044 10.937 0.362 -0.037 0.711 0.239 3.007 0.000 3.007 0.000

(0.044) (0.094) (0.010) (0.087) (10) -0.087 4.302 0.000 1.306 0.066 1.306 0.033

8. Textile, leather and shoes 0.056 0.301 0.553 2.136 23.455 0.009 0.071 -5.965 1.000 1.813 0.003 0.089 0.984

(0.031) (0.054) (0.016) (0.537) (10) 0.089 -4.907 1.000 1.370 0.047 0.133 0.965

9. Timber and furniture 0.050 0.251 0.631 1.929 65.250 0.000 0.035 -1.063 0.854

(0.047) (0.076) (0.060) (0.174) (26) -0.117 1.877 0.035

10. Paper and printing products 0.151 0.175 0.655 2.088 13.531 0.195 -0.102 4.611 0.000 0.980 0.292 0.980 0.147

(0.027) (0.053) (0.021) (0.195) (10) -0.024 0.943 0.173 1.001 0.269 1.001 0.135

 Reported coefficients are first stage estimates.
 Applied to the firm’s average expected productivity when each sample has more than 20 firms.



Table 4. Estimating and testing productivity: Model without firm-level output prices.

Diff. of Kolgomorov-Smirnov tests

GMM means Mean with R&D Distrib. Distrib. with

    2  val. (≤ 200) is greater are equal & dominates

Industry (s. e.) (s.e.) (s. e.) () ( 200)   val. 1  val. 2  val.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1. Metals and metal products 0.176 0.225 0.745 11.864 17.978 0.236 -0.047 0.721 0.236 0.333 1.000 0.333 0.801

(0.026) (0.025) (0.034) (14) -0.090 2.158 0.016

2. Non-metallic minerals 0.160 0.209 0.776 7.587 8.718 0.849 -0.003 0.038 0.485 0.600 0.864 0.600 0.487

(0.039) (0.037) (0.052) (14) -0.088 0.781 0.218

3. Chemical products 0.174 0.270 0.729 7.631 10.998 0.686 -0.102 0.955 0.171 1.012 0.258 0.585 0.505

(0.042) (0.060) (0.125) (14) -0.016 0.224 0.411

4. Agric. and ind. machinery 0.147 0.269 0.680 16.019 9.097 0.825 -0.026 0.223 0.412 1.152 0.140 1.152 0.070

(0.024) (0.027) (0.032) (14) -0.030 1.059 0.145

5. Electrical goods 0.188 0.292 0.624 24.546 4.325 0.987 0.048 -0.592 0.722 1.201 0.112 0.076 0.989

(0.027) (0.062) (0.062) (13) -0.091 1.584 0.057

6. Transport equipment 0.135 0.282 0.770 6.473 5.326 0.967 -0.045 0.677 0.250 0.837 0.485 0.289 0.846

(0.027) (0.062) (0.161) (13) 0.030 -0.570 0.716

7. Food, drink and tobacco 0.152 0.083 0.924 7.143 1.974 0.961 -0.210 4.982 0.000 1.713 0.006 1.713 0.003

(0.073) (0.022) (0.200) (7) -0.157 4.183 0.000 2.813 0.000 2.813 0.000

8. Textile, leather and shoes 0.132 0.393 0.549 20.951 - - -0.268 2.038 0.021 0.933 0.349 0.933 0.175

(0.055) (0.061) (0.054) (-) -0.032 0.255 0.399 1.985 0.001 1.985 0.000

9. Timber and furniture 0.359 0.197 0.824 8.715 14.177 0.437 0.040 -0.473 0.681

(0.073) (0.028) (0.071) (14) -0.342 5.065 0.000

10. Paper and printing products 0.200 0.203 0.738 12.555 6.106 0.806 0.088 -0.930 0.823 1.432 0.033 0.686 0.390

(0.026) (0.027) (0.036) (10) -0.181 5.703 0.000 1.063 0.208 1.063 0.104

 Reported coefficients are first stage estimates.
 Applied to the firm’s average expected productivity when each sample has more than 20 firms.



Table 5. Elasticities of output with respect to R&D and already attained productivity, productivity growth and rate of return to R&D

(DJ model).

Elasticity of output wrt. −1 Net rate

Elasticity of output wrt. −1 Performers Non-performers Productivity growth of return

Industry Q1 Q2 Q3 Mean Q1 Q2 Q3 Q1 Q2 Q3 Total R&D No R&D to R&D

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1. Metals and metal products -0.072 -0.043 0.015 0.146 0.438 0.543 0.645 0.463 0.474 0.479 0.049 0.036 0.104 0.368

2. Non-metallic minerals -0.009 0.000 0.005 -0.016 0.449 0.501 0.557 0.395 0.465 0.520 -0.002 -0.007 0.013 0.198

3. Chemical products -0.003 0.002 0.005 0.012 0.464 0.497 0.522 0.416 0.440 0.466 0.017 0.019 -0.003 0.683

4. Agric. and ind. machinery -0.034 -0.012 0.009 -0.010 0.354 0.510 0.697 0.324 0.451 0.569 0.014 0.011 0.023 0.922

5. Electrical goods -0.005 0.002 0.009 0.019 0.368 0.404 0.428 0.398 0.440 0.479 0.023 0.024 0.010 0.682

6. Transport equipment -0.120 -0.039 0.122 0.127 0.381 0.697 0.878 0.406 0.448 0.470 0.020 0.017 0.026 0.211

7. Food, drink and tobacco -0.027 0.000 0.010 -0.002 0.273 0.332 0.441 0.493 0.515 0.536 0.008 0.000 0.023 0.232

8. Textile, leather and shoes 0.026 0.0079 0.102 0.030 0.177 0.228 0.303 0.277 0.290 0.296 0.008 -0.003 0.014 0.161

9. Timber and furniture -0.050 -0.025 0.053 0.082 0.422 0.504 0.647 0.375 0.419 0.484 0.016 0.035 0.009 0.522

10. Paper and printing products -0.032 -0.017 0.030 0.031 0.230 0.320 0.472 0.289 0.336 0.382 0.010 0.005 0.015 0.454



Table 6. Elasticities of output with respect to R&D and already attained productivity, productivity growth and rate of return to R&D

(model without firm-level output prices)

Elasticity of output wrt. −1 Net rate

Elasticity of output wrt. −1 Performers Non-performers Productivity growth of return

Industry Q1 Q2 Q3 Mean Q1 Q2 Q3 Q1 Q2 Q3 Total R&D No R&D to R&D

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1. Metals and metal products -0.090 0.058 0.137 -0.062 0.123 0.203 0.250 0.087 0.087 0.088 0.039 0.056 -0.060 1.298

2. Non-metallic minerals -0.131 -0.066 0.094 0.074 0.119 0.184 0.244 0.082 0.103 0.125 0.015 0.015 0.013 -0.048

3. Chemical products -0.282 -0.125 0.173 0.199 0.116 0.278 0.505 0.265 0.394 0.470 0.114 0.119 0.068 -0.143

4. Agric. and ind. machinery -0.074 -0.029 0.055 -0.026 0.020 0.072 0.158 0.117 0.150 0.165 0.015 0.006 0.043 0.519

5. Electrical goods -0.059 0.032 0.103 -0.103 0.015 0.032 0.055 0.021 0.023 0.029 -0.012 -0.012 -0.011 0.883

6. Transport equipment -0.063 -0.011 0.054 0.048 0.214 0.330 0.428 0.302 0.395 0.443 0.016 0.019 0.000 0.298

7. Food, drink and tobacco -0.151 -0.036 0.086 0.009 0.093 0.135 0.238 0.110 0.127 0.158 0.030 0.040 0.016 0.407

8. Textile, leather and shoes -0.472 -0.067 0.373 -0.101 0.078 0.125 0.192 0.030 0.090 0.215 0.010 0.023 0.033 -0.158

9. Timber and furniture -0.108 -0.024 0.060 -0.041 0.101 0.141 0.170 0.107 0.119 0.127 0.046 0.037 0.060 0.914

10. Paper and printing products -0.022 -0.010 0.009 0.002 0.024 0.058 0.122 0.049 0.090 0.142 0.041 0.002 0.079 0.983



Table A1. Industry definitions and equivalences.

Industry ESEE National Accounts ISIC (Rev. 4)

(1) (2) (3)

1 Ferrous and non-ferrous 12+13 DJ C 24+25

metals and metal products

2 Non-metallic minerals 11 DI C 23

3 Chemical products 9+10 DG-DH C 20+21+22

4 Agricultural and industrial 14 DK C 28

machinery

5 Electrical goods 15+16 DL C 26+27

6 Transport equipment 17+18 DM C 29+30

7 Food, drink and tobacco 1+2+3 DA C 10+11+12

8 Textile, leather and shoes 4+5 DB-DC C 13+14+15

9 Timber and furniture 6+19 DD-DN38 C 16+31

10 Paper and printing products 7+8 DE C 17+18



Table A2

Descriptive statistics

Rates of growth

Entry Exit Revenue Price Output Labor Capital Materials Variable cost Wage Price of mats.

Industry Firms Obs. (%) (%) (s.d) (s.d.) (s.d.) (s.d.) (s.d.) (s.d.) (s.d) (s.d) (s.d)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

1. Metals and metal products 433 3537 48.8 11.6 0.023 0.015 0.008 0.040 -0.010 -0.012 0.032 0.043 0.042

(0.273) (0.061) (0.267) (0.191) (0.174) (0.349) (0.265) (0.153) (0.074)

2. Non-metallic minerals 228 1788 36.0 17.4 -0.006 0.011 -0.017 0.040 -0.027 -0.028 0.008 0.043 0.033

(0.272) (0.056) (0.271) (0.202) (0.195) (0.321) (0.253) (0.152) (0.036)

3. Chemical products 370 2893 36.5 12.4 0.044 0.010 0.034 0.048 0.001 0.015 0.050 0.043 0.034

(0.228) (0.058) (0.227) (0.172) (0.167) (0.274) (0.226) (0.132) (0.065)

4. Agric. and ind. machinery 194 1639 36.1 12.6 0.022 0.012 0.010 0.023 -0.012 -0.005 0.030 0.042 0.033

(0.287) (0.029) (0.285) (0.189) (0.184) (0.372) (0.271) (0.146) (0.042)

5. Electrical goods 265 2032 31.0 18.5 0.037 0.007 0.029 0.038 -0.005 0.017 0.047 0.048 0.030

(0.277) (0.046) (0.275) (0.171) (0.188) (0.360) (0.267) (0.172) (0.050)

6. Transport equipment 206 1692 39.1 13.7 0.029 0.007 0.021 0.036 -0.013 0.008 0.034 0.044 0.028

(0.300) (0.034) (0.299) (0.183) (0.216) (0.380) (0.279) (0.167) (0.049)

7. Food, drink and tobacco 432 3404 33.1 10.4 0.037 0.020 0.017 0.044 0.000 0.005 0.044 0.046 0.037

(0.218) (0.056) (0.220) (0.182) (0.168) (0.290) (0.230) (0.165) (0.063)

8. Textile, leather and shoes 395 2974 35.0 27.1 0.004 0.015 -0.011 0.023 -0.023 -0.024 0.013 0.048 0.031

(0.231) (0.038) (0.230) (0.189) (0.177) (0.336) (0.229) (0.172) (0.043)

9. Timber and furniture 265 2017 54.6 22.4 0.002 0.017 -0.015 0.035 -0.015 -0.034 0.014 0.053 0.035

(0.246) (0.034) (0.245) (0.159) (0.183) (0.361) (0.248) (0.163) (0.040)

10. Paper and printing products 238 1975 43.7 24.7 0.024 0.013 0.011 0.039 -0.009 -0.008 0.031 0.048 0.034

(0.193) (0.067) (0.188) (0.223) (0.151) (0.254) (0.194) (0.133) (0.070)



Table A2 (continued)

Descriptive statistics

With R&D

Advertising growth % Obs. R&D inten. Market dynamism Age

Industry (s.d.) (s. d.) (s. d.) (s. d.)

(1) (2) (3) (4) (5)

1. Metals and metal products -0.015 31.9 0.013 0.518 22.4

(0.941) (0.018) (0.368) (12.3)

2. Non-metallic minerals -0.022 31.2 0.010 0.495 23.3

(0.888) (0.020) (0.367) (11.8)

3. Chemical products 0.004 55.0 0.025 0.536 26.6

(0.806) (0.034) (0.351) (12.8)

4. Agric. and ind. machinery -0.016 53.7 0.027 0.519 24.9

(0.821) (0.031) (0.364) (12.3)

5. Electrical goods 0.003 58.9 0.032 0.522 22.6

(0.843) (0.043) (0.371) (12.0)

6. Transport equipment -0.014 55.1 0.028 0.511 23.5

(0.843) (0.045) (0.382) (12.8)

7. Food, drink and tobacco 0.023 28.3 0.008 0.517 24.7

(0.842) (0.022) (0.324) (12.2)

8. Textile, leather and shoes 0.023 27.5 0.017 0.399 21.6

(0.838) (0.028) (0.347) (12.3)

9. Timber and furniture -0.003 21.4 0.011 0.455 17.5

(0.940) (0.023) (0.354) (10.8)

10. Paper and printing products -0.003 16.4 0.015 0.472 22.5

(0.850) (0.026) (0.338) (12.4)



Figure 1: Distribution of expected productivity: DJ model
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Electrical goods Transport equipement



Figure 1: Distribution of expected productivity: DJ model (cont.)
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Figure 2: Distribution of expected productivity: no prices model
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Figure 2: Distribution of expected productivity: no prices model (cont.)
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