Solutions
10 points possible

ENG EC/ME/SE 501:

Exercises (Set 1)

1pt 1. (a) Prove that matrix multiplication is associative: i.e. show that for any three matrices \(A, B, \) and \(C \) of compatible dimensions that \(A(BC) = (AB)C \).

(b) Prove that matrix multiplication is not commutative: i.e. it is not the case that \(AB = BA \) for any two square matrices \(A \) and \(B \).

1pt 2. (a) Prove that \((AB)^T = B^TA^T \).

1pt (b) Prove that if \(A \) is invertible, then \(A^T \) is invertible.

1pt 3. (a) Suppose \(A(t) \) and \(B(t) \) are \(m \times n \) and \(n \times p \) matrices respectively. Find a formula for

\[
\frac{d}{dt}[A(t)B(t)]
\]

in terms of the derivatives of the individual matrices.

1pt (b) If \(A(t) \) is invertible, find a formula for the derivative (with respect to \(t \)) of its inverse.

4. Using Laplace’s expansion (i.e. expansion by cofactors), evaluate the determinants of the matrices

1pt

\[
\begin{pmatrix}
3 & 0 & 1 \\
2 & 4 & 3 \\
1 & 1 & 2
\end{pmatrix}
\quad\begin{pmatrix}
1 & x & x \\
a & ax + by & ax \\
0 & by & 1
\end{pmatrix}
\]

1pt

5. Find the inverses of the matrices in the previous problem. Assume that \(a, b, x, \) and \(y \) are integers. Under what further conditions on the symbolic entries \(a, b, x, y \) will the inverse of the second matrix have all its entries integers?

2pts 6. Let \(V \) be a finite dimensional vector space. A basis of \(V \) is any linearly independent set of vectors that span \(V \). (a) Show that any maximal linearly independent set of vectors in \(V \) is a basis for \(V \). (b) Show that any minimal spanning set of vectors is also a basis.

Definition: Given a square matrix \(A \), the determinant of the \((n-1)\times(n-1)\) submatrix \(M_{ij} \) obtained from \(A \) by deleting the \(i \)-th row and \(j \)-th column is called the \(ij \)-th minor of \(A \). Multiplying the \(ij \)-minor by \(-1^{i+j}\) yields the \(ij \)-th cofactor \(A_{ij} \). Among the list of determinant facts that were recalled in class, we have the following:

\[
\det A = \sum_{i=1}^{n} a_{ij}A_{ij} = \sum_{j=1}^{n} a_{ij}A_{ij}.
\]

(Please turn over.)
7. The *adjugate* of A is the $n \times n$ matrix $\text{adj}(A)$ s.t. $\text{adj}(A)_{ij} = A_{ji}$. Using the properties of determinants reviewed in class, prove the following.

Theorem: If $\det A \neq 0$, then the matrix A is invertible, and when this is the case

$$A^{-1} = \left(\frac{1}{\det A}\right) \text{adj}(A).$$
Exercise Set 1

(a) Assume the matrices of the problem, \(A\), \(B\), and \(C\), are of the dimensions \(m \times n\), \(n \times p\), and \(p \times q\), respectively. Allow \(D = BC\). Then,

\[
d_{ij} = \sum_{k=1}^{p} b_{ik} c_{kj}, \quad i = 1, \ldots, n, \quad j = 1, \ldots, q.
\]

Allow \(E = AB\). Then,

\[
e_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, p
\]

Allow \(F = AD = A(BC)\). Then,

\[
f_{ij} = \sum_{k=1}^{n} a_{ik} d_{kj} = \sum_{k=1}^{n} a_{ik} \left\{ \sum_{h=1}^{p} b_{kh} c_{hj} \right\} = \sum_{k=1}^{n} \sum_{h=1}^{p} a_{ik} b_{kh} c_{hj}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, q.
\]

Finally, allow \(G = EC = (AB)C\). Then,

\[
g_{ij} = \sum_{h=1}^{p} e_{ih} c_{hj} = \sum_{h=1}^{p} \left[\sum_{k=1}^{n} \{ a_{ik} b_{kh} \} c_{hj} \right] = \sum_{k=1}^{n} \sum_{h=1}^{p} a_{ik} b_{kh} c_{hj}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, q.
\]

Thus, \(F = G\), and \(A(BC) = (AB)C\).

(b) Allow

\[
A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
\]

and

\[
B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}
\]

Then,

\[
AB = \begin{bmatrix} 8 & 5 \\ 20 & 13 \end{bmatrix}
\]

and

\[
BA = \begin{bmatrix} 13 & 20 \\ 5 & 8 \end{bmatrix}.
\]

Hence, \(AB \neq BA\) and matrix multiplication is in general not commutative.
(a) Assuming A and B are $n \times n$ matrices, allow $C = AB$. Then,

$$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}, i, j = 1, \ldots, n.$$

Allow $D = C^T$. Then,

$$d_{ij} = c_{ji} = \sum_{k=1}^{n} a_{jk}b_{ki}, i, j = 1, \ldots, n.$$

Allow $E = B^T A^T$. Then,

$$e_{ij} = \sum_{k=1}^{n} b_{ki}a_{jk}, i, j = 1, \ldots, n.$$

Thus, $D = E$ and therefore $(AB)^T = B^T A^T$.

(b) If the matrix A is invertible, there exist a matrix B such that $AB = I$.

Taking the transpose of both sides of this equation gives $B^T A^T = I^T = I$ and hence, A^T has an inverse.

3

(a) Assigning $C(t) = A(t)B(t)$, yields

$$c_{ij}(t) = \sum_{k=1}^{n} a_{ik}(t)b_{kj}(t).$$

This implies that

$$\frac{d}{dt}(c_{ij}(t)) = \sum_{k=1}^{n} \left[\frac{d}{dt}(a_{ik}(t))b_{kj}(t) + a_{ik}(t)\frac{d}{dt}(b_{kj}(t)) \right].$$

Simplification of the above yields

$$\frac{d}{dt}(c_{ij}(t)) = \sum_{k=1}^{n} \frac{d}{dt}(a_{ik}(t))b_{kj}(t) + \sum_{k=1}^{n} a_{ik}(t)\frac{d}{dt}(b_{kj}(t)).$$

From the above it is clear that

$$\frac{d}{dt}(C(t)) = \frac{d}{dt}(A(t)B(t)) = \frac{d}{dt}(A(t))B(t) + A(t)\frac{d}{dt}(B(t)).$$
(b) If $A(t)$ is invertible, there exist a matrix $B(t)$ such that

$$A(t)B(t) = I.$$

Taking the derivative of both sides gives

$$\frac{d}{dt}(A(t)B(t)) = \frac{d}{dt}(I) = 0,$$

where 0 is the matrix of zeros.

From part (a), the expression becomes

$$\frac{d}{dt}(A(t))B(t) + A(t)\frac{d}{dt}(B(t)) = 0.$$

Moving the first term to the right hand side of the equation gives

$$A(t)\frac{d}{dt}(B(t)) = -\frac{d}{dt}(A(t))B(t).$$

After left-multiplying both sides of the equation by $B(t)$, the expression for the derivative of the inverse of $A(t)$ with respect to t becomes

$$\frac{d}{dt}(B(t)) = -B(t)\frac{d}{dt}(A(t))B(t).$$

4

(a)

$$\begin{vmatrix} 3 & 0 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{vmatrix} = 3 \begin{vmatrix} 4 & 3 \\ 1 & 2 \end{vmatrix} - 0 \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix}$$

$$= 3(8 - 3) + (2 - 4) = 3(5) - 2 = 13.$$

(b)

$$\begin{vmatrix} 1 & ax + by \\ by & 1 \end{vmatrix} - a \begin{vmatrix} x & x \\ by & 1 \end{vmatrix} = by$$

5

(a)

$$\begin{bmatrix} 3 & 0 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & 3 \\ 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & 3 \\ 3 & 0 & 0 \end{bmatrix} \xrightarrow{R_3} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & -3 & -5 \end{bmatrix}$$

$$R_2 - 2R_1 \rightarrow R_2$$

$$R_3 - 3R_1 \rightarrow R_3$$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & -3 & -5 \end{bmatrix} \xrightarrow{R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & -3 & -5 \end{bmatrix} \xrightarrow{R_3} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} \\ 1 & 0 & -3 \end{bmatrix}$$
(a) Let \(\{p_1, \ldots, p_n\} \) be a maximal linearly independent set of vectors in \(V \), and let \(v \) be an arbitrarily chosen vector. The set \(\{p_1, \ldots, p_n, v\} \) must be linearly dependent. This means that there is a set of scalars \(\{a_1, \ldots, a_{n+1}\} \), not all of which are zero, such that

\[
a_1 p_1 + \cdots + a_n p_n + a_{n+1} v = 0.
\]

In this expression, it must be the case that \(a_{n+1} \neq 0 \), because otherwise there would be a nontrivial linear combination of \(p_1, \ldots, p_n \) that is equal to zero. This would contradict the linear independence of \(\{p_1, \ldots, p_n\} \).

Hence we may write

\[
v = -\frac{a_1}{a_{n+1}} p_1 - \cdots - \frac{a_n}{a_{n+1}} p_n.
\]

Since \(v \) was arbitrary, this proves that \(\{p_1, \ldots, p_n\} \) spans \(V \).

(b) Let \(\{p_1, \ldots, p_n\} \) be a minimal spanning set, and suppose there is a nontrivial linear combination

\[
a_1 p_1 + \cdots + a_n p_n = 0.
\]

We may assume without loss of generality that \(a_n \neq 0 \). Then we can write

\[
p_n = -\frac{a_1}{a_n} p_1 - \cdots - \frac{a_{n-1}}{a_n} p_{n-1}.
\]

Let \(v \) be an arbitrarily chosen vector. Since \(\{p_1, \ldots, p_n\} \) is a spanning set, there are scalars \(\beta_1, \ldots, \beta_n \) such that

\[
v = \beta_1 p_1 + \cdots + \beta_n p_n.
\]

But we can also write

\[
v = (\beta_1 - \frac{a_1 \beta_n}{a_n}) p_1 + \cdots + (\beta_{n-1} - \frac{a_{n-1} \beta_n}{a_n}) p_{n-1}.
\]
Since \(v \) was chosen arbitrarily, this means that any vector in \(V \) may be expressed as a linear combination of \(p_1, \ldots, p_{n-1} \) contradicting the assumption that \(\{p_1, \ldots, p_n\} \) is a minimal spanning set.

7. We compute the \(ij \)-th entry of \(A \cdot \text{adj}(A) \):

\[
\sum_{k=1}^{n} a_{ik} A_{jk}
\]

where \(A_{jk} \) is the \(jk \)-th cofactor of \(A \), which is \((-1)^{j+k} \cdot \det((n-1) \times (n-1)) \) submatrix of \(A \) obtained by deleting the \(j \)-th row and \(k \)-th column.

Case \(i=j \): \[
\sum_{k=1}^{n} a_{ik} A_{jk} = \sum_{k=1}^{n} a_{ik} A_{ik} = \det(A).
\]

Case \(i \neq j \): \[
\sum_{k=1}^{n} a_{ik} A_{jk} = \det(\hat{A}) \] where \(\hat{A} \) is the \(n \times n \) matrix whose \(j \)-th row is the \(i \)-th row of \(A \) with all other rows (including the \(i \)-th) being the same as \(A \). Since Property 4 of determinants (in the list of properties discussed in class) states that the determinant of a
matrix with two equal rows is zero, \(\det|\mathbf{A}| = 0 \). Thus we have

\[
\sum_{k=1}^{n} a_{ik} A_{jk} = \delta_{ij} \cdot \det|\mathbf{A}|
\]

where \(\delta_{ij} = \begin{cases}
1 & \text{if } i = j \\
0 & \text{if } i \neq j
\end{cases} \). This proves the theorem.