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Exercises (Set 1)

1. (a) Prove that matrix multiplication is associative: i.e. show that for any three matrices A,B,

and C of compatible dimensions that A(BC) = (AB)C.

(b) Prove that matrix multiplication is not commutative: i.e. it is not the case that AB = BA

for any two square matrices A and B.

2. (a) Prove that (AB)T = BTAT.

(b) Prove that if A is invertible, then AT is invertible.

3. (a) Suppose A(t) and B(t) are m× n and n× p matrices respectively. Find a formula for

d

dt
[A(t)B(t)]

in terms of the derivatives of the individual matrices.

(b) If A(t) is invertible, find a formula for the derivative (with respect to t) of its inverse.

4. Using Laplace’s expansion (i.e. expansion by cofactors), evaluate the determinants of the
matrices  3 0 1

2 4 3
1 1 2

  1 x x
a ax + by ax
0 by 1


5. Find the inverses of the matrices in the previous problem. Assume that a, b, x, and y are
integers. Under what further conditions on the symbolic entries a, b, x, y will the inverse of the
second matrix have all its entries integers?

6. Let V be a finite dimensional vector space. A basis of V is any linearly independent set of
vectors that span V . (a) Show that any maximal linearly independent set of vectors in V is a
basis for V . (b) Show that any minimal spanning set of vectors is also a basis.

Definition: A square matrix A = (aij) is said to have super-diagonal form if aij = 0 for all j < i.

Definition: A matrix A is said to be normal if AA∗ = A∗A, where A∗ denotes the Hermitian
conjugate of A (=transpose if A is real): a∗ij = āji, with the overbar denoting complex conjugate.

(Please turn over.)

Solutions
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7. Prove that any square super-diagonal matrix is normal if and only if it is diagonal.

Square matrices that are normal always have a diagonal Jordan normal form. This is a
consequence of the following:

Theorem: A matrix A is unitarily similar to a diagonal matrix if and only if it is normal.
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Exercise Set 1

1

(a) Assume the matrices of the problem, A, B, and C, are of the dimensions m× n, n× p, and
p× q, respectively. Allow D = BC. Then,

dij =

p∑
k=1

bikckj , i = 1, . . . , n, j = 1 . . . , q.

Allow E = AB. Then,

eij =

n∑
k=1

aikbkj , i = 1 . . . ,m, j = 1 . . . , p

Allow F = AD = A(BC). Then,

fij =
n∑

k=1

aikdkj =
n∑

k=1

aik

{
p∑

h=1

bkhchj

}
=

n∑
k=1

p∑
h=1

aikbkhchj , i = 1, . . . ,m, j = 1, . . . , q.

Finally, allow G = EC = (AB)C. Then,

gij =

p∑
h=1

eihchj =

p∑
h=1

[
n∑

k=1

{aikbkh} chj

]
=

n∑
k=1

p∑
h=1

aikbkhchj , i = 1, . . . ,m, j = 1, . . . , q.

Thus, F = G, and A(BC) = (AB)C.

(b) Allow

A =

[
1 2
3 4

]
and

B =

[
4 3
2 1

]
Then,

AB =

[
8 5
20 13

]
and

BA =

[
13 20
5 8

]
.

Hence, AB 6= BA and matrix multiplication is in general not commutative.
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(a) Assuming A and B are n× n matrices, allow C = AB. Then,

cij =

n∑
k=1

aikbkj , i, j = 1, . . . , n.

Allow D = CT . Then,

dij = cji =

n∑
k=1

ajkbki, i, j = 1, . . . , n.

Allow E = BTAT . Then,

eij =
n∑

k=1

bkiajk, i, j = 1, . . . , n.

Thus, D = E and therefore (AB)T = BTAT .

(b) If the matrix A is invertible, there exist a matrix B such that

AB = I.

Taking the transpose of both sides of this equation gives

BTAT = IT = I

and hence, AT has an inverse.

3

(a) Assigning C(t) = A(t)B(t), yields

cij(t) =
n∑

k=1

aik(t)bkj(t).

This implies that

d

dt
(cij(t)) =

n∑
k=1

[
d

dt
(aik(t)) bkj(t) + aik(t)

d

dt
(bkj(t))

]
.

Simplification of the above yields

d

dt
(cij(t)) =

n∑
k=1

d

dt
(aik(t)) bkj(t) +

n∑
k=1

aik(t)
d

dt
(bkj(t)) .

From the above it is clear that

d

dt
(C(t)) =

d

dt
(A(t)B(t)) =

d

dt
(A(t))B(t) + A(t)

d

dt
(B(t)) .
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(b) If A(t) is invertible, there exist a matrix B(t) such that

A(t)B(t) = I.

Taking the derivative of both sides gives

d

dt
(A(t)B(t)) =

d

dt
(I) = 0,

where 0 is the matrix of zeros.

From part (a), the expression becomes

d

dt
(A(t))B(t) + A(t)

d

dt
(B(t)) = 0.

Moving the first term to the right hand side of the equation gives

A(t)
d

dt
(B(t)) = − d

dt
(A(t))B(t).

After left-multiplying both sides of the equation by B(t), the expression for the derivative of
the inverse of A(t) with respect to t becomes

d

dt
(B(t)) = −B(t)

d

dt
(A(t))B(t).
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(a) ∣∣∣∣∣∣
3 0 1
2 4 3
1 1 2

∣∣∣∣∣∣ = 3

∣∣∣∣ 4 3
1 2

∣∣∣∣− 0

∣∣∣∣ 2 3
1 2

∣∣∣∣+ 1

∣∣∣∣ 2 4
1 1

∣∣∣∣
= 3(8− 3) + (2− 4) = 3(5)− 2 = 13.

(b)

1

∣∣∣∣ ax+ by ax
by 1

∣∣∣∣− a ∣∣∣∣ x x
by 1

∣∣∣∣ = by

5

(a)  3 0 1
2 4 3
1 1 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

 R1 ↔ R3

−→

 1 1 2
2 4 3
3 0 1

∣∣∣∣∣∣
0 0 1
0 1 0
1 0 0


R2 − 2R1 → R2

−→
R3 − 3R1 → R3

 1 1 2
0 2 −1
0 −3 −5

∣∣∣∣∣∣
0 0 1
0 1 −2
1 0 −3

 R2
2 → R2

−→

 1 1 2
0 1 −1

2
0 −3 −5

∣∣∣∣∣∣
0 0 1
0 1

2 −1
1 0 −3


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R1 −R2 → R1

−→
R3 + 3R2 → R3

 1 0 5
2

0 1 −1
2

0 0 −13
2

∣∣∣∣∣∣
0 −1

2 2
0 1

2 −1
1 3

2 −6


−2R3
13 → R3

−→

 1 0 5
2

0 1 −1
2

0 0 1

∣∣∣∣∣∣
0 −1

2 2
0 1

2 −1
−2
13

−3
13

12
13


R1 − 5R3

2 → R1

−→
R2 + R3

2 → R2

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
5
13

1
13

−4
13

−1
13

5
13

−7
13

−2
13

−3
13

12
13



⇒

 3 0 1
2 4 3
1 1 2

−1

=
1

13

 5 1 −4
−1 5 −7
−2 −3 12

 .
(b) Since the determinant is by, the determinant of the inverse is 1

by . Given that b and y are
assumed to be integers, this will be an integer if and only if b and y are both equal to 1 or
−1.

6

(a) Let {p1, . . . ,pn} be a maximal linearly independent set of vectors in V , and let vinV be
an arbitrarily chosen vector. The set {p1, . . . ,pn,v} must be linearly dependent. This means that
there is a set of scalars {a1, . . . , an+1}, not all of which are zero, such that

a1p1 + · · ·+ anpn + an+1v = 0.

In this expression, it must be the case that an+1 6= 0, becasue otherwise there would be a nontrivial
linear combination of p1, . . . ,pn that is equal to zero. This would contradict the linear independence
of {p1, . . . ,pn}.

Hence we may write

v = − a1
an+1

p1 − · · · −
an
an+1

pn.

Since v was arbitrary, this proves that {p1, . . . ,pn} spans V .
(b) Let {p1, . . . ,pn} be a minimal spanning set, and suppose there is a nontrivial linear com-

bination
a1p1 + · · ·+ anpn = 0.

We may assume without loss of generality that an 6= 0. Then we can write

pn = −a1
an

p1 − · · · −
an−1

an
pn−1.

Let vinV be an arbitrarily chosen vector. Since {p1, . . . ,pn} is a spanning set, there are scalars
β1 . . . , βn such that

v = β1p1 + · · ·+ βnpn.

But we can also write

v = (β1 −
a1βn
an

)p1 + · · ·+ (βn−1 −
an−1βn
an

pn−1.
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Since v was chosen arbitrarily, this means that any vector in V may be expressed as a linear
combination of p1, . . . ,pn−1 contradicting the assumption that {p1, . . . ,pn} is a minimal spanning
set.
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A matrix A is normal if and only if

AA∗ = A∗A (1)

(AAT = ATA in the case A is real). Compare diagonal entries in the matrix products on both sides
of equation (1).

n∑
k=1

|aik|2 =

n∑
k=1

|aki|2, (i = 1, . . . , n).

Because A is super-diagonal, this equation can be rewritten

n∑
k=i

|aik|2 =

i∑
k=1

|aki|2, (i = 1, . . . , n).

Let i be the smallest integer such that aij 6= 0 for some j with j > 0. Then (1) implies for this
value of i that

n∑
k=i

|aik|2 = |aii|2.

Clearly this equation cannot hold if aij 6= 0 for any j > 0. This contradiction proves that:
Any super-diagonal matrix is normal if and only if it is diagonal.

Additional

If

A =


5 −1 −3 2 −5
0 2 0 0 0
1 0 1 1 −2
0 −1 0 3 1
1 −1 −1 1 1



|A− λI| =

∣∣∣∣∣∣∣∣∣∣
5− λ −1 −3 2 −5

0 2− λ 0 0 0
1 0 1− λ 1 −2
0 −1 0 3− λ 1
1 −1 −1 1 1− λ

∣∣∣∣∣∣∣∣∣∣
= (2− λ)

∣∣∣∣∣∣∣∣
5− λ −3 2 −5

1 1− λ 1 −2
0 0 3− λ 1
1 −1 1 1− λ

∣∣∣∣∣∣∣∣
= (2− λ)

(3− λ)

∣∣∣∣∣∣
5− λ −3 −5

1 1− λ −2
1 −1 1− λ

∣∣∣∣∣∣−
∣∣∣∣∣∣

5− λ −3 2
1 1− λ 1
1 −1 1

∣∣∣∣∣∣


= (2− λ){(3− λ)[(5− λ)((1− λ)2 − 2) + 3(3− λ) + 5(2− λ)]
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−(5− λ)(2− λ)− 2(2− λ)}

= (2− λ)[λ4 − 10λ3 + 37λ2 − 60λ+ 36]

= (2− λ)[(2− λ)2(3− λ)2] = (2− λ)3(3− λ)2.
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