ENG EC/ME/SE 501:

Exercises (Set 1) (Due 9/17/20)

1. (a) Prove that matrix multiplication is associative: i.e. show that for any three matrices $A, B,$ and C of compatible dimensions that $A(BC) = (AB)C$.

(b) Prove that matrix multiplication is not commutative: i.e. it is not the case that $AB = BA$ for any two square matrices A and B.

2. (a) Prove that $(AB)^T = B^TA^T$.

(b) Prove that if A is invertible, then A^T is invertible.

3. (a) Suppose $A(t)$ and $B(t)$ are $m \times n$ and $n \times p$ matrices respectively. Find a formula for

$$\frac{d}{dt}[A(t)B(t)]$$

in terms of the derivatives of the individual matrices.

(b) If $A(t)$ is invertible, find a formula for the derivative (with respect to t) of its inverse.

4. Using Laplace’s expansion (i.e. expansion by cofactors), evaluate the determinants of the matrices

$$\begin{pmatrix} 3 & 0 & 1 \\ 2 & 4 & 3 \\ 1 & 1 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & x & x \\ a & ax + by & ax \\ 0 & by & 1 \end{pmatrix}$$

5. Find the inverses of the matrices in the previous problem. Assume that a, b, x, y are integers. Under what further conditions on the symbolic entries a, b, x, y will the inverse of the second matrix have all its entries integers?

6. Let V be a finite dimensional vector space. A basis of V is any linearly independent set of vectors that span V. (a) Show that any maximal linearly independent set of vectors in V is a basis for V. (b) Show that any minimal spanning set of vectors is also a basis.

Definition: Given a square matrix A, the determinant of the $(n-1) \times (n-1)$ submatrix M_{ij} obtained from A by deleting the i-th row and j-th column is called the ij-th minor of A. Multiplying the ij-minor by -1^{i+j} yields the ij-th cofactor A_{ij}. Among the list of determinant facts that were recalled in class, we have the following:

$$\det A = \sum_{i=1}^{n} a_{ij}A_{ij} = \sum_{j=1}^{n} a_{ij}A_{ij}.$$
7. The adjugate of A is the $n \times n$ matrix adj(A) s.t. adj$(A)_{ij} = A_{ji}$. Using the properties of determinants reviewed in class, prove the following.

Theorem: If $\det A \neq 0$, then the matrix A is invertible, and when this is the case

$$A^{-1} = \left(1/\det A\right) \text{adj}(A).$$