Prof. J. Baillieul
Prof. T. Djaferis
Mechanical Engineering
Electrical and Computer Engineering
(9/13/17)

ENG EC/ME/SE 501:

Exercises (Set 1) (Due 9/20/17)

1. (a) Prove that matrix multiplication is associative: i.e. show that for any three matrices A,B, and C of compatible dimensions that A(BC) = (AB)C.

(b) Prove that matrix multiplication is <u>not</u> commutative: i.e. it is not the case that AB = BA for any two square matrices A and B.

2. (a) Prove that $(\mathbf{AB})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}$.

(b) Prove that if \mathbf{A} is invertible, then \mathbf{A}^{T} is invertible.

3. (a) Suppose $\mathbf{A}(t)$ and $\mathbf{B}(t)$ are $m \times n$ and $n \times p$ matrices respectively. Find a formula for

$$\frac{d}{dt}[A(t)B(t)]$$

in terms of the derivatives of the individual matrices.

(b) If $\mathbf{A}(t)$ is invertible, find a formula for the derivative (with respect to t) of its inverse.

4. Using Laplace's expansion (i.e. expansion by cofactors), evaluate the determinants of the matrices

1	3	0	1	1	x	x	
	2	4	3	a	ax + by	ax	
	1	1	2 /	0	by	1	Ϊ

5. Find the inverses of the matrices in the previous problem. Assume that a, b, x, and y are integers. Under what further conditions on the symbolic entries a, b, x, y will the inverse of the second matrix have all its entries integers?

6. Let V be a finite dimensional vector space. A *basis* of V is any linearly independent set of vectors that span V. (a) Show that any maximal linearly independent set of vectors in V is a basis for V. (b) Show that any minimal spanning set of vectors is also a basis.

Definition: A square matrix $A = (a_{ij})$ is said to have super-diagonal form if $a_{ij} = 0$ for all j < i. **Definition:** A matrix A is said to be normal if $AA^* = A^*A$, where A^* denotes the Hermitian conjugate of A (=transpose if A is real): $a_{ij}^* = \bar{a}_{ji}$, with the overbar denoting complex conjugate. 7. Prove that any square super-diagonal matrix is normal if and only if it is diagonal.

Square matrices that are normal always have a diagonal Jordan normal form. This is a consequence of the following:

Theorem: A matrix A is unitarily similar to a diagonal matrix if and only if it is normal.