Prof. J. Baillieul Prof. T. Djaferis Mechanical Engineering Electrical/Computer Engineering

(2/1/18)

ENG MN 740:

Exercises (Set 1) (Due 2/8/18)

1. Referring to the figure below, the point Q may be expressed in terms of either coordinate system. Show that relation between the coordinates for Q in the two systems is given by

$$\left(\begin{array}{c} x_i \\ y_i \end{array}\right) = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array}\right) \left(\begin{array}{c} x_e \\ y_e \end{array}\right).$$

- 2. Verify by a direct calculation that the group of rigid planar motions satisfies an associative law. (I.e. that for any three rigid motions T_1 , T_2 , T_3 , we have $T_1 \circ (T_2 \circ T_3) = (T_1 \circ T_2) \circ T_3$.)
- 3. Verify that the group of rigid planar motions is not Abelian. (Recall that a group is said to be Abelian if and only if $a \cdot b = b \cdot a$ for all a and b in the group.)
- 4. A vector ${}^{A}P$ is rotated about \hat{Z}_{A} by θ degrees and is subsequently rotated about \hat{X}_{A} by ϕ degrees. Give the rotation matrix which will accomplish these rotations in the given order.
- 5. A vector ${}^{A}P$ is rotated about \hat{Y}_{A} by 30 degrees and is subsequently rotated about \hat{X}_{A} by 45 degrees. Give the rotation matrix which will accomplish these rotations in the given order.
- 6. A frame $\{B\}$ is located as follows: initially coincident with a frame $\{A\}$ we rotate $\{B\}$ about \hat{Z}_B by θ degrees and then we rotate the resulting frame about \hat{X}_B by ϕ degrees. Give the rotation matrix which will change the description of vectors from BP to AP .
- 7. A frame $\{B\}$ is located as follows: initially coincident with a frame $\{A\}$ we rotate $\{B\}$ about \hat{Z}_B by 30 degrees and then we rotate the resulting frame about \hat{X}_B by 45 degrees. Give the rotation matrix which will change the description of vectors from BP to AP .
- 8. ${}_{B}^{A}R$ is a 3×3 matrix with eigenvalues 1, $e^{+\alpha i}$, and $e^{-\alpha i}$, where $i = \sqrt{-1}$. What is the physical meaning of the eigenvector of ${}_{B}^{A}R$ associated with the eigenvalue 1?