Prof. J. Baillieul
Prof. T. Djaferis
Electrical & Computer
Engineering
Mechanical Engineering
(2/8/18)

ENG ME/SE 740

**Exercises (Set 2)** (Due 2/15/18)

1. Consider a planar manipulator with link lengths  $r_1 = r_2 = 1$  and  $r_3 = 1/2$ . Find  $\theta_1$ ,  $\theta_2$ , and  $\theta_3$  such that the end effector is at (1,1) with orientation  $\phi = -45^{\circ}$ .



Figure 1: Mechanism of problem 1 but <u>not</u> in the configuration of the problem 1 statement.

2. We have seen a number of ways to describe the orientation of a rigid body with respect to a given coordinate frame. Consider the following rotation matrix:

$$\begin{pmatrix} 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \\ -1/3 & 2/3 & 2/3 \end{pmatrix}.$$

Find the corresponding axis / angle parameters, the Euler-angles and the Tait-Bryan (pitch/roll/yaw) angles. 3. Which of the following subsets of  $SE(3, \mathbb{R})$  are also subgroups?

(a) 
$$\{ \begin{pmatrix} \cos\theta & 0 & \sin\theta & x \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & z \\ 0 & 0 & 0 & 1 \end{pmatrix} : x, z \in \mathbb{R}; -\pi < \theta \le \pi \},$$
  
(b) 
$$\{ \begin{pmatrix} \cos\phi & -\sin\phi & 0 & 0 \\ \sin\phi & \cos\phi & 0 & y \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{pmatrix} : y, z \in \mathbb{R}; -\pi < \phi \le \pi \}$$

Justify your answer.

Please turn page.

- 4. Prove that for any square matrices A and B that  $e^{(A+B)t} = e^{At}e^{Bt} \iff [A,B] = 0.$
- 5. For the following  $2 \times 2$  matrices, compute  $e^{At}$ :

(a) 
$$A = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$
 (b)  $A = \begin{pmatrix} -a & a \\ b & -b \end{pmatrix}$