Prof. J. BaillieulProf. T. DjaferisMechanical EngineeringElectrical and Computer Engineering

(3/29/18)

(Do not use Matlab, Maple, Mathematica, etc.)

ENG ME 740:

Exercises (Set 4) (Due 4/5/18)

1. Write down the inverse of the matrix

A =	$\cos\theta$	$-\sin\theta \ \cos\alpha$	$\sin \theta \ \sin \alpha$	$a \cos \theta $
	$\sin \theta$	$-\sin\theta \ \cos\alpha \\ \cos\theta \ \cos\alpha$	$-\cos\theta \sin \alpha$	$a \sin \theta$
	0	$\sin lpha$	$\cos lpha$	d \cdot
	0	0	0	1 /

2. Given a prescribed position and orientation of the planar 3-bar manipulator of the second Exercise Set, there are two possible solutions to the inverse kinematics problem. If we add one more link (in such a way that the manipulator is still planar), how many solutions are there?

3. The figure shows a 2-bar planar manipulator with rotary joints. The second link is half as long as the first $(r_1 = 2r_2)$. The joint limits are:

$$0 < \theta_1 < 180^\circ$$
$$-90^\circ < \theta_2 < 180^\circ$$

Sketch the approximate workspace (= the set of points which can be reached by the tip of the second link).

