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SUMMARY

Recently, we reported results on coding strategies for scalar feedback systems with data-rate-limited
feedback channels in which the data-rate constraints are time varying. Such rate-varying channels are
typically encountered in communication networks in which links between nodes are subject to noise,
congestion, and intermittent disruption.
The present paper describes results of extending this research into the multidimensional domain. An

important consideration is that for systems of dimension greater than one, many classical feedback designs
cannot be realized for operation near the theoretical minimum possible data rate. A novel control coding
scheme will be presented, and in terms of this, it will be shown that the advantages of coarse signal
quantization that had been reported earlier for scalar systems remain in the multidimensional case. The key
is to allocate the communication bandwidth efficiently among faster and slower modes. We discuss various
strategies that allocate bandwidth by scheduling the time slots assigned to each mode. In particular, we
propose a ‘robust attention varying’ technique, whose merit will be discussed in terms of its robustness with
respect to time-varying communication channel capacity and also in terms of how well it operates when the
feedback channel capacity is near the theoretical minimum data rate. Copyright # 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Consider the scalar plant GðsÞ ¼ 1=ðs� aÞ where a is a positive real number. In [1] and
independently in other settings in [2, 3], it was shown that if a feedback control law was
implemented using digital communication and processing components, a closed-loop control
could be designed to execute bounded motions if and only if the data rate around the closed
loop exceeded a � log2 e: It is not difficult to see that if a number of such open-loop unstable
scalar plants f1=ðs� aiÞ : ai > 0; 14i4mg are controlled in parallel, digital control laws can be
designed to execute bounded motions precisely when the total channel capacity exceeds log2 e �P

ai and can be allocated as needed to the different plants in the system. It is a somewhat
remarkable result, proved independently by a number of researchers, that for any linear plant
having open-loop poles a1; . . . ; ak in the right half-plane, stabilizing digital feedback laws can be
designed if and only if the feedback loop data rate R satisfies

R > log2 e �
X

RðaiÞ ð1Þ

(see e.g. [1–8].) The control designs that achieve this bound are different from classical ones in
that they consider feedback coding explicitly. The proofs of this ‘minimum data-rate’ theorem
(commonly known as the Data-Rate Theorem) have suggested that under some ideal
assumptions, it is immaterial whether one uses control designs with fast sampling rates but a
small number of possible control values or designs which involve a large number of (finely
quantized) control values but with sampling and data transmission done at a slower rate.

Recently, results have appeared showing that in the case where the feedback channel capacity
is time-varying (as it would be in, say, a wireless communication network), we do not have an
exact tradeoff between the fineness of temporal and spatial quantization. Indeed, we have shown
that in the case of time-varying channel capacity, control designs which operate robustly and
satisfactorily over a range of sampling rates must involve short word-length encoding of control
inputs (see [9]). More specifically, for scalar systems, one-bit control (two control levels) was
shown to provide the best performance for systems in which the feedback channels have time-
varying channel capacity. One-bit control coding can be used to provide bounded system
response when the data rate through the feedback channel is near the theoretical minimum limit
described above while at the same time producing good performance when the channel capacity
was high. All finer quantizations of control were shown to be less robust with respect to such
variability in channel capacity, and it was further shown that for implementations of quantized
control satisfying some mild performance regularity conditions in the face of asynchronism
between sampling and actuation, the required data rate for control coding involving more than
a single bit was significantly higher. A hierarchical control synthesis was also suggested by
Li and Baillieul [9] that supplements the one-bit control with a side channel that is used to adjust
the magnitude of the one-bit control. It was shown that asymptotic stability can be achieved as
long as the feedback data rate for the one-bit control is strictly higher than the theoretical limit
and the side channel data rate is non-zero. Similar ideas have been suggested by Brockett and
Liberzon [6] and Fagnani and Zampieri [10], with somewhat different emphasis.

This paper synthesizes and refines earlier preliminary results published in [11, 12]. For
completeness, some of the basic constructions used in the analysis (e.g. the virtual systems) are
repeated here for the sake of clarity. The primary contribution of the present paper is to suggest
a feedback control quantization and coding strategy which exhibits and extends the robustness
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and efficiency of the form found in the previously studied one-bit control of scalar systems. In
particular, we shall think of a control strategy as being robust and efficient if

(1) it does not require extremely high data rates in either instantaneous or time-averaged
sense,

(2) it allows the system to operate near the theoretical data-rate limit (1) in either the
instantaneous or time-averaged sense,

(3) it does not produce a degraded performance when switching from a lower data rate to a
higher one, and

(4) it satisfies the above when there is mild delay between sampling and control actuation.

The notions of instantaneous and average data rate will become precise later. The third point
was referred to as the regularity condition in [9] and will not be the main topic here. But it is
worthwhile to note that the one-bit control was shown to be preferable in the light of this
condition. The present paper discusses encodings which extend the idea of one-bit control to the
multivariable case. Such encodings enjoy the kinds of advantages we saw for single-bit control
in the case of scalar systems.

In the present paper we shall revisit the control coding approach we proposed in [12], with the
aim of providing a better understanding of how to allocate the communication channel to
different modes. The approach is to make use of a novel decoupling scheme combined with
block coding of the control signals. Part of the novelty of the proposed control technique is that
it assumes a mild form of distributed intelligence in which the controller communicates over a
data channel what action the plant should take without any specification of how the action
should be taken. As a result of decoupling, the encoding of control signals may be carried out in
terms of a virtual system, which is a collection of scalar systems being run in parallel. Applying
the virtual system approach to multidimensional systems, it was seen that a proposed maximally
coarse control coding could operate near the theoretical minimum (1) only when all eigenvalues
of the open-loop system were of similar magnitude. The problem seemed to be that the proposed
coding devoted too much bandwidth to slower modes. We will suggest approaches which
schedule the time slots assigned to each mode and reduce the system’s overall data-rate
requirement in the average (over time) sense. We call these approaches collectively ‘attention
varying’ because the bandwidth assigned to each mode will be time varying. (The fastest modes,
however, will receive nearly constant attention.) In particular, we will discuss a robust attention
varying technique, whose merits will be discussed in terms of its robustness with respect to
varying feedback channel capacity, and also in terms of how well it operates when the feedback
channel capacity is near the theoretical minimum requirement.

Section 2 briefly describes the virtual system approach [12] for coding control actions for
multidimensional linear systems. Section 3 examines the communication constraints for
multidimensional systems based on the virtual system. In particular, two data-rate concepts are
considered: (1) base data-rate, Rb; corresponding to the peak instantaneous data-rate
requirement that must be satisfied when all decoupled subsystems require attention; and (2)
average data-rate, Ra; corresponding to the time-averaged data flow the control system needs.
Following the previous results, we will show that for the multidimensional system decoupled
using the virtual system approach, the control strategy adapted directly from the scalar case (call
it the simple strategy!) does not generally operate with either Rb or Ra close to the theoretical
minimum data rate. In terms of robustness to sampling-actuation asynchronism and
disturbances, Section 4 shows (extending the somewhat qualitative evidence in [9]) that using
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feedback control based on time-slot-based communication bandwidth allocation together with
one-bit coding for each mode is preferable to allocate the band-width by allocating quantization
levels. In Section 5, we discuss time-slot-based feedback channel allocation techniques, which
utilize novel control magnitude protocols. Both an aggressive approach and a robust approach
are presented. The aggressive approach can achieve an average data-rate requirement that is
arbitrarily close to the theoretical limit. However, it requires good knowledge of the
communication data rate. The robust approach is able to operate without specific knowledge
of the communication channel, and it allows the multidimensional system to operate with Ra

very close to the theoretical minimum data rate. The required Rb under this technique is the
same as that of the system with the simple strategy. Reducing Rb for multidimensional systems
in general seems hard. But we shall indicate that it can be done when the eigenvalues of the
system satisfy certain special conditions.

2. A VIRTUAL CONTROL APPROACH FOR MULTIDIMENSIONAL SYSTEMS

In the present paper, we consider the digital finite communication bandwidth (DFCB) control
([9]) of the n-dimensional open-loop unstable system

’x ¼ Axþ bu ð2Þ

where x 2 Rn; u 2 R is the scalar input.

A ¼

a1 0 � � � 0

0 a2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � an

0
BBBBBB@

1
CCCCCCA
; b ¼

1

1

..

.

1

0
BBBBBB@

1
CCCCCCA

where ai; i ¼ 1; . . . ; n are the distinct positive eigenvalues. Cases with Jordan blocks of sizes
larger than one have been discussed in [13]. It was shown that the tradeoff between spatial and
temporal quantizations of control coding becomes more complicated in such cases.z As a result,
the problem of designing robust and efficient control codings for plants with non-trivial Jordan
blocks is better examined in a case-by-case fashion. For this reason, we will only consider the
scalar Jordan blocks in what follows.

If (2) is sampled uniformly in time, with sampling interval h; and control actions are applied
without delay, then it is equivalent to the discrete-time system

xðj þ 1Þ ¼ FxðjÞ þ GuðjÞ ð3Þ

where

F ¼ eAh and G ¼ A�1ðeAh � IÞb

zAssume that the control objective is producing bounded response and memoryless control laws are used. For a scalar
plant, if no sampling-actuation asynchronism is present, then the data-rate bound (1) can be achieved regardless of the
control alphabet size. But for a plant with one non-trivial Jordan block, (1) can only be achieved when the control
alphabet size approaches infinity. On the other hand, for both cases, the required data rate increases more significantly
for control laws with larger alphabets in the presence of asynchronism (See [13]).
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In [9, 14], we introduced an asynchronous action model. For the sake of completeness, the
essential features of this model will be described in the next section. Both the discrete-time
model and the asynchronous action model will describe different parts of a single DFCB control
system. The communication between the controller and the plant will be assumed to follow a
slightly simplified asynchronous action model. A discrete-time-equivalent open-loop control is
used by the plant side to decouple the dynamics of the plant. Details will be discussed as we
proceed.

In [12], we introduced a virtual systems approach for control coding, which proved to be
useful in designing and realizing quantized control of system (2). Here, we restate the approach
briefly since later sections will depend on it.

Consider the problem of selecting a control law for (2) such that the state evolution
approximates the state evolution of

’x ¼ Aðxþ vÞ ð4Þ

where v ¼ ðv1; v2; . . . ; vnÞ and vi ¼ fiðxiÞ; i ¼ 1; . . . ; n: Since there is only one scalar control input
u in (2), (4) cannot be simulated exactly. However, a sampled version of (4) can be realized
through (3).

To each possible value of the vector v; we associate a control input sequence u0ðvÞ;
u1ðvÞ; . . . ; un�1ðvÞ; obtained by solving the system of linear equations

ðeAnh � IÞv ¼ Fn�1Gu0 þ Fn�2Gu1 þ � � � þ Gun�1 ð5Þ

For models of the form we are considering, the controllability of ðA; bÞ implies the
controllability of the pair ðF;GÞ; and this in turn implies that the set of vectors

fFn�1G; . . . ;FG;Gg

is linearly independent. The control sequence calculated from (5) can be applied to (3) for n steps
to yield the state transition

xð j þ nÞ ¼ Fnxð jÞ þ Fn�1Gu0 þ Fn�2Gu1 þ � � � þ Gun�1 ð6Þ

which can be equivalently written as

xðtj þ nhÞ ¼ eAnhxðtjÞ þ ðeAnh � IÞv ð7Þ

It is as if the system has undergone the dynamics of (4) (with a constant v) for nh units of time.
When h is small enough, (7) closely approximates (4). Then, the system can be viewed as a
parallel interconnection of scalar virtual subsystems

’xi ¼ aiðxi þ viÞ; i ¼ 1; . . . ; n ð8Þ

The quantity v ¼ ðv1; v2; . . . ; vnÞ
T is the virtual control vector.

The above approach can be implemented in the DFCB framework as follows: let the
admissible control set for each virtual subsystem be

Vi ¼ fn1; n2; . . . ; nNi
g

Then, v 2V; where V ¼V1 �V2 � � � � �Vn has
Qn

i¼1 Ni elements, each associated with a real
(as opposed to virtual) control input sequence calculated from (5). Let these sequences be stored
at the plant side and invoked by the corresponding virtual control vector v: The controller and
the plant only communicate the quantized state feedback and the coded v: More specifically,
when the plant side receives a virtual control vector, it applies the associated control input
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sequence, with each value in the sequence held for h units of time. When the sequence is finished,
if no new virtual control vector arrives, the current sequence is repeated. Otherwise, apply the
associated new sequence. Here, we assume the control actuation happens upon the completion
of one control sequence (of duration nh). This limitation is mild when h is small. The assumption
that h is small is also reasonable since the control sequences are prestored at the plant side.
Although control values may be streaming from the controller to the plant as the one sequence
is being executed, the model is an idealization in which it is assumed that there is no controller–
plant communication during the execution of each sequence.

3. CONTROL CODING AND COMMUNICATION BASED ON
THE VIRTUAL SYSTEMS

The structure of a DFCB control system based on the virtual systems approach is illustrated
in Figure 1. From this figure, it is clear that although the dynamics of the system is decoupled,
the communication constraints on the virtual subsystems are still tied together. Let
the communication scheme follow a simplified version of the asynchronous action model
studied in [9]. Each virtual subsystem can be sampled and actuated only at the time instants
specified by the common communication scheme}the common sampling instants tj and the
common (virtual) control updating instants pj5tj ; j ¼ 0; 1; . . . (asynchronous when pj > tj). In [9],
tj’s and pj’s are not necessarily evenly spaced, respectively. The quantity Y ¼ supj51fpj2tj�1g
(called the control interval) turns out to be important. It is a measure of how ‘stale’ the
control value can be in the case where sampling and actuation are not performed
simultaneously. In [12], the system behaviour for different degrees of asynchronism
(measured by O ¼supj51fpj � tjg=supj51fpj � tj�1g) was also examined. The ideas of
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Figure 1. Structure of the DFCB control system based on the virtual systems approach.

K. LI AND J. BAILLIEUL

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control (in press)

DOI: 10.1002/rnc



control interval and the degree of asynchronism are illustrated in Figure 2. Note that the
case of O! 1 may correspond to the situation where the delay is close to the limit of the
tolerable range and the system must sample extremely fast in order to control the unstable plant.
When the delay is small ðO! 0Þ; the system may sample at a correspondingly lower rate and
still be stable. In both the cases, the stability depends on Y rather than the delay or sampling
rate alone. Related observation has been reported in [15] for feedback control over wireless
communications links.

Here, unless otherwise stated, we simplify the asynchronous action model slightly by letting tj’s
and pj’s be evenly spaced. Then pj � tj�1 ¼ Y; pj � tj ¼ Y � O; and tj � tj�1 ¼ Y � ð1� OÞ
for any j51: The variable Y can be viewed as the length of an atomic control cycle of the entire
system. The control cycles of the individual virtual subsystems are constructed from these
atomic cycles. In the case of O ¼ 0; the control cycles of the individual virtual subsystems must
be multiples of Y:When O=0; the lengths of the control cycles of the individual subsystems are
YO plus multiples of Yð1� OÞ: Note that with this simplification, we can still study the
robustness of the system with respect to the fluctuation of communication bandwidth by
examining whether our control techniques can tolerate the variations of Y and O:

Assuming the above communication time scheme, we next examine the content and amount
of the communication in the feedback loop. In the DFCB control system we are considering, the
control law of each virtual subsystem can be viewed as a mapping

vj;i ¼ fiðxiðtjÞÞ : R!Vi

where jVi j ¼ Ni; and tj is a sampling instant when xi is sampled. Thus, dlog2 Ni e bits of
data need to be communicated during the control cycle from tj�1 to pj : Taking account of
differences that may exist in the time constants of component subsystems in (8), we will study
the effect of occasionally skipping the sampling of certain virtual subsystem components.
Thus, the amount of communication the entire system needs at the jth control cycle is, in
number of bits, Xn

i¼1

Lj;i

where

Lj;i ¼
dlog2 Ni e if xi is sampled at tj

0 otherwise

(

Controller

Plant t
p

Control Intervals Control Intervals Control Intervals

(a) (c)(b)

Figure 2. Scenarios of same control interval ðYÞ but different degrees of asynchronism ðOÞ: (a) O! 0;
(b) O ¼ 0:5; and (c) O! 1:
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In DFCB control, the choice of control strategy (Y; Ni’s, etc.) are constrained by the data rates.
In [9], we have introduced the base data rate

Rb ¼ 1=d

where d is the total time required for processing (generating, transmitting and receiving, etc.)
each one bit of data between the plant and controller. (Here, we assume d is for round trip.) If
Rb and Lj;i’s are given, then the control interval Y of the overall system is

Y ¼
maxj51

Pn
i¼1 Lj;i

Rb
ð9Þ

i.e. Y; the atomic control cycle of the overall system, needs to be long enough so that the
required communication can be completed at rate Rb even at the busiest time}when all
subsystems require some attention. Conversely, given a performance criterion and a feasible
control law, one can compute the tolerable range of Y (see [9, 12]). Then, the required Rb;
denoted by Rn

b; can be calculated from (9). In the present paper, we always refer to the required
base data rate Rn

b as the slowest data rate that permits a bounded response from some set of
initial conditions.

Definition 1 (Li and Baillieul [9])
A DFCB control system on Rn produces bounded response if for some bounded domain D with
non-zero Lebesgue measure, any trajectory started in D remains in D for all time.

Remark 3.1
It is important to note that in the case of varying data rate, the existence of a code-based control
law that produces bounded response as defined above is a necessary condition for the
‘containability’ defined in [7]. Hence, producing bounded response is a very basic notion of
stability for studying control over capacity-varying feedback channels.

In addition to the base data rate, here we are also concerned with the average data rate, which
can be defined as

Ra ¼ lim
J!1

PJ
j¼1 ð

Pn
i¼1 Lj;iÞ

tJ � t0
ð10Þ

and the required average data rate Rn
a that is also induced by the performance criterion of

producing bounded response.
Ra is related to Rb: For instance, when

Pn
i¼1 Lj;i � L for all j’s, Ra ¼ Rb=ð1� OÞ: (Recall that

O is the degree of asynchronism, which also reflects how much the adjacent control cycles
overlap with each other.) Further, if O ¼ 0 (simultaneous sampling and actuation), Ra ¼ Rb: On
the other hand, when the sampling is scheduled and skips certain modes at certain times
(Li; j ¼ 0 for some ði; jÞ’s), Ra can be lower than Rb:We will explore such strategies in the sequel.

Extending the theoretical data-rate limit ([4, 5]) to our set-up, the tightest lower bound for the
instantaneous and average data rates are

Rn

b5Rn ¼ log2 e �
Xn
i¼1

ai; Rn

a5Rn=ð1� OÞ ð11Þ

for the closed-loop system to produce bounded response. Note that in the derivation of the data-
rate inequality (1), it is commonly assumed that the control actions take the effect
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instantaneously after sampling. The factor ð1� OÞ in the bound of Rn
a reflects that when the

control actions do not take effect instantaneously, the samples need to be taken at higher rates.
Suppose the virtual control law for each (scalar) subsystem is binary (i.e. Ni ¼ 2) and all
subsystems are sampled at all sampling times, i.e. Lj;i � 1: (We refer to this strategy as the simple
strategy.) Then according to [9], Y4ðlog2 e �max aiÞ

�1 must be satisfied (for bounded response).
Also assume no asynchronism, the data-rate requirements are

Rn

a ¼ Rn

b > log2 e � n max
i¼1;...;n

ai ð12Þ

Clearly, this is greater than the theoretical minimum data rate of (11) and the reason is due to
the lack of data-rate allocation among faster and slower modes. The remaining part of the paper
will discuss the data-rate allocation strategies.

4. DISADVANTAGE OF ALLOCATING COMMUNICATION BANDWIDTH BY
ALLOCATING QUANTIZATION LEVELS

The main contribution of the present paper is to propose a data-rate allocation strategy based
on allocating time slots, which}together with the virtual systems approach}extends the
robustness and efficiency of one-bit control to multidimensional control systems. Before
discussing the time slot allocating strategy, an explanation of the advantage margin of the one-
bit control over the control with larger alphabet but less frequent updates is in order.

4.1. Tolerance of asynchronism

An important advantage of the one-bit control lies in its tolerance of sampling-actuation
asynchronism. Consider the DFCB control of a scalar system with normalized open-loop pole

’xðtÞ ¼ xðtÞ þ vðtÞ

vðpj4t5pjþ1Þ ¼ f ðxðtjÞÞ

p0 ¼ t0 ¼ 0; pjþ15pj5tj

sup
j51
fpj � tj�1g ¼ Y; sup

j51
fpj � tjg=Y ¼ O; j ¼ 0; 1 . . . ð13Þ

where Y50; 04O41; and code-based control law

f ðxÞ : R!V ð14Þ

in which V is a finite control alphabet. Let N ¼ jVj 2 f2; 3; . . .g: For this scalar system,

Rb ¼
log2 N

Y
ð15Þ

Suppose f ð�Þ is given for each value of N: Then the required based data rate of the closed-loop
system (for bounded response) is a function of the control alphabet length N and the sampling-
actuation asynchronism O; hence can be denoted by Rn

bðN;OÞ:
Rn

bðN;OÞ can be calculated numerically. The control law (with N being even)

f ðxÞ ¼ �bl if x 2 ½bl�1; blÞ

bl ¼ 22l=N � 1; l ¼ 1; . . . ;N=2

f ð�xÞ ¼ �f ðxÞ for x=0
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was assumed in [12]. These control laws have been shown to require the least base data rates
among regular control designs with given N (see [9]). For N ¼ 2 (and only for N ¼ 2) this
control has Rn

bðN;OÞ equal to the theoretical bound, (1), given by the Data-Rate Theorem. The
corresponding Rn

bðN;OÞ is shown in Figure 3.
More insight about the effect of asynchronism can be gained from the following theorems,

which do not depend on the specific forms of the control laws.

Theorem 1
For the scalar DFCB control system (13), (14), for all f ð�Þ 2 FN ; where FN is the collection of
code-based control laws with N distinct control actions, for all O > 0; Rn

bðN;OÞ ! 1 as N !1:

Proof
If the code-based control law f ð�Þ is able to produce bounded response in a non-degenerate
bounded interval D; then D ¼ supjxþ f ðxÞj > 0 exists for x 2 D: Note that f ðxÞ can only take a
finite number of values. Suppose the sampling and control updating instants follow

p0 ¼ t0 ¼ 0

pjþ1 ¼ tj þ log logN

tjþ14pj � log log logN; j ¼ 0; 1; . . . ð16Þ

where the base of the logarithm is natural. Then the following can be verified with tedious
calculations: for N large enough, there exists x0 2 D and f > 0 such that jx0 þ f ðx0Þj > fD; and if
xð0Þ ¼ x0; then, depending on the sign of x0 þ f ðx0Þ; either xðtÞ þ uðtÞ > fD; for all t > 0 or
xðtÞ þ uðtÞ5� fD; for all t > 0; i.e. there exist initial states for which the state trajectory will be
monotonically increasing or decreasing with non-diminishing speed, hence the trajectory cannot
be contained in D: Thus, the system does not achieve bounded response.
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Figure 3. Required base data rates with various degree of asynchronism and length of control alphabet.
The fact that the control alphabet must be coded by an integer number of bits is ignored.
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On the other hand, (16) implies

O5
log log logN

log logN
! 0; Rb ¼

log2 N

log logN
!1

as N !1: Since these values of O and Rb have been proved to be not stabilizing, then

for all O > 0; Rn

b >
log2 N

log logN
!1

as N !1: &

4.2. Tolerance of disturbance

The next theorem quantifies the limitation of fine quantization from another perspective,
namely, how the required data rate changes when there is disturbance. The result claims that the
increase of required data rate from the theoretical limit in the presence of disturbances is
minimized only when the single-bit control is applied. Intuitively, this is because the ratio
between the magnitude of disturbance and the average size of the ‘quantization cells’ for the
state feedback increases as the quantization becomes finer. In addition, here we derive the data-
rate requirement in the presence of bounded disturbances, which will be useful in later sections.
Here, we assume for simplicity that the sampling instants are evenly placed and there is no
asynchronism ðO ¼ 0Þ; and write Rn

bðNÞ instead of Rn
bðN;OÞ:

Theorem 2
Suppose the plant dynamics in (13) has a disturbance term in addition:

’xðtÞ ¼ xðtÞ þ vðtÞ þ wðtÞ

where wðtÞ is an unknown but bounded disturbance. Consider the control problem of producing
bounded response in the interval D of normalized length mðDÞ ¼ 2; with jwj4k under the same
normalization. Let FN be the collection of code-based control laws with N distinct control
actions. Then for all f ð�Þ 2 FN ;

(i)
Rn

bðNÞ5log2 e �
log2 N

log2ð1þ ðN � 1Þ=ðNkþ 1ÞÞ

(ii)
Rn

bð2Þ ¼ log2 e �
1

log2ð1þ 1=ð2kþ 1ÞÞ

with the one-bit control law

f ðxÞ ¼
1þ k; x50

�ð1þ kÞ; x50

(

and
(iii) for all N > 2 and all f ð�Þ 2 FN ; Rn

bðNÞ > Rn
bð2Þ when the one-bit control law is as given in (ii).

Proof
The proof of (i) follows the spirit of the Data-Rate Theorem. Suppose the range of f ð�Þ is
V ¼ fn1; n2; . . . ; nNg and let wl ¼ fx 2 Djf ðxÞ ¼ nlg: Then

SN
l¼1 wl ¼ D; hence for at least one wl ;
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the length mðwlÞ52=N: Consider the initial states contained in such an interval wl and the first
control cycle with time t running from 0 to Y: The state transformation is

xðYÞ ¼ eYxð0Þ þ ðeY � 1Þf ðxð0ÞÞ þ
Z Y

0

eY�twðtÞ dt ð17Þ

Let W denote the collection of all possible wðtÞ’s. Then the state transition (17) maps each
wl �W onto an interval wþl whose length is

mðwþl Þ5mðwlÞ � e
Y þ 2kðeY � 1Þ

5
2

N
eY þ 2kðeY � 1Þ ð18Þ

(The first inequality in (18) becomes an equality if wl is connected, which is usually the case. The
second inequality becomes an equality when all wl’s have the same length, which is not
uncommon either.) For bounded response in the sense explained previously, mðwþl Þ must not
exceed 2. This gives

eY41þ
N � 1

Nkþ 1
ð19Þ

(19) and (15) together give the bound in (i). The right-hand side of the inequality (i) is increasing
as a function of N; (ii) may be verified by a direct calculation, and then (iii) follows. &

Section 2 has shown the decoupling of the multidimensional system (2) into the parallel
interconnection of scalar subsystems (8) by means of the virtual systems approach. Thus, the
data-rate requirement of (2) is related to those of the scalar systems in terms of the virtual
systems. More precisely, let Rn

b;i denote the required base data rate for a scalar system that has
the same eigenvalue as the ith mode of the multidimensional system. Then the data-rate
requirement of (2) is bounded from below by

Pn
i¼1 R

n
b;i and we will show in the sequel that this

bound can be approached. So, by discussing the scalar systems, the above theorems and
numerical results suggest that the potential of efficiently allocating feedback data rates by using
large alphabets for faster modes is very limited; and it is worthwhile exploring strategies that are
based on temporal allocation.

5. ALLOCATING COMMUNICATION BANDWIDTH
BY ALLOCATING TIME SLOTS

Throughout this section, we assume that binary control is used for each virtual subsystem and
the communication scheme follows the simplified asynchronous action model described at the
beginning of Section 3. The reason why the simple strategy may require higher data rates than
the theoretical minimum is that faster modes and slower modes have been given equal share of
the bandwidth. There are a number of ways to address this problem.

Example 5.1
Assume O ¼ 0: Suppose ai ¼ 1=zi; i ¼ 1; . . . ; n where zi’s are some integers that do not have any
common factors. It seems fair that the ith virtual subsystem be sampled every zi sampling
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instants. Then it sees a control interval of ziY where Y is the control interval on the shared
communication link. The least upper bound of Y for each subsystem to have bounded response
is given by

ziY > ðai log2 eÞ
�1

i.e. Y5ðlog2 eÞ
�1: The average data rate requirement for the entire system is then

Ra >
Pn

i¼1 ð1=ziÞ=Y ¼ log2 e
Pn

i¼1 ai; which is exactly the theoretical minimum data rate.
However, the required Rb in this case is n log2 e; which can be much larger than that of the
simple strategy. Figure 4 illustrates the data flow under such a bandwidth allocation method.
Note that the communication channel is transmitting very little data for most of the time except
for some extremely busy times. Also note that because zi’s do not have any common factors,
there are always some busy control cycles at which every subsystem needs update (the Euclidean
Algorithm). Because this approach leaves a large amount of channel capacity unused for a large
fraction of the time of operation, it is not ideal.

We shall next consider the bandwidth allocation techniques that will be generally referred to
as attention varying. These techniques utilize novel control magnitude protocols and provide
procedures for less attentive sampling of subsystems with larger time constant. Applying such
procedures to the virtual systems described above provides ways of fairly allocating
communication bandwidth in the feedback channel. Meanwhile, our techniques allow the same
base data rate as the simple strategy. This is a clear advantage over the method in the last
example.

For the system described by Equation (8), consider the problem of how to schedule the
control of the virtual subsystems given nominal values of Y and O of the common
communication scheme. To simplify the discussion, we consider a control interval (of the
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overall system) of normalized length

Y ¼ ðlog2 eÞ
�1 ð20Þ

With this temporal normalization, consider sampling the scalar subsystem (omitting the
subscript)

’x ¼ aðxþ vþ wÞ ð21Þ

where v is the control input and w is an unknown but bounded disturbance. Let the control
objective be producing bounded response in the normalized range ð�1; 1Þ and under the same
spatial normalization, assume jwj4k for all time. If neither asynchronism nor disturbance are
present, i.e. O ¼ 0; k ¼ 0; we assume

0:55a51:0

Note that for this value of Y; a ¼ 1 is the largest possible value such that (21) will have a
bounded response for some switching law of v: Note also that with the atomic control cycles of
length Y ¼ ðlog2 eÞ

�1; if 05a40:5; (21) can be sampled only once every two or more atomic
control cycles and still admit a feedback law which produces a bounded response. Thus, (21) can
be identified as a scaled version of a component subsystem whose eigenvalue is less than the
greatest eigenvalue of the overall system, but is not equal to the greatest eigenvalue divided by
an integer. If the Ra related to the Y in (20) is close to the theoretical limit for every such
subsystem, then so is the Rn

a of the overall system.
In the presence of bounded disturbance of normalized magnitude k; Theorem 2 has shown

that the instantaneous data-rate requirement for a scalar system with eigenvalue a is

Rn

b ¼
a � log2 e

log2ð1þ 1=ð1þ 2kÞÞ
ð22Þ

On the other hand, with asynchronism, the control interval for a component subsystem whose
sampling skips ðk� 1Þ atomic control cycles is ðkð1� OÞ þ OÞY: Accordingly, for the case with
bounded disturbance and asynchronism, we assume

1

2� O
log2 1þ

1

1þ 2k

� �
5a5log2 1þ

1

1þ 2k

� �

This can be verified from (22) to be the range of a corresponding to ð0:5; 1Þ in the no disturbance,
no asynchronism case.

Let this scalar system be controlled by the binary law

vðtÞjt2½pj ;pjþ1Þ ¼

vðpj�1Þ if sampling skipped

sj xðtjÞ50

�sj xðtjÞ50

(
otherwise

8>><
>>: ð23Þ

where sj is the magnitude of control for the jth control cycle (control action applied at pj).

5.1. An aggressive approach

Here, we describe an approach that can reduce the Ra of the above subsystem arbitrarily close to
the theoretical limit. However, this approach requires good knowledge of the lengths of the
control intervals, hence is not robust to varying and uncertain feedback channel capacity.
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Because of this drawback, we only describe this approach with the ideal assumption that O ¼ 0
and k ¼ 0: (Neither asynchronous control action nor disturbances are present.)

For any given e > 0; there exist m; k 2 Zþ such that a4m=ðmþ kÞ5aþ e: Assuming
xðt0Þ 2 ð�1; 1Þ; let the control system enter the following loop:

Stage 0: Set sj ¼ 2a�1=2a � 1 and let subsystem (21) be sampled, and the control be updated, at
the instant tj : It can be verified that

jxðtjþ1Þj42a�1 ¼ ð2a � 1Þsj

(Note that this range for xðtjþ1Þ is only valid for the specified Y: The range would
become invalid if Y were larger or smaller.) Increase j by one and finish the control
cycle ending at the new tj :

Stage 1: Set

sj ¼ 2a�1sj�1

and let subsystem (21) be sampled and the control be updated. Increase j by one and
finish the control cycle ending at the new tj :

Repeat this stage for a total of m� 1 control cycles. Note that the bound of xðtjÞ
shrinks by 2a�1 each time.

Stage 2: After repeating the cycles in Stage 1,

jxðtjÞj42mða�1Þ

Set sj ¼ 0 and run the next k control cycles without sampling, after which j increase by
k and

jxðtjÞj42mða�1Þ � 2ka41

The last inequality holds because a4m=ðmþ kÞ:
Return to Stage 0.

Remark 5.1

(1) The above procedure repeats itself every mþ k control cycles, in which one-bit samples
are taken for m times. Thus the average data rate is

Ra ¼
m

mþ k
Y�1 ¼

m

mþ k
log2 e

which is arbitrarily close to the theoretical limit a log2 e:
(2) However, the above procedure requires precise knowledge of Y to operate. Although the

procedure can be modified to accommodate a range of values for Y; fairly good
knowledge of Y is still needed for effective reduction of the average data rate. This
somewhat limits its use in cases where the communication channel capacity is uncertain.

5.2. A robust approach

The rest of this paper will focus on the robust attention-varying technique, which is described
below. Let the control system enter the following loop:

Stage 0: Set sj ¼ 1þ k and let subsystem (21) be sampled at every common sampling instant
tj : If xðtjnÞ is the first sample that indicates the state trajectory has crossed the origin,
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then

jxðpjnÞj4ð2a � 1Þð1þ 2kÞ

(Note that if Y takes the nominal value (20), then the above range is tight for xðpjnÞ:
If Y takes a smaller value, the range is not tight, but still valid. This is a crucial
feature that ensures the robustness of our procedure with regard to varying Y; hence
varying data rate.) Go to the next step upon getting such a sample.

Stage 1: Set

sjn ¼ ð2a � 1Þðsjn�1 þ kÞ þ k

Maintain this value for sj until or unless the algorithm returns to this step.
Stage 2: Find the largest integer k such that

ð2aðkð1�OÞþOÞ � 1Þðsjn þ kÞ51

Stage 3: If k52; set the sampling frequency to once every k atomic control cycles. (i.e. the
control cycle for this subsystem becomes kYð1� OÞ þYO:) Wait until the state
trajectory crosses the origin again. Then return to Stage 0.

Stage 4: If k52; wait until the state trajectory crosses the origin, then let jn be the index of the
first sample that indicates this crossing and go to Stage 1.

The block diagram of the above procedure is shown in Figure 5. It is easy to verify that bounded
response is ensured.

Remark 5.2

(1) Above is the technique we propose for allocating communication among the decoupled
virtual subsystems. We will show that it reduces the average data-rate requirements. Note
that when the average data-rate requirement for each individual virtual subsystem is close
to the theoretical minimum, so is that of the overall system.

(2) This technique does not depend on precise knowledge of Y: When the available
data rate increases and Y becomes smaller, the state trajectory will not only remain
bounded, but also stay closer to the origin. With infinite data rate, the state will
converge to 0.

(3) Moreover, although the knowledge of O is helpful, it is not necessary. O can be replaced
by any of its lower bounds, or one can simply assume O ¼ 0 to apply the procedure, and
still get bounded response and reduced average data rate requirement.

(4) The effect of Stage 1 in our algorithm is to reduce the size of the attracting set for motions
of the controlled system. Techniques to accomplish similar objectives have been reported
in [6, 9, 10].

(5) In addition, the present technique can be further synthesized with the ‘side-channel’
technique in [9] to achieve asymptotic stability.

(6) When

k5
1� 2a�1

2að2�OÞ � 1

our procedure operates in a trivial way. Specifically, the updates in Stage 1 approach a
limit such that k52 is never satisfied and Stage 3 is never reached. The average
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data-rate requirement is not reduced then. To illustrate the magnitude of disturbance that
can result in this degradation, consider a ¼ 0:9; O ¼ 0:2; the above inequality becomes
k50:0323: Also consider a ¼ 0:6; O ¼ 0:1; the inequality becomes k50:2011:

Next, we calculate the data-rate requirements. First, consider the base data-rate. If we set the
nominal Y to ðamaxlog2 eÞ

�1 where amax is the largest eigenvalue of the system, then the base
data-rate requirement becomes no greater than that of the simple strategy, which is acceptable.
Further reducing Rb seems difficult in general but is possible for specific systems (sets of
eigenvalues), e.g. consider a four dimensional system with a1 ¼ 1 and a2; a3; a4 smaller than but
roughly equal to 1

3
: In terms of producing bounded response with coarsely quantized control, let

the atomic control cycle length be Y ¼ 1=log2 e; the controller only needs to send a two-bit
command each time. One bit will be dedicated to the fastest mode a1 and the three slower modes

control cycle

control cycle

σj = 1+κ, no skipping

Yes

No

No

Yes

Yes

No

Find the largest integer    k

s.t.   2

Set the sampling frequency to once
every  k  atomic control cycles.

x(tj) x(tj-1) < 0 ?

x(tj ) x(tj-1) < 0 ?

k > 2 ?

a (k(1-Ω)+Ω)

σj = (2a-1)(σj-1+κ)+κ

(σ+jκ) < 1

Figure 5. Block diagram of the robust attention varying data-rate allocation technique.
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take turns using the other bit. Then both the base data-rate and the average data-rate
requirements are close to the theoretical minimum.

In the rest of this section, we calculate the average data rate under this technique. The closed-
form calculation seems hard for arbitrary sets of parameters. But some particular values of a do
allow closed-form calculations.

First, suppose Y ¼ ðlog2 eÞ
�1; O ¼ 0; k ¼ 0 and a satisfies

ð22a � 1Þð2a � 1Þ ¼ 1 ð24Þ

Assume the initial state xðt0Þ is uniformly distributed in ð�1; 0Þ: Then the sampling interval of
this subsystem is switched from Y to 2Y whenever the state trajectory crosses the origin in the
positive direction (negative to positive), and it is switched back when a crossing happens in the
opposite direction. The state trajectory is contained in ð�1; 2a � 1Þ (see the state-transition
graph in Figure 6). To calculate the average data rate, we need to examine how much time the
system spends with sampling interval Y; and how much with 2Y:

Call the state transition each between two adjacent samples in the sampling sequence
a step and call the collection of steps between the instants when s is reset to 1 a round. Index
the rounds with l: Let the number of steps with sampling interval Y in the lth round be Ql

and that with 2Y be Sl : Now consider the first round. Q1 ¼ 1; 2; . . . is a discrete-valued
random variable.

PðQ1 ¼ qÞ ¼Pð2�qa � 14xðt0Þ52�ðq�1Þa � 1Þ

¼ 2�qað2a � 1Þ ð25Þ

(1,1)

2
a
-1

(-1,-1)

x(tj+1)

x (tj)

Figure 6. State transition for the special case.
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The steps in the second half of round 1, S1; is also a discrete-valued random variable taking
value in all positive integers

PðS1 ¼ s;Q1 ¼ qÞ ¼P 1� 2�2ðs�1Þa4
xðtQ1

Þ
2a � 1

51� 2�2sa; Q1 ¼ q

� �

¼Pð1� 2�2ðs�1ÞaÞ4
ðxðt0Þ þ 1Þ2qa � 1

ð2a � 1Þ
51� 2�2sa

¼ 2�qa � 2�2sa � ð22a � 1Þð2a � 1Þ: ð26Þ

From (25) and (26),

PðS1 ¼ sjQ1 ¼ qÞ ¼ 2�2sað22a � 1Þ ð27Þ

So, S1 is independent of the outcome of Q1 and

PðS1 ¼ sÞ ¼ 2�2sað22a � 1Þ ð28Þ

Similarly, the outcomes of Ql’s and Sl’s in different rounds are independent of each other. Ql’s
and Sl’s are also i.i.d., respectively. (Although all the randomness comes from the initial
condition.) Note that we do not have this nice property for an arbitrary a: Then, the average
data rate for this subsystem is

Ra !
E½Q� þ E½S�
E½Q� þ 2E½s�

log2 e w:p:1: ð29Þ

It is easy to calculate that

E½Q� ¼
2a

2a � 1
and E½S� ¼

22a

22a � 1
ð30Þ

To satisfy (24), a� 0:6942: Then from (29) and (30), Ra;sub ! 0:7340 � log2 e with probability 1.
The average data rate here exceeds the theoretical minimum by only 5.7%.

Above is the simplest case where the average data rate can be calculated in closed form. In
fact, similar calculations hold for all a’s that satisfy

ð2ka � 1Þð2a � 1Þm ¼ 1� 2�qa ð31Þ

for some integers k 2 f2; 3; . . .g; m 2 f1; 2; . . .g; q 2 f1; 2; . . .g: These are the cases in which
Stages 1, 2 and 4 of the procedure (reducing the size of the attracting set) are repeated for m
times before Stage 3 is reached; and in Stage 3, only one sample is taken in every k atomic
control cycles. Call the steps between the instants when xðtÞ crosses the origin a subround. Then
q is the maximum number of steps in the rounds immediately after s is reset to 1. Note that all
the other subrounds may contain infinite number of steps. The average data rates in these
cases are

Ra !
Pm

r¼1 E½Q
ðrÞ� þ E½S�Pm

r¼1 E½QðrÞ� þ k � E½S�
log2 e w:p:1: ð32Þ
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where

E½Qð1Þ� ¼
Xq
i¼1

i � 2�ia
2a � 1

1� 2�qa

E½QðrÞ� ¼
2a

2a � 1
; r ¼ 2; . . . ;m

and

E½S� ¼
2ka

2ka � 1
ð33Þ

6. SIMULATIONS

This section shows simulation results for cases that do not allow explicit calculations like those
shown in the last section. First, in Figure 7, the results (dotted line for simulation results and
diamonds for calculated results) are plotted together with the theoretical minimum data rates.
The figure shows that the required average data rates with our technique are very close to the
theoretical minimum.

Next, in Figure 8, the average data rate under the robust attention varying technique is
plotted in dotted line for the cases in which disturbance and sampling-actuation asynchronism
are present. Plotted in solid line, the tightest lower bound for required average data rate
corresponding to this case is

Rn

a5
a � log2 e

log2ð1þ 1=ð1þ 2kÞÞ
�

1

1� O
ð34Þ
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Figure 7. Average data rate with robust attention varying.
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Finally, Figure 9 plots a state trajectory of the (sub)system for the case where the actual data
rate is much higher than the nominal value. It shows that the state is well contained around the
origin by the control with the high data rate.
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Figure 8. Average data rate with the robust attention varying, the case with disturbance and
asynchronism. Assume k ¼ 0:02 and O ¼ 0:2:
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Figure 9. State trajectory with high data rate. The data rate is 10 times higher than the
nominal value. k ¼ 0:1; O ¼ 0:2:
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7. CONCLUSION

In [8], it was noted that quantized implementations of classical feedback designs typically
require data rates in the feedback channel which are significantly higher than the theoretically
minimum. In the present paper, we have proposed a novel coding approach utilizing a form of
‘distributed intelligence’ together with the concept of a virtual system. Further, we discussed
feedback communication scheduling techniques aimed at efficiently allocating the available
communication bandwidth among different modes. In particular, the robust attention-varying
technique that we proposed, combined with the virtual systems approach for feedback and
control coding, allows operation of the closed-loop system that is robust with respect to
variations in the feedback channel capacity, and also provides satisfactory performance at data
rates near the theoretical minimum.

In this paper, we have restricted our discussion to systems with distinct real eigenvalues. Cases
with Jordan blocks of sizes larger than one are more complicated, see [13]. However, the
advantages of using small control alphabets, as seen in the scalar Jordan blocks cases, are still
worth considering. In addition, our approach of control decoupling, and that of data-rate
allocation by identifying opportunities of removing attention from relatively slow modes of the
system, are still applicable in a qualitative sense.

There are many interesting open questions regarding source coding for feedback control over
data-rate constrained communications channels. While coding techniques can be proposed
which actually provide for bounded system response when operation is arbitrarily near the
theoretical minimum, those of which we are aware do not have the robustness to variations in
channel capacity that we have discussed above. Current research is aimed at understanding the
tradeoffs involving such robustness, ability to operate at extremely low data rates, and other
quality of performance issues.
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