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Introduction

 Objective: Study relative advantages of alternative
human control approaches in problems involving
teams of autonomous vehicles

 Paradigm: teams execute diverse spatially distributed

tasks In uncertain environments
« Uncertain nature, number of tasks
» Risk of vehicle loss

« Combine aspects of exploration and exploitation
 Must trade off searching for potential tasks versus exploiting
known tasks

 Focus: Develop vehicle control algorithms under
varying levels of control



Experiment Facility

 Multiple robots search for and perform tasks at BU’s Mechatronics
Lab
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Initial Problem: Task Allocation

 Problem paradigm: Find and correctly classify objects in
field of interest
- Finite number of areas that may contain objects

- Multiple actions possible per area

- Obtain different quality of information: search, image at different resolutions
- Quality of action increases with time used in action

- Multiple agents in team, with overlapping fields of regard

 Objective: adaptive scheduling of team activities to find
and correctly classify objects of interest

- Team member action: select area and mode to observe, collect and
communicate information to rest of team members

- Trade off search for new objects versus obtaining high quality
Information on known objects

- No risk of platform loss



Nature of Team Decision Problem

 Control information dynamics
- Control flow of information on objects by selecting actions
- Process information in Bayesian setting using statistical models
- Dynamics: Bayesian inference

 Sequential decision problem: select next actions based
on collected information

 Objective: Bayes classification cost

- After fixed amount of sensing resource, minimize expected
classification error cost (terminal cost only)

- Related to Cohen-Holmes inferencing paradigm, but without time

penalty

- Some differences: multiple actions, potentially multiple classes of objects,
search



« Multiple sites to search and classify objects
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« 3 Agents with different fields of regard (different colors)

« Initial focus: no motion (static field of regard, sites)
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N sites, each possibly
containing an object with S
possible types

Underlying state at each site: x;
In {0, ..., S} where 0 is empty

Information state at site n:
probability of site content it

Multiple agents K, M
observation modes per agent

Mode m from sensor k on site |
requires R, time

Mathematical Representation

Q5K

Decisions: u,(t) = 1: mode m,
agent k to site |

- Consumes resource Ry,

Finite total observation
resource per agentk: C,

Finite-valued observation y;,
for site I:

- Likelihood P(y;, %, Uim) Known

Assumption: Conditional
Independence of observations
across agents, time, modes



Variations on Human Control

1) Control by objective
Provide Bayes' objective in terms of cost of classification errors
Agent control algorithms seek to minimize expected Bayes cost

2) Control by geographical partitioning and local
objectives

Partition site responsibility among agents, adapting site allocation
In response to progress and workload

3) Control by functional partitioning:
Assign specific functions (modes of observation) to agents

4) Control by action: Select activities of agents adaptively
based on observations



) AFRL Notional Diagram for Alternative
Human Control
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Autonomous Control Algorithms:
Theory Overview

« Theorem: Under given assumptions, a sufficient statistic Is
[T (t) = {m,(t), ..., m\ (1)}, where wt; € S, Is conditional probability of
site I's content given past information measured on site i only

- NOTE:=> Joint conditional probability is product of marginals

* Information Dynamics (discrete event system): Bayes’ Rule

- Act locally on objects: only measured sotes change information state
- Similar to multi-armed bandit problem

i (t+ 1)

= P(z; = s|Yi(r + 1))
ﬂ-;)s (1) Hk,m P(yikm|xi — 5, uikm(T))
D s/ 7‘-},3,(7_) Hk},m P(yikm‘xi = s/, uikm(T))




Resource Constraints

 Constraints: for all observation sample paths
- Cannot exceed total sensor resource

T—1 N M
oY Y Riupmuipm(T) <O for all ke K

7=01=1m=1

- Lots of these: one constraint per sample path

- Only one action per sensor at each event time

N M
> > uppm (1) <1 (sensor timeline constraint)

1=1m=1



Objective

« Goal: accurate classification with given resources

- Cost: Minimize expected Bayes classification error as a final action
at random stopping time T
- Classification decision for object i v(T)

N

J=Y E{min c(z;(T), vi(T))}

1=1

 Result: Partially Observed Markov Decision Problem (POMDP) with
sample path constraints (product state space)

- Extension of classical POMDP (Smallwood-Sondik, ...) with
constraint states

- Solvable by DP recursion
- Too cumbersome!



Approximate Control Algorithm

« Relax sensor resource constraints to average value:
T N M

> > Y E{Ripmuigm(7)} < Cy

7=01=1m=1

- Single constraint per sensor, averaged across sample paths
- Chen-Blankenship model
- Expands admissible strategies, yields lower bound

 Allow each sensor to act on multiple objects per event time

M
Z uikm(T) <1

m=1

 Allow for mixed strategies
- Simplifies the integer programming nature of the relaxed problem
- Convexifies problem and maintains lower bound



Lower Bound POMDP

N
* Minimize J =} E{minc(x;(T),v;(T))}
i=1 '

 Subject to constraints
T N M

> > Y E{Ripnuigm (1)} < Cy

7=01=1m=1

M
Z uikm(T) <1
m=1
77%9(7_) ILmn P(yikm|wi — S, uzkm(T))

77%9(7_ +1) = 7
Dg 775 (7) [ PWikem|Ti = 875 i (7))

Wik (T) [ (7) ...y (7)] = {0, 1,..., M}



Weak Duality

» Use Lagrange multipliers to incorporate relaxed resource
constraints into objective: Lagrangian, for A >=0:

N T—1 M
JNY) = Ey{ D le(ui, z)+D A D D RikmUikm (7)) =D AeCl
i=1 k. 1=0m=1 k

« Lower bounds given by weak duality

min J(A\ < maxmin J(\ < mindJ
) (,7)_&0 ) (A7) < )| (7)

 Lagrangian problem is almost separable over objects
- Coupled only by feedback strategies!
- THEOREM: Can decouple bound computation across objects given dual variables

- For every coupled strategy, there is an equivalent random decoupled strategy that
achieves the same performance



Agent Price
Update

Hierarchical Pricing of Agent Time

/]\

Site 1
Subproblem

Site 2
Subproblem

min L(p,A\) = > min pi () (J; =
7; 1

for each price vector A\

 Agent prices: dual variables for consuming sensor time for

different sensors

- Subproblems solved optimally using small POMDP single object algorithms
- NS-dimensional POMDP reduced to N single object S-dimensional POMDPs +

dual

Site N
Subproblem

> NiR]

Note: minimum is achieved in pure strategies

)+ CiA;
;



Extension of Algorithms for Different
Human Control Approaches

1) Control by objective

- Baseline approach
- Assumes all agents know information state, adapt accordingly

2) Control by geographical partitioning and local objectives
- Define local objectives for each agent based on partitioning
- Agents process own information, select actions
- Human control reallocates responsibility

3) Control by functional partitioning
- Agents constrained to use specified modes
- Human control changes mode assignment

4)Control by action: No autonomy...



Example: Control by Objective

 Problem Description
- Objects: 100 sites with 3 types of objects: cars, military vehicles, trucks
Sensors
- Two modes: low-resolution (1 sec) and high-resolution (5 sec)
- Binary-valued measurements: military or not military

- LowI;Res separates cars from others, trucks; High-Res separates others, cars and
trucks

Constraints: 300 — 700 seconds of sensing time

Objective: MD for error of declaring military vehicle as car or truck, 1 for declaring
car or truck as military vehicle, all after terminal time

Prior distribution: 10 % military vehicles, 20 % trucks, 70 % cars

o Algorithms for multi-mode sensors

- Dynamic model predictive control algorithm using lower bound with 4 sensing
actions per object lookahead horizon

- Randomized model predictive control variation
- Greedy
- Lower bound for performance



Multi-mode Single Agent Results

* 500 seconds of observations

"Algorithms “outperform” bound!
« Monte Carlo simulation has 3 % less high value targets than model
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Two Agents, each with one mode

250 seconds of observations per agent

¢ Losds of performance over optimal partitioning of time among
modes
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Paradigm Extension: Mobile Agents

 Viewable sites depend on agent positions
- Slower time scale control
- Focus on trajectory selection and mode
- Sequencing of sites critical to set up future sites

« Mobile agents: trajectory and focus of attention control
- Models where electronic steering is not feasible
- Sequence-dependent setup cost for activities

 Simplify uncertainty: focus on risk of travel
- Visiting a site accomplishes task that gains task value
- Traversing among sites can result in vehicle failure and loss



Illustration of Problem

Q5K

« Nodes represent sites, arcs represent feasible transitions
« Agents can travel among nodes using arcs

 Transitions on arcs are risky

« Visiting sites can collect value at sites; however, multiple visits do

not add value
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N sites (nodes in a graph) each
containing a valued task

Task may require specific
agent type to visit site

Underlying state at each site: x;

task I1s done or not

Feasible transitions: arcs (i,))
with transition times t; and
probability of successful
transition p;

Multiple agents K, each agent
of a certain type

Mathematical Representation

Q5K

Decisions: paths for each
agent k among nodes

Finite total travel time
resource per agentk: T,

Agent states g;: current node
or 0 to indicate agent dead

Discrete event dynamics:
stochastic agent transitions,
site transitions when agents
visit

Task values only obtained
when task is not done yet



Variations on Human Control

1) Control by objective

Provide objectives in terms of values of site tasks and cost of
losing agents

Agent control algorithms seek to maximize expected net value
completed

2) Control by geographical partitioning

Partition site responsibility among agents, adapting site allocation
In response to progress and workload

3) Control by action: Select activities of agents adaptively
based on observations



Autonomous Control Algorithms:
Theory Overview

 Without considering risk, problem becomes instance of
multi-vehicle routing problem

- NP-Hard!

 Can formally write as integer multi-commodity flow
problem

- Useful for development of approximate algorithms that can compute
routes in real time

« Approximation approaches

- Start with layered network representation
- Lagrangian Relaxation
- Rollout techniques



Discrete Event Task Network
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Multicommodity Integer Flow Arcs: travel times

Levels: task order assigned to Agents Nodes: Valued sites
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Experiments
Single Single | Multi Multi Lagr. Lagr.
Problem | Depth Rollout | Rollout | Rollout |Rollout |Relax. | Relax.
Value Time Value Time Value Time
1 7 7000 0.16 9100 47 9000 109
1 14 11200 0.27 9900 68| 10900 249
1 20 12400 0.38| 10400 75 11100 360
2 7 6800 0.31 8400 193 9000 288
2 14 9400 0.61| 12600 339 | 13200 471
2 20 10400 0.70 | 14400 372 | 14400 684
3 7 15000 0.22| 18000 101 | 18000 146
3 14 24000 0.30| 23500 144 | 25000 330
3 20 24000 0.33| 23500 147 | 25000 452

* Rollout algorithms compete well with technique with much faster
solution times



Extension: Risk on Arcs

 Risky modification of integer multicommodity flow

- Risk depends on task sequence
- New objective to account for the possibility that scheduled tasks may not be

completed
- New constraints: multiple vehicles allowed to schedule same task (but each

vehicle can only schedule a task once)

n K Z  [z1-1
max » Vi 11— ][ |1- > ( 11 (Z > mi’,’zfpa,b) X waj’kpi,j)”
j=1 k=1 z1=1 \ z=1 aEEbEO(l) €L
subject to
Dx < d,
Eox < ey,
Nx=n

x e B



Risky Discrete Event Network
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 More than one UAV can visit each task
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Experiments
Single | Risky | Coord | Hybrid | Risky Coord

Prob | Depth | Risk \F;ollout Rollout | Ascent | Value Rollout | Ascent

alue Value Value Time (s) | Time (S)
1 7 L 6648 8343 8831 8589 0.28 1.88
1 14 L| 10158 | 10147 | 10538 | 10147 0.56 4.41
1 20 L| 10356 | 10441 | 11241| 10698 0.69 5.56
1 7 H 5435 6821 8249 7617 0.30 2.11
1 14 H 6963 8682 | 10536 9763 0.53 4.71
1 20 H 7427 | 10157 | 11090 | 10218 0.67 6.20
2 7 L 6328 8815 8933 8876 0.33 3.81
2 14 L 8697 | 12919 | 12532 | 12998 0.64 10.20
2 20 L 7375 | 13499 | 14351 | 14283 0.89 16.17
2 7 H 4366 1758 8530 8514 0.28 3.58
2 14 H 4896 | 11310 12322 | 12730 0.56 9.99
2 20 H 4634 | 12374 | 14114 | 13921 0.86 17.94

* Risk modeling important
» Tradeoff algorithm performance for computation speed




Experimental Platform for Research

 Multiple robots search for and perform tasks at BU’s Mechatronics
Lab
- Can provide varying levels of operator control: human-automata teams
- Control information displayed, risk to each operator using video




Future Activities

 Implement research experiments involving tasks with performance
uncertainty in test facility
- Vary tempo, size, uncertainty, information

 Implement autonomous team control algorithms to interact with
operators in alternative roles

- Supervisory control
- Team partners

 Extend existing algorithms to different classes of tasks
- Area search, task discovery, risk to platforms

« Develop approaches to assist operators in predicting behavior of
automata teams in uncertain environments

 Collaborate with MURI team to design and analyze experiments
Involving alternative structures for human-automata teams



