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Introduction

• Objective: Study relative advantages of alternative 
human control approaches in problems involving human control approaches in problems involving 
teams of autonomous vehicles

• Paradigm: teams execute diverse spatially distributed Paradigm: teams execute diverse spatially distributed 
tasks in uncertain environments
• Uncertain nature, number of tasks
• Risk of vehicle loss

• Combine aspects of exploration and exploitation
• Must trade off searching for potential tasks versus exploiting 

known tasks
• Focus: Develop vehicle control algorithms under Focus: Develop vehicle control algorithms under 

varying levels of control



Experiment Facility

• Multiple robots search for and perform tasks at BU’s Mechatronics 
Lab



Initial Problem: Task Allocation

• Problem paradigm: Find and correctly classify objects in 
field of interest
- Finite number of areas that may contain objects
- Multiple actions possible per area

- Obtain different quality of information: search, image at different resolutionsObtain different quality of information: search, image at different resolutions
- Quality of action increases with time used in action

- Multiple agents in team, with overlapping fields of regard

• Objective: adaptive scheduling of team activities to find 
and correctly classify objects of interest 
- Team member action: select area and mode to observe  collect and - Team member action: select area and mode to observe, collect and 

communicate information to rest of team members
- Trade off search for new objects versus obtaining high quality 

information on known objectsinformation on known objects
- No risk of platform loss



Nature of Team Decision Problem

• Control information dynamics
- Control flow of information on objects by selecting actions
- Process information in Bayesian setting using statistical models
- Dynamics: Bayesian inference

• Sequential decision problem: select next actions based 
on collected information
Obj ti  B  l ifi ti  t• Objective: Bayes classification cost
- After fixed amount of sensing resource, minimize expected 

classification error cost (terminal cost only)( y)
- Related to Cohen-Holmes inferencing paradigm, but without time 

penalty
- Some differences: multiple actions, potentially multiple classes of objects, S s p s, p y p ss s j s,

search



Illustration of Problem

• 3 Agents with different fields of regard (different colors)
• Multiple sites to search and classify objectsp y j
• Initial focus: no motion (static field of regard, sites)



Mathematical Representation

• N sites, each possibly 
containing an object with S 

• Decisions: uikm(t) = 1: mode m, 
agent k to site ig j

possible types
• Underlying state at each site: xi

in {0   S} where 0 is empty

g
- Consumes resource Rikm

• Finite total observation 
resource per agent k:  Cin {0, …, S} where 0 is empty

• Information state at site n: 
probability of site content πn

resource per agent k:  Ck

• Finite-valued observation yjkm
for site i:

• Multiple agents K, M 
observation modes per agent

f

- Likelihood P(yikm|xi, uikm) known

• Assumption: Conditional 
independence of observations • Mode m from sensor k on site i 

requires Rikm time
independence of observations 
across agents, time, modes 



Variations on Human Control

1) Control by objective
- Provide Bayes’ objective in terms of cost of classification errors
- Agent control algorithms seek to minimize expected Bayes cost

2) Control by geographical partitioning and local 
bj tiobjectives
- Partition site responsibility among agents, adapting site allocation 

in response to progress and workloadp p g

3) Control by functional partitioning: 
- Assign specific functions (modes of observation) to agentsg p ( ) g

4) Control by action: Select activities of agents adaptively 
based on observations



AFRL Notional Diagram for Alternative 
Human Control

• Murphey 2007
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Autonomous Control Algorithms: 
Theory Overview

• Theorem:  Under given assumptions, a sufficient statistic is                   
Π (t) = {π1(t), …, πN(t)}, where πi ∈ Sk is conditional probability of 
site i’s content given past information measured on site i onlysite i s content given past information measured on site i only
- NOTE: Joint conditional probability is product of marginals

• Information Dynamics (discrete event system): Bayes’ Ruley ( y ) y
- Act locally on objects: only measured sotes change information state
- Similar to multi-armed bandit problem



Resource Constraints

• Constraints: for all observation sample paths
- Cannot exceed total sensor resource

- Lots of these:  one constraint per sample path

- Only one action per sensor at each event time



Objective

• Goal:  accurate classification with given resources
- Cost:  Minimize expected Bayes classification error as a final action 

t d  t i  ti  Tat random stopping time T
- Classification decision for object i:  vi(T)

• Result: Partially Observed Markov Decision Problem (POMDP) with 
sample path constraints (product state space)
- Extension of classical POMDP (Smallwood-Sondik, …) with Extension of classical POMDP (Smallwood Sondik, …) with 

constraint states
- Solvable by DP recursion 

Too cumbersome!- Too cumbersome!



Approximate Control Algorithm

• Relax sensor resource constraints to average value:

- Single constraint per sensor, averaged across sample paths
- Chen-Blankenship model
- Expands admissible strategies, yields lower bound

• Allow each sensor to act on multiple objects per event time• Allow each sensor to act on multiple objects per event time

• Allow for mixed strategies
- Simplifies the integer programming nature of the relaxed problemp g p g g p
- Convexifies problem and maintains lower bound



Lower Bound POMDP 

• Minimize

• Subject to constraints



Weak Duality
• Use Lagrange multipliers to incorporate relaxed resource 

constraints into objective: Lagrangian, for λ >= 0: 

• Lower bounds given by weak duality

• Lagrangian problem is almost separable over objectsg g p p j
- Coupled only by feedback strategies!
- THEOREM: Can decouple bound computation across objects given dual variables
- For every coupled strategy, there is an equivalent random decoupled strategy that 

achieves the same performanceachieves the same performance



Hierarchical Pricing of Agent Time
Agent Price 

Update

Site 1
Subproblem

Site 2
Subproblem

Site N
Subproblem

• Agent prices: dual variables for consuming sensor time for • Agent prices: dual variables for consuming sensor time for 
different sensors
- Subproblems solved optimally using small POMDP single object algorithms
- NS-dimensional POMDP reduced to N  single object S-dimensional POMDPs + g j

dual



Extension of Algorithms for Different 
Human Control Approaches

1) Control by objective
- Baseline approach
- Assumes all agents know information state, adapt accordingly

2)Control by geographical partitioning and local objectives
- Define local objectives for each agent based on partitioning
- Agents process own information, select actions
- Human control reallocates responsibilityHuman control reallocates responsibility

3)Control by functional partitioning
- Agents constrained to use specified modesAgents constrained to use specified modes
- Human control changes mode assignment

4)Control by action: No autonomy…4)Control by action: No autonomy…



Example: Control by Objective
• Problem Description

- Objects: 100 sites with  3 types of objects: cars, military vehicles, trucks
- Sensors

- Two modes: low-resolution (1 sec) and high-resolution (5 sec)
- Binary-valued measurements: military or not military
- Low-Res separates cars from others, trucks; High-Res separates others, cars and 

trucks
- Constraints: 300 – 700 seconds of sensing time
- Objective: MD for error of declaring military vehicle as car or truck, 1 for declaring 

car or truck as military vehicle, all after terminal time
Prior distribution: 10 % military vehicles  20 % trucks  70 % cars- Prior distribution: 10 % military vehicles, 20 % trucks, 70 % cars

• Algorithms for multi-mode sensors
- Dynamic model predictive control algorithm using lower bound with 4 sensing 

actions per object lookahead horizon actions per object lookahead horizon 
- Randomized model predictive control variation
- Greedy
- Lower bound for performancep



Multi-mode Single Agent Results
• 500 seconds of observations
• `Algorithms “outperform” bound!
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Two Agents, each with one mode
• 250 seconds of observations per agent
• Loss of performance over optimal partitioning of time among 

modes
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Paradigm Extension: Mobile Agents

• Viewable sites depend on agent positions
- Slower time scale control
- Focus on trajectory selection and mode
- Sequencing of sites critical to set up future sites

• Mobile agents: trajectory and focus of attention control
- Models where electronic steering is not feasible
- Sequence-dependent setup cost for activitiesSequence dependent setup cost for activities

• Simplify uncertainty: focus on risk of travel
- Visiting a site accomplishes task that gains task valueVisiting a site accomplishes task that gains task value
- Traversing among sites can result in vehicle failure and loss



Illustration of Problem

• Nodes represent sites, arcs represent feasible transitions
• Agents can travel among nodes using arcsg g g
• Transitions on arcs are risky
• Visiting sites can collect value at sites; however, multiple visits do g ; , p

not add value 



Mathematical Representation

• N sites (nodes in a graph) each 
containing a valued task

• Decisions: paths for each 
agent k among nodesg

• Task may require specific 
agent type to visit site 

g g
• Finite total travel time 

resource per agent k:  Tk

• Underlying state at each site: xi
task is done or not

• Feasible transitions: arcs (i j) 

• Agent states qj: current node 
or 0 to indicate agent dead

• Discrete event dynamics: • Feasible transitions: arcs (i,j) 
with transition times tij and 
probability of successful 
transition pij

• Discrete event dynamics: 
stochastic agent transitions, 
site transitions when agents 
visittransition pij

• Multiple agents K, each agent 
of a certain type

visit
• Task values only obtained 

when task is not done yet



Variations on Human Control

1) Control by objective
- Provide objectives in terms of values of site tasks and cost of 

losing agents
- Agent control algorithms seek to maximize expected net value 

completed

2) Control by geographical partitioning
- Partition site responsibility among agents, adapting site allocation 

in response to progress and workload

3) Control by action: Select activities of agents adaptively 
based on observationsbased on observations



Autonomous Control Algorithms: 
Theory Overview

• Without considering risk, problem becomes instance of 
multi-vehicle routing problem
- NP-Hard!

• Can formally write as integer multi-commodity flow 
blproblem

- Useful for development of approximate algorithms that can compute 
routes in real time

• Approximation approaches
- Start with layered network representation
- Lagrangian Relaxation
- Rollout techniques
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Discrete Event Task Network
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Discrete Event Task Network
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Experiments

Problem Depth
Single 
Rollout 
Value

Single 
Rollout 
Time

Multi 
Rollout 
Value

Multi 
Rollout 
Time

Lagr. 
Relax. 
Value

Lagr. 
Relax. 
Time

1 7 7000 0.16 9100 47 9000 109
1 14 11200 0.27 9900 68 10900 249
1 20 12400 0.38 10400 75 11100 360
2 7 6800 0.31 8400 193 9000 288
2 14 9400 0.61 12600 339 13200 471
2 20 10400 0.70 14400 372 14400 6842 20 10400 0.70 14400 372 14400 684
3 7 15000 0.22 18000 101 18000 146
3 14 24000 0.30 23500 144 25000 330
3 20 24000 0 33 23500 147 25000 452

• Rollout algorithms compete well with technique with much faster 

3 20 24000 0.33 23500 147 25000 452

g p q
solution times



Extension: Risk on Arcs

• Risky modification of integer multicommodity flow
- Risk depends on task sequence

N  bj ti  t  t f  th  ibilit  th t h d l d t k   t b  - New objective to account for the possibility that scheduled tasks may not be 
completed

- New constraints: multiple vehicles allowed to schedule same task (but each 
vehicle can only schedule a task once)vehicle can only schedule a task once)



Risky Discrete Event Network
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• More than one UAV can visit each task• More than one UAV can visit each task



S C C

Experiments

Prob Depth Risk
Single 
Rollout 
Value

Risky 
Rollout 
Value

Coord 
Ascent 
Value

Hybrid 
Value

Risky 
Rollout 
Time (s)

Coord 
Ascent 
Time (s) 

1 7 L 6648 8343 8831 8589 0.28 1.88
1 14 L 10158 10147 10538 10147 0.56 4.41
1 20 L 10356 10441 11241 10698 0.69 5.56
1 7 H 5435 6821 8249 7617 0.30 2.11
1 14 H 6963 8682 10536 9763 0.53 4.71
1 20 H 7427 10157 11090 10218 0.67 6.20
2 7 L 6328 8815 8933 8876 0.33 3.81
2 14 L 8697 12919 12532 12998 0.64 10.20
2 20 L 7375 13499 14351 14283 0.89 16.17
2 7 H 4366 7758 8530 8514 0.28 3.58
2 14 H 4896 11310 12322 12730 0.56 9.99
2 20 H 4634 12374 14114 13921 0.86 17.94

• Risk modeling important
• Tradeoff algorithm performance for computation speed



Experimental Platform for Research

• Multiple robots search for and perform tasks at BU’s Mechatronics
Lab

Can provide varying levels of operator control: human automata teams- Can provide varying levels of operator control: human-automata teams
- Control information displayed, risk to each operator using video



Future Activities

• Implement research experiments involving tasks with performance 
uncertainty in test facility

Vary tempo  size  uncertainty  information- Vary tempo, size, uncertainty, information

• Implement autonomous team control algorithms to interact with 
operators in alternative roles
- Supervisory control
- Team partners

• Extend existing algorithms to different classes of tasks• Extend existing algorithms to different classes of tasks
- Area search, task discovery, risk to platforms

• Develop approaches to assist operators in predicting behavior of 
automata teams in uncertain environments

• Collaborate with MURI team to design and analyze experiments 
involving alternative structures for human-automata teamsinvolving alternative structures for human automata teams


