Team Task Allocation and Routing under Human Guidance

David Castañón

Darin Hitchings

Boston University

Center for Information and Systems Engineering
Introduction

• **Objective:** Study relative advantages of alternative human control approaches in problems involving teams of autonomous vehicles

• **Paradigm:** teams execute diverse spatially distributed tasks in uncertain environments
 - Uncertain nature, number of tasks
 - Risk of vehicle loss

• **Combine aspects of exploration and exploitation**
 - Must trade off searching for potential tasks versus exploiting known tasks

• **Focus:** Develop vehicle control algorithms under varying levels of control
Experiment Facility

• Multiple robots search for and perform tasks at BU’s Mechatronics Lab
Initial Problem: Task Allocation

- **Problem paradigm: Find and correctly classify objects in field of interest**
 - Finite number of areas that may contain objects
 - Multiple actions possible per area
 - Obtain different quality of information: search, image at different resolutions
 - Quality of action increases with time used in action
 - Multiple agents in team, with overlapping fields of regard

- **Objective: adaptive scheduling of team activities to find and correctly classify objects of interest**
 - Team member action: select area and mode to observe, collect and communicate information to rest of team members
 - Trade off search for new objects versus obtaining high quality information on known objects
 - No risk of platform loss
Nature of Team Decision Problem

• **Control information dynamics**
 - Control flow of information on objects by selecting actions
 - Process information in Bayesian setting using statistical models
 - Dynamics: Bayesian inference

• **Sequential decision problem: select next actions based on collected information**

• **Objective: Bayes classification cost**
 - After fixed amount of sensing resource, minimize expected classification error cost (terminal cost only)
 - Related to Cohen-Holmes inferencing paradigm, but without time penalty
 - Some differences: multiple actions, potentially multiple classes of objects, search
Illustration of Problem

- 3 Agents with different fields of regard (different colors)
- Multiple sites to search and classify objects
- Initial focus: no motion (static field of regard, sites)
Mathematical Representation

- N sites, each possibly containing an object with S possible types
- Underlying state at each site: x_i in $\{0, \ldots, S\}$ where 0 is empty
- Information state at site n: probability of site content π_n
- Multiple agents K, M observation modes per agent
- Mode m from sensor k on site i requires R_{ikm} time
- Decisions: $u_{ikm}(t) = 1$: mode m, agent k to site i
 - Consumes resource R_{ikm}
- Finite total observation resource per agent k: C_k
- Finite-valued observation y_{jkm} for site i:
 - Likelihood $P(y_{ikm}|x_i, u_{ikm})$ known
- Assumption: Conditional independence of observations across agents, time, modes
Variations on Human Control

1) Control by objective
 - Provide Bayes’ objective in terms of cost of classification errors
 - Agent control algorithms seek to minimize expected Bayes cost

2) Control by geographical partitioning and local objectives
 - Partition site responsibility among agents, adapting site allocation in response to progress and workload

3) Control by functional partitioning:
 - Assign specific functions (modes of observation) to agents

4) Control by action: Select activities of agents adaptively based on observations
AFRL Notional Diagram for Alternative Human Control

- Murphey 2007

System-Level Performance Measures
- Success:
 - Target Value Destroyed
 - False Target Rate, ...
- Clarity of intent: human, machine
- Quality of decisions: Workload Margin
- Stability \rightarrow Criticality
- Flexibility/robustness \rightarrow Scenario complexity...

Criticality $\sim \frac{\text{Cost of wrong decision}}{\text{System/decision time constant}}$
Autonomous Control Algorithms: Theory Overview

- **Theorem:** Under given assumptions, a sufficient statistic is $\Pi(t) = \{\pi_1(t), \ldots, \pi_N(t)\}$, where $\pi_i \in S_k$ is conditional probability of site i’s content given past information measured on site i only
 - **NOTE:** Joint conditional probability is product of marginals

- **Information Dynamics (discrete event system): Bayes’ Rule**
 - Act locally on objects: only measured sites change information state
 - Similar to multi-armed bandit problem

$$
\pi^{S}_i(\tau + 1) \equiv P(x_i = s | Y_i(\tau + 1)) = \frac{\pi^{S}_i(\tau) \prod_{k,m} P(y_{ikm} | x_i = s, u_{ikm}(\tau))}{\sum_{s'} \pi^{S'}_i(\tau) \prod_{k,m} P(y_{ikm} | x_i = s', u_{ikm}(\tau))}
$$
Resource Constraints

- **Constraints:** *for all observation sample paths*
 - *Cannot exceed total sensor resource*
 \[
 \sum_{\tau=0}^{T-1} \sum_{i=1}^{N} \sum_{m=1}^{M} R_{ikm} u_{ikm}(\tau) \leq C_k \text{ for all } k \in K
 \]
 - *Lots of these: one constraint per sample path*
 - *Only one action per sensor at each event time*
 \[
 \sum_{i=1}^{N} \sum_{m=1}^{M} u_{ikm}(\tau) \leq 1 \text{ (sensor timeline constraint)}
 \]
Objective

- **Goal:** accurate classification with given resources
 - Cost: Minimize expected Bayes classification error as a final action at random stopping time T
 - Classification decision for object i: $v_i(T)$

$$J = \sum_{i=1}^{N} E\{\min_{v_i} c(x_i(T), v_i(T))\}$$

- **Result:** Partially Observed Markov Decision Problem (POMDP) with sample path constraints (product state space)
 - Extension of classical POMDP (Smallwood-Sondik, ...) with constraint states
 - Solvable by DP recursion
 - Too cumbersome!
Approximate Control Algorithm

- Relax sensor resource constraints to average value:
 \[
 \sum_{\tau=0}^{T} \sum_{i=1}^{N} \sum_{m=1}^{M} E\{R_{ikm}u_{ikm}(\tau)\} \leq C_k
 \]
 - Single constraint per sensor, averaged across sample paths
 - Chen-Blankenship model
 - Expands admissible strategies, yields lower bound

- Allow each sensor to act on multiple objects per event time
 \[
 \sum_{m=1}^{M} u_{ikm}(\tau) \leq 1
 \]

- Allow for mixed strategies
 - Simplifies the integer programming nature of the relaxed problem
 - Convexifies problem and maintains lower bound
Lower Bound POMDP

- Minimize \(J = \sum_{i=1}^{N} E\{\min_{\nu_i} c(x_i(T), \nu_i(T))\} \)

- Subject to constraints

\[
\sum_{\tau=0}^{T} \sum_{i=1}^{N} \sum_{m=1}^{M} E\{R_{ikm}u_{ikm}(\tau)\} \leq C_k
\]

\[
\sum_{m=1}^{M} u_{ikm}(\tau) \leq 1
\]

\[
\pi_i^s(\tau + 1) = \frac{\pi_i^s(\tau) \prod_m P(y_{ikm}|x_i = s, u_{ikm}(\tau))}{\sum_{s'} \pi_i^{s'}(\tau) \prod_m P(y_{ikm}|x_i = s', u_{ikm}(\tau))}
\]

\(u_{ikm}(\tau) : [\pi_1(\tau) \ldots \pi_N(\tau)] \to \{0, 1, \ldots, M\} \)
Weak Duality

- Use Lagrange multipliers to incorporate relaxed resource constraints into objective: Lagrangian, for $\lambda \geq 0$:

$$J(\lambda, \gamma) = E_\gamma \left\{ \sum_{i=1}^{N} [c(v_i, x_i) + \sum_k \lambda_k \sum_{\tau=0}^{T-1} \sum_{m=1}^{M} R_{ikm} u_{ikm}(\tau)] \right\} - \sum_k \lambda_k C_k$$

- Lower bounds given by weak duality

$$\min_{\gamma} J(\lambda, \gamma) \leq \max_{\lambda \geq 0} \min_{\gamma} J(\lambda, \gamma) \leq \min_{\gamma} J(\gamma)$$

- Lagrangian problem is almost separable over objects
 - Coupled only by feedback strategies!
 - **Theorem**: Can decouple bound computation across objects given dual variables
 - For every coupled strategy, there is an equivalent random decoupled strategy that achieves the same performance
Hierarchical Pricing of Agent Time

\[\min_p L(p, \lambda) = \sum_i \min_{p_i} p_i(\gamma_i)(J_i^{\gamma_i} - \sum_j \lambda_j R_{ij}^{\gamma_i}) + \sum_j C_j \lambda_j \]

Note: minimum is achieved in pure strategies for each price vector \(\lambda \)

- **Agent prices: dual variables for consuming sensor time for different sensors**
 - Subproblems solved optimally using small POMDP single object algorithms
 - NS-dimensional POMDP reduced to N single object S-dimensional POMDPs + dual
Extension of Algorithms for Different Human Control Approaches

1) Control by objective
 - Baseline approach
 - Assumes all agents know information state, adapt accordingly

2) Control by geographical partitioning and local objectives
 - Define local objectives for each agent based on partitioning
 - Agents process own information, select actions
 - Human control reallocates responsibility

3) Control by functional partitioning
 - Agents constrained to use specified modes
 - Human control changes mode assignment

4) Control by action: No autonomy...
Example: Control by Objective

• **Problem Description**
 - Objects: 100 sites with 3 types of objects: cars, military vehicles, trucks
 - Sensors
 - Two modes: low-resolution (1 sec) and high-resolution (5 sec)
 - Binary-valued measurements: military or not military
 - Low-Res separates cars from others, trucks; High-Res separates others, cars and trucks
 - Constraints: 300 – 700 seconds of sensing time
 - Objective: MD for error of declaring military vehicle as car or truck, 1 for declaring car or truck as military vehicle, all after terminal time
 - Prior distribution: 10 % military vehicles, 20 % trucks, 70 % cars

• **Algorithms for multi-mode sensors**
 - Dynamic model predictive control algorithm using lower bound with 4 sensing actions per object lookahead horizon
 - Randomized model predictive control variation
 - Greedy
 - Lower bound for performance
Multi-mode Single Agent Results

- 500 seconds of observations
- ‘Algorithms “outperform” bound!
 - Monte Carlo simulation has 3% less high value targets than model
Two Agents, each with one mode

- **250 seconds of observations per agent**
- **Loss of performance over optimal partitioning of time among modes**

![Graph showing performance comparison](image-url)
Paradigm Extension: Mobile Agents

- **Viewable sites depend on agent positions**
 - Slower time scale control
 - Focus on trajectory selection and mode
 - Sequencing of sites critical to set up future sites

- **Mobile agents: trajectory and focus of attention control**
 - Models where electronic steering is not feasible
 - Sequence-dependent setup cost for activities

- **Simplify uncertainty: focus on risk of travel**
 - Visiting a site accomplishes task that gains task value
 - Traversing among sites can result in vehicle failure and loss
Illustration of Problem

- Nodes represent sites, arcs represent feasible transitions
- Agents can travel among nodes using arcs
- Transitions on arcs are risky
- Visiting sites can collect value at sites; however, multiple visits do not add value
Mathematical Representation

- N sites (nodes in a graph) each containing a valued task
- Task may require specific agent type to visit site
- Underlying state at each site: x_i, task is done or not
- Feasible transitions: arcs (i,j) with transition times t_{ij} and probability of successful transition p_{ij}
- Multiple agents K, each agent of a certain type
- Decisions: paths for each agent k among nodes
- Finite total travel time resource per agent k: T_k
- Agent states q_j: current node or 0 to indicate agent dead
- Discrete event dynamics: stochastic agent transitions, site transitions when agents visit
- Task values only obtained when task is not done yet
Variations on Human Control

1) Control by objective
 - Provide objectives in terms of values of site tasks and cost of losing agents
 - Agent control algorithms seek to maximize expected net value completed

2) Control by geographical partitioning
 - Partition site responsibility among agents, adapting site allocation in response to progress and workload

3) Control by action: Select activities of agents adaptively based on observations
Autonomous Control Algorithms: Theory Overview

• Without considering risk, problem becomes instance of multi-vehicle routing problem
 - NP-Hard!

• Can formally write as integer multi-commodity flow problem
 - Useful for development of approximate algorithms that can compute routes in real time

• Approximation approaches
 - Start with layered network representation
 - Lagrangian Relaxation
 - Rollout techniques
Discrete Event Task Network

- Level 1
- Level 2
- Level Z

- K Agents
- N Sites

Absorbing Node (Home Station)

Multicommodity Integer Flow
Levels: task order assigned to Agents
Arcs: travel times
Nodes: Valued sites
Discrete Event Task Network

Level 1 → Level 2

Level Z

<=1

K UAVs

N Tasks

Absorbing Node (Home Station)
Discrete Event Task Network

Level 1 → Level 2 → Level Z

K UAVs

N Tasks

<= distance remaining

Absorbing Node (Home Station)
Experiments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7000</td>
<td>0.16</td>
<td>9100</td>
<td>47</td>
<td>9000</td>
<td>109</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>11200</td>
<td>0.27</td>
<td>9900</td>
<td>68</td>
<td>10900</td>
<td>249</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>12400</td>
<td>0.38</td>
<td>10400</td>
<td>75</td>
<td>11100</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>6800</td>
<td>0.31</td>
<td>8400</td>
<td>193</td>
<td>9000</td>
<td>288</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>9400</td>
<td>0.61</td>
<td>12600</td>
<td>339</td>
<td>13200</td>
<td>471</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>10400</td>
<td>0.70</td>
<td>14400</td>
<td>372</td>
<td>14400</td>
<td>684</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>15000</td>
<td>0.22</td>
<td>18000</td>
<td>101</td>
<td>18000</td>
<td>146</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>24000</td>
<td>0.30</td>
<td>23500</td>
<td>144</td>
<td>25000</td>
<td>330</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>24000</td>
<td>0.33</td>
<td>23500</td>
<td>147</td>
<td>25000</td>
<td>452</td>
</tr>
</tbody>
</table>

- Rollout algorithms compete well with technique with much faster solution times
Extension: Risk on Arcs

- **Risky modification of integer multicommodity flow**
 - Risk depends on task sequence
 - New objective to account for the possibility that scheduled tasks may not be completed
 - New constraints: multiple vehicles allowed to schedule same task (but each vehicle can only schedule a task once)

\[
\begin{align*}
\max \sum_{j=1}^{n} V_j \left[1 - \prod_{k=1}^{K} \left[1 - \sum_{z=1}^{Z} \left(\prod_{z=1}^{Z} \left(\sum_{a \in \mathcal{L}} \sum_{b \in \mathcal{O}} x_{a,b}^{z,k} p_{a,b} \right) \times \sum_{i \in \mathcal{L}} x_{i,j}^{z1,k} p_{i,j} \right) \right] \right] \\
\text{subject to} \\
Dx \leq d, \\
E_2 x \leq e_2, \\
\mathcal{N} x = n \\
x \in \mathcal{B}
\end{align*}
\]
Risky Discrete Event Network

Level 1 Level 2 Level Z

<=1 FOR EACH VEHICLE

K UAVs

Absorbing Node (Home Station)

N Tasks

<= distance remaining

- More than one UAV can visit each task
<table>
<thead>
<tr>
<th>Prob</th>
<th>Depth</th>
<th>Risk</th>
<th>Single Rollout Value</th>
<th>Risky Rollout Value</th>
<th>Coord Ascent Value</th>
<th>Hybrid Value</th>
<th>Risky Rollout Time (s)</th>
<th>Coord Ascent Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>L</td>
<td>6648</td>
<td>8343</td>
<td>8831</td>
<td>8589</td>
<td>0.28</td>
<td>1.88</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>L</td>
<td>10158</td>
<td>10147</td>
<td>10538</td>
<td>10147</td>
<td>0.56</td>
<td>4.41</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>L</td>
<td>10356</td>
<td>10441</td>
<td>11241</td>
<td>10698</td>
<td>0.69</td>
<td>5.56</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>H</td>
<td>5435</td>
<td>6821</td>
<td>8249</td>
<td>7617</td>
<td>0.30</td>
<td>2.11</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>H</td>
<td>6963</td>
<td>8682</td>
<td>10536</td>
<td>9763</td>
<td>0.53</td>
<td>4.71</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>H</td>
<td>7427</td>
<td>10157</td>
<td>11090</td>
<td>10218</td>
<td>0.67</td>
<td>6.20</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>L</td>
<td>6328</td>
<td>8815</td>
<td>8933</td>
<td>8876</td>
<td>0.33</td>
<td>3.81</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>L</td>
<td>8697</td>
<td>12919</td>
<td>12532</td>
<td>12998</td>
<td>0.64</td>
<td>10.20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>L</td>
<td>7375</td>
<td>13499</td>
<td>14351</td>
<td>14283</td>
<td>0.89</td>
<td>16.17</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>H</td>
<td>4366</td>
<td>7758</td>
<td>8530</td>
<td>8514</td>
<td>0.28</td>
<td>3.58</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>H</td>
<td>4896</td>
<td>11310</td>
<td>12322</td>
<td>12730</td>
<td>0.56</td>
<td>9.99</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>H</td>
<td>4634</td>
<td>12374</td>
<td>14114</td>
<td>13921</td>
<td>0.86</td>
<td>17.94</td>
</tr>
</tbody>
</table>

- Risk modeling important
- Tradeoff algorithm performance for computation speed
Experimental Platform for Research

- Multiple robots search for and perform tasks at BU’s Mechatronics Lab
 - Can provide varying levels of operator control: human-automata teams
 - Control information displayed, risk to each operator using video
Future Activities

- Implement research experiments involving tasks with performance uncertainty in test facility
 - Vary tempo, size, uncertainty, information

- Implement autonomous team control algorithms to interact with operators in alternative roles
 - Supervisory control
 - Team partners

- Extend existing algorithms to different classes of tasks
 - Area search, task discovery, risk to platforms

- Develop approaches to assist operators in predicting behavior of automata teams in uncertain environments

- Collaborate with MURI team to design and analyze experiments involving alternative structures for human-automata teams