ME/SE 740

Lecture 9

Euler Angles and Euler’s Theorem

Euler Angles

Today we return to our examination of rotations of rigid bodies. We begin with a discussion about “Euler
Angles.” Consider the two rotations depicted in the figure below where the “north pole” is first rotated about
the z-axis through an angle 6 and this is followed by a rotation about the y-axis through an angle ¢. The north
pole ends up at point () on the unit sphere.

First rotate “north pole” /0
z about y-axis through 0
angle 6 1

Then rotate about z-axis
through angle ¢

Y

north pole ends up at
X Point Q on unit sphere

Figure 1: Two Rotations of the North Pole

These two rotations can be represented by:

cp —s¢p 0 cd 0 sb 0
s cp O 0 1 0 0
0 0 1 —s68 0 b 1

Suppose we are given an arbitrary 3 x 3 rotation (of the north pole):

Nge Oy Gy 0
Ny 0y Uy 0
N, 0, 1
and that both map the north pole (0,0,1)” to the same point:
cp —s¢p 0 cd 0 sb 0 Ng Oy Gy 0
s cp O 0O 1 0 0 | =\ ny oy ay 0
0 0 1 —s60 0 cb 1 n, 0, a, 1

Multiplying on the left both sides of this equation by the matrix inverses (in the appropriate order) we can write:



0 cd 0 —sb cp s¢p 0 Ng Oy Gy 0
0] = 0 1 0 —s¢ cop O Ny Oy Gy
1 s 0 o 0 0 1 N, 0, a, 1

o

where T maps (0,0,1)7 to (0,0,1)T .

Given a left action of a group G : M — M on a manifold M and a point m € M the set of elements g € G
such that g o m = m is a subgroup called the isotropy subgroup of M. We say that G has a left action on M if
for every g € G, g1 0 (g1 om) = (g1 0 g2)m for ¢g1,92 € G and m € M. In particular, the isotropy subgroup of
S03) (3 x 3 proper rotation matrices) corresponding to (0,0,1)7 is:

cp —sy 0
sy cp 0 | ="
0 0 1
There is a value of v, with 0 < 27 such that
cd 0 —sb cp s¢p 0 Ng 0z Ay 0 cp —sy 0 0
0 1 0 —s5¢ c¢p O Ny Oy Gy 0= s e O 0
s 0 b 0 0 1 n, 0, a, 1 0 0 1 1
Solving for 7, 0, @ we obtain:
Ng Oz Ay cp —s¢p 0 cd 0 sb cp —sy 0
Ny 0y ay | =\ s¢ cp O 0 1 0 s ey O
n, 0, a, 0 0 1 —s60 0 cf 0 0 1
0< ¢ < 2rm 0<o0<mn 0< ¢y <27
Tait-Bryan Angles
Ng Oy Gy cp —s¢p 0 cd 0 s0 1 0 0
Ny 0y ay | =1 s¢ cp O 0 1 0 0 cp —s9
n, 0, a, 0 0 1 —s6 0 cf 0 sy cy
0<¢<2r 0<0<m 0<y<2n

Euler’s Theorem (for us). Every 3 x 3 proper rotation X € SO(3) is a rotation about an axis by a certain
amount 4,0 < 6 < 7.

Suppose that X is given:
fle 0Op g
X=|n, o, a
Ny 0y Q

By Euler’s Theorem, there is a unit vector k and a rotation 0 < @ < 7 such that X is a rotation of 8 about k.



Figure 2: The axis k

Let C map (0,0,1)7 to l;, k= C(0,0,1)T. This implies:

Ky ag
ky = ay
k. Ay

There are two coordinate systems in which I want to consider rotation of 6 radians about k. Consider an arbi-
trary point on the sphere whose C frame coordinates and the base frame coordinates are:

Te Tp Tc Tc Ty
T

Ye | v | =C| v || v | =C Yb

Zc Zb Zc Zc Zb

respectively before rotation. They are:

cd —s6 0 Te cd —s6 0 Te
s ¢ 0 Ye and C'| s0 ¢ O Ye
0 0 1 Ze 0 0 1 Ze

after rotation respectively. Hence in terms of Base coordinates:

Ty cd —s6 0 Ty
Up — C| s6 & o |CT| w
Zb O O 1 Zb

Let



Ny Oy Qg

Ny 0z QA

The above product

cd —s6 0 Ng Oy (g el —s6 0 Ng Oy Ay
cl s&6 e 0 |CT= Ny 0y Gy s cf O Ny 0y Gy
0 0 1 N, 0, Qs 0 0 1 N, 0, G

ngcl + 0,80 —ngsl + oyl ay Ng Ny N

= nych + 0,50  —nysh +o,c0 ay O0x Oy O

n,cld +o0,80 —n,s0+o0,c0 a, ay ay a

The elements of this matrix product can be expressed as:

element(1,1) n2ch + 1,0,50 — N0, 80 + 0%c + a2 = (n2+02)ch + a2

element(2,1) NNyl + 13,0480 — 1y0,,80 + 00,0 + aga, = (Ngyny + 0;04)cl + (Ny0y — 11y04)S0 + Gz ay
element(3,1) : n,ngcld+ nz0,80 —n,0,80 + 0,0.,c0 + aga, = (n.ng+ 0,0.)c + (nzo, — n,0,)s0 + aza,
element(1,2) (ngny + 050y)cl + (0g1y — Nz0y)50 + agay

element(2, 2) (n2 4+ 02)ct + a

element (3, 2) (nzny + 0,04)cl + (nyo0, —n,0,)s0 + aya,

Recall that for i = z,y, z we have n? + 07 + a? = 1, and that n;n; + 0,0; + a;a; =0 for i # j, (CCT =1).

Furthermore, 7 X 0 = a.

k. Qg 0 —N, Ny 0y
ky = Qy = n, 0 —Ng 0y
k., a, Ny Ny 0 0,

The very complicated matrix above may be written more simply by eliminating n’s, o;s. In particular, the (1,1)
entry can be written as:

E2 4+ (1—k2)cl = ch + k2(1 — ch)

Continuing in this manner we can express every 3 x 3 rotation in the form:

k2(1 — cosf) + cos —k.sin® + kyky(1 —cosf)  kysin€ + kyk.(1 — cosf)
k,sin€ + kyk,(1 — cos9) k2(1 — cos6) + cos —kysin 6 + kyk.(1 — cos)
—kysin b + kyk,(1 —cosf)  kysin® + kyk,(1 — cosf) k2(1 — cos6) + cos

If we are given:



we can solve for (k;, k,,k.)T and 0. Take the trace of both sides:

Ny + 0y +a, = k2(1 — cos ) +cos€+k§(1 —cosf) +cosf + k2(1 — cosf) + cos 6
= (1 —cosf) + 3cosb
=1+42cosd
fip + 0, +a, — 1
2

unique solution if 0 < 7. Solve for . Then solve for k., ky, k. by looking at the off-diagonal terms.

— cosf =

o

k,sing = 24—
sin B)

ay — N

kysinf =

ysm 9
0. —a

kysing = 2
S111 D)



