
ME/SE 740

Lecture 9

Euler Angles and Euler’s Theorem

Euler Angles
Today we return to our examination of rotations of rigid bodies. We begin with a discussion about “Euler
Angles.” Consider the two rotations depicted in the figure below where the “north pole” is first rotated about
the z-axis through an angle θ and this is followed by a rotation about the y-axis through an angle φ. The north
pole ends up at point Q on the unit sphere.

Figure 1: Two Rotations of the North Pole

These two rotations can be represented by:

 cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 0
0
1


Suppose we are given an arbitrary 3× 3 rotation (of the north pole): nx ox ax

ny oy ay
nz oz az

 0
0
1


and that both map the north pole (0, 0, 1)T to the same point:

 cφ −sφ 0
sφ cφ 0
0 0 1

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 0
0
1

 =

 nx ox ax
ny oy ay
nz oz az

 0
0
1


Multiplying on the left both sides of this equation by the matrix inverses (in the appropriate order) we can write:

1



 0
0
1

 =

 cθ 0 −sθ
0 1 0
sθ 0 cθ

 cφ sφ 0
−sφ cφ 0

0 0 1

 nx ox ax
ny oy ay
nz oz az


︸ ︷︷ ︸

T

 0
0
1



where T maps (0, 0, 1)T to (0, 0, 1)T .

Given a left action of a group G : M −→ M on a manifold M and a point m ∈ M the set of elements g ∈ G
such that g ◦m = m is a subgroup called the isotropy subgroup of M . We say that G has a left action on M if
for every g ∈ G, g1 ◦ (g1 ◦m) = (g1 ◦ g2)m for g1, g2 ∈ G and m ∈ M . In particular, the isotropy subgroup of
SO3) ( 3× 3 proper rotation matrices) corresponding to (0, 0, 1)T is:

 cψ −sψ 0
sψ cψ 0
0 0 1

 = Ψ

There is a value of ψ, with 0 ≤ ψ2π such that cθ 0 −sθ
0 1 0
sθ 0 cθ

 cφ sφ 0
−sφ cφ 0

0 0 1

 nx ox ax
ny oy ay
nz oz az

 0
0
1

 =

 cψ −sψ 0
sψ cψ 0
0 0 1

 0
0
1


Solving for ~n,~o,~a we obtain:

 nx ox ax
ny oy ay
nz oz az

 =

 cφ −sφ 0
sφ cφ 0
0 0 1


︸ ︷︷ ︸

0 ≤ φ < 2π

 cθ 0 sθ
0 1 0
−sθ 0 cθ


︸ ︷︷ ︸

0 ≤ θ ≤ π

 cψ −sψ 0
sψ cψ 0
0 0 1


︸ ︷︷ ︸

0 ≤ ψ < 2π

Tait-Bryan Angles

 nx ox ax
ny oy ay
nz oz az

 =

 cφ −sφ 0
sφ cφ 0
0 0 1


︸ ︷︷ ︸

0 ≤ φ < 2π

 cθ 0 sθ
0 1 0
−sθ 0 cθ


︸ ︷︷ ︸

0 ≤ θ ≤ π

 1 0 0
0 cψ −sψ
0 sψ cψ


︸ ︷︷ ︸

0 ≤ ψ < 2π

Euler’s Theorem (for us). Every 3 × 3 proper rotation X ∈ SO(3) is a rotation about an axis by a certain
amount θ, 0 ≤ θ ≤ π.

Suppose that X is given:

X =

 n̄x ōx āx
n̄y ōy āy
n̄z ōz āz


By Euler’s Theorem, there is a unit vector ~k and a rotation 0 ≤ θ ≤ π such that X is a rotation of θ about ~k.
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Figure 2: The axis ~k

Let C map (0, 0, 1)T to ~k, ~k = C(0, 0, 1)T . This implies:

 kx
ky
kz

 =

 ax
ay
az


There are two coordinate systems in which I want to consider rotation of θ radians about ~k. Consider an arbi-
trary point on the sphere whose C frame coordinates and the base frame coordinates are:

 xc
yc
zc

 ,

 xb
yb
zb

 = C

 xc
yc
zc

 ,

 xc
yc
zc

 = CT

 xb
yb
zb


respectively before rotation. They are:

 cθ −sθ 0
sθ cθ 0
0 0 1

 xc
yc
zc

 and C

 cθ −sθ 0
sθ cθ 0
0 0 1

 xc
yc
zc


after rotation respectively. Hence in terms of Base coordinates: xb

yb
zb

 −→ C

 cθ −sθ 0
sθ cθ 0
0 0 1

CT

 xb
yb
zb


Let
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C =

 nx ox ax
ny oy ay
nz oz az


The above product

C

 cθ −sθ 0
sθ cθ 0
0 0 1

CT =

 nx ox ax
ny oy ay
nz oz az

 cθ −sθ 0
sθ cθ 0
0 0 1

 nx ox ax
ny oy ay
nz oz az


=

 nxcθ + oxsθ −nxsθ + oxcθ ax
nycθ + oysθ −nysθ + oycθ ay
nzcθ + ozsθ −nzsθ + ozcθ az

 nx ny nz
ox oy oz
ax ay az


The elements of this matrix product can be expressed as:

element(1, 1) : n2xcθ + nxoxsθ − nxoxsθ + o2xcθ + a2x = (n2x + 02x)cθ + a2x

element(2, 1) : nynxcθ + nxoysθ − nyoxsθ + ox0ycθ + axay = (nxny + oxoy)cθ + (nxoy − nyox)sθ + axay

element(3, 1) : nznxcθ + nxozsθ − nzoxsθ + ozoxcθ + axaz = (nznx + oxoz)cθ + (nxoz − nzox)sθ + axaz

element(1, 2) : (nxny + oxoy)cθ + (oxny − nxoy)sθ + axay

element(2, 2) : (n2y + o2y)cθ + a2y

element(3, 2) : (nzny + ozoy)cθ + (nyoz − nzoy)sθ + ayaz

Recall that for i = x, y, z we have n2i + o2i + a2i = 1, and that ninj + oioj + aiaj = 0 for i 6= j, (CCT = I).

Furthermore, ~n× ~o = ~a.

 kx
ky
kz

 =

 ax
ay
az

 =

 0 −nz ny
nz 0 −nx
−ny nx 0

 ox
oy
oz


The very complicated matrix above may be written more simply by eliminating n′is, o

′
is. In particular, the (1, 1)

entry can be written as:

k2x + (1− k2x)cθ = cθ + k2x(1− cθ)

Continuing in this manner we can express every 3× 3 rotation in the form:

 k2x(1− cos θ) + cos θ −kz sin θ + kxky(1− cos θ) ky sin θ + kxkz(1− cos θ)
kz sin θ + kxky(1− cos θ) k2y(1− cos θ) + cos θ −kx sin θ + kykz(1− cosθ)
−ky sin θ + kxkz(1− cos θ) kx sin θ + kykz(1− cos θ) k2z(1− cos θ) + cos θ


If we are given:  n̄x ōx āx

n̄y ōy āy
n̄z ōz āz
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we can solve for (kx, ky, kz)
T and θ. Take the trace of both sides:

n̄x + ōy + āz = k2x(1− cos θ) + cos θ + k2y(1− cos θ) + cos θ + k2z(1− cos θ) + cos θ

= (1− cos θ) + 3 cos θ

= 1 + 2 cos θ

=⇒ cos θ =
n̄x + ōy + āz − 1

2

unique solution if 0 ≤ θπ. Solve for θ. Then solve for kx, ky, kz by looking at the off-diagonal terms.

kz sin θ =
n̄y − ōx

2

ky sin θ =
āx − n̄z

2

kx sin θ =
ōz − āy

2
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