
ME/SE 740

Lecture 14

Types of Lie Subgroups of SE(3)

Theorem (Loncaric) A constraint on mechnism kinematics, f(g) = 0, is left (or right) invariant if and only
if f−1(0) is a subgroup of SE(3). Hence, the Lie subgroup types of SE(3) are of great interest.

Definition A subgroup J of SE(3) will be called a joint subgroup if there is a neighborhood U of the identity in
SE(3) and a pair of rigid bodies in contact such that inside U the set of all possible relative motions is identical
to J .

Figure 1: Lie Subgroup Types

Theorem: The only types of joint subgroups are T (1), SO(2), SO(2)p (the covering group of screw motions),
SO(2)

⊗
T (1), SE(2) and SO(3).

proof: The following arguments restrict the possibilities. First notice that if a body B can be translated (at
least locally) in all three directions then the space swept-out must exclude the constraining body and yet be
large enough to allow rotations about any axis. Therefore, if a joint subgroup included T (3), it must be all of
SE(3), and this is ruled out if we are talking about constrained motions. Similarly if B can be translated freely
in any plane, then the free space swept out by B must allow rotation about some perpendicular axis. Therefore,
a joint subgroup containing T (2) must include SE(2) as well.

These two observations exclude T (2), T (3), SE(2)p, and SE(2)
⊗
T (1) from cosideration. The remaining sub-

groups can be realized as joint subgroups.
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Note: Lower pairs are exactly types of joint subgroups.

Product of Exponentials

Consider a single strand kinematic chain:

Figure 2: Kinematic Chain

If we affix a right-handed triad of orthogonal vectors to the hinge point of each link, the the element of the group
that describes the position and orientation of the i+ 1st link in terms of the ith is:

(
Ai bi
0 1

)
e

 Si 0
0 0

θi


where the rotation is the allowed motion.

In terms of this labeling, the position and orientation of the triad at the free end of the chain is related to the
coordinate system at the base by:

T (θ1, · · · θn) = M1e

 S1 0
0 0

θ1

M2e

 S2 0
0 0

θ2

· · ·Mne

 Sn 0
0 0

θn


where

Mi =

(
Ai bi
0 1

)
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θi are the motion parameters and Ai, bi are the structural parameters. Since PeRP−1 = ePRP−1 we can use
the identity MeR = eMRM−1M to write:

T (θ1, · · · θn) = MeH1θ1eH2θ2 · · · eHnθn

= M1e

 S1 0
0 0

θ1

M2e

 S2 0
0 0

θ2

· · ·Mne

 Sn 0
0 0

θn


= M1M2e

M−1
2

 S1 0
0 0

M2θ1


e

 S2 0
0 0

θ2

M3 · · ·Mne

 Sn 0
0 0

θn


= M1M2e

M−1
2

 S1 0
0 0

M2θ1


M3e

M−1
3

 S2 0
0 0

M3θ2


· · ·Mne

 Sn 0
0 0

θn


= etc.

Questions for today:

1. How do we assign systematically coordinate frames to each type of link and joint?

2. Does the method of assignment differ from one type of joint to another?

3. Can we find key design parameters emerging from the group theory we have discussed?

Consider the two reference frames from consecutive links in some kinematic chain:

Figure 3: Consecutive Coordinate Frames

Specifying zi in terms of zi−1 requires 4 parameters. Specify xi by choosing:

1. normal direction to zi (1 dof)

2. a z coordinate along zi where xi is attached (1 dof)

A link is a rigid body that defines a relationship between two neighboring joint axes. Given a coordinate frame
associated with axis i there are 4 degrees of freedom in specifying axis i + 1. How do we define joint axes for
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each lower paired joint?

1. Revolute (SO(2)) zi is the axis of revolution

2. Prismatic (T (1)) zi is the axis of translation

3 Screw (SO(2)p) zi is the axis of motion

4. Cylindrical (SO(2)
⊗
T (1)) zi is the axis of motion

5. Planar (SE(2)) zi is normal to the motion and arbitrary placement in the plane

6. Spherical (SO(3)) zi is arbitrary passing through the center of rotation

Assigning coordinate frames to joint of Lower Pairs.

Given lower pair joints, assign axes zi consistently with above table. For any two axes in 3-space there is well
defined perpendicular distance between them (⊥ segment between axes is not unique if they are parallel but
distance is well defined). The amount of distance between zi−1 and zi is ai and is called the link length. The
axis xi−1 is defined by the unique direction from zi−1 to zi if these are skew. When ai−1 = 0, xi = zi−1

⊗
zi.

When zi−1 is parallel to zi there is some arbitrariness in choosing the xi−1 axis (more about this in the next
lecture). In addition to specifying how far zi is from zi−1, we must say how much it is twisted about the xi−1

axis, called αi (see below):

Figure 4: Defining αi−1
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