ME/SE 740
Lecture 12

Properties of Exponential Maps
Review of last lecture

There is a 1 — 1 correspondence between so(3) and R3:

0 —Ws3 Wo w1
w3 0 —w1 — W2
— Wy w1 0 ws

Establish a formal isomorphism:

w1 0 —Ws (%) 0 —Ws (%) w1
W= Wa = w3 0 —wq , w3 0 —wq = wWa
ws — W2 w1 0 — W2 w1 0 w3

Let v € R, w € R3 Qa3 x 3 skew symmetric matrix and define:
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and 0 € R3, the exponential et ¢ SE(3) (i.e., the exponential map takes se(3) into SE(3)).

proof 1: (brute force using the Peano-Baker series).
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Hence, e ¢ SO(3) is of the form we seek proving the Proposition.
proof 2: (more complicated but more insightful).

spacial case i) w = 0. Then:

Therefore, 8¢ € SE(3)

spacial case ii) w # 0, |lw|]| = 1. This is not so special as it may always be obtained by appropriate scaling of
0. Let

Then:

0 —wW3 W2 —w% — w§ Wi Wo Wy W3
ww X (wxv)+v] = ws 0 —w wrws —w? — w3 Wow3 v+7
—wy W 0 Wy W3 Wol'3 —w% — w%
= W[-v+9] =0



where we used the fact that @3 = —||w||?w and ||#||?> = 1. Hence:
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Now note (comes directly from the form of the Peano-Baker series):
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Therefore (assuming ||w|| =1 ):

e(% 8)9: ( e'g9 (I—ew‘g)wxv—l—}wx(wxv)—i—v]Q)

which is the Rodrigues’s formula for SE(3).
Given e* = B where A, B are n x n matrices and B given, when (how) can we solve for A?

Consider B € S£(2), (2 x 2 matrices with determinant 1), when is there a corresponding matrix A? One can see
that when

one cannot solve this equation (B has no real logarithm).

Theorem [Surjectivity of the exponential map se(3) — SE(3)]. Given g € SE(3), there exist w,v, € R* and
6 € R such that:

g:eéa where é: (
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proof: Let
g=<§ ﬁ’) ReSO(3), peR?

We ignore the trivial case in which R = I,p = 0 which can be solved in many different ways, one way being
6 = 0 and £ arbitrary.

case i) Let R =1,p =# 0. Then we let

case ii) Let R # I. Find (w,v). We write:

e (I —e")w x v+ [wx (wxv)+v]d
g—( : X 1 x (w x >

and solve. We have already seen there exists a unique unit vector w and @ € [0, 7] such that e = R. We only
need to solve:

p=(I—-e")w x v+ [wx (wxv)+v]d

which is a linear equation in v. Write w x v = v, w X (w x v) = w?v. Then the equation may be re-written as:

(I — e + (w2 + I)6Jv =p

This can be solved (uniquely) for v, provided that the determinant of [(I — e®?)w + (w2 + I)6] # 0. Now,
(I +%*)w = w and @ have a 1-D null space (since 1wWw = 0) spanned by w. Let v1,vs be linearly independent
vectors such that w - v; = 0. Without loss of generality, let v1,vs be columns of @. Then any v € R3 may be
written uniquely as:

UV = a1v1 + a0 + azw

Let us compute [(I — e??)w + (w? + I)0]v:

(I 4+ w?)(a1v1 + agvy + asw) = a1(I 4+ w?)vy + as(I + w?)vy + as(I + w?)w
ai (v — v1) +as(ve — v2) + azw = azw
—_————

check with any columns of W



Also

(I- e@")w(am +agus +azw) = (I — ema)w(alvl + asvs)

since wWw=0

= (I — e“w)(blvl + b2'l}2)
where not both b1, bs are equal to 0 since w is nonsingular on span {vy,vs}.
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We know that we can change basis for the span {v;,v2} = W™, such that in the new basis (I —e®?) is represented

by a 2 X 2 matrix:
1 0 [ cos 0 —sind
0 1 sinf  cos@

This is nonsingular if and only if

cosf) —sinf
sinf  cosf

)%I@e@%u

Hence if v = (aj1v1 + asvg + azw), with not all a; = 0, then

(I — e + (w? + I)]v = byvy + bovy + azw

with not all coefficients equal to 0. Q.E.D.

Next time Chasle’s Theorem.



