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1 Review

eAt = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · ·

Suppose A is such that there exists a change basis P so that

P−1AP = Λ =

(
λ1

λ2

)
Then

eAt = P

(
eλ1t 0

0 eλ2t

)
P−1

SPECIFIC EXAMPLE:

A =

(
−3/2 1/2

1/2 −3/2

)
The characteristic polynomial is∣∣∣∣−3/2− λ 1/2

1/2 −3/2− λ

∣∣∣∣ = λ2 + 3λ+ 2 = (λ+ 1)(λ+ 2)

Eigenvalues are λ1 = −1, λ2 = −2

Find the corresponding linear independent eigenvectors:

λ1 = −1 (
−3/2 + 1 1/2

1/2 −3/2 + 1

)
=

(
−1/2 1/2
1/2 −1/2

)
The eigenvector is

(
1
1

)
∗This work is being done by various members of the class of 2012
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λ1 = −2 (
−3/2 + 2 1/2

1/2 −3/2 + 2

)
=

(
1/2 1/2
1/2 1/2

)
The eigenvector is

(
−1

1

)
It’s convenient to normalize these to get

(
−1/
√

2

1/
√

2

)
and

(
1/
√

2

1/
√

2

)
so that P =

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
. Note: P−1 =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)

P−1AP =

(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)(
−3/2 −1/2
1/2 −3/2

)(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)
=

(
−1 0
0 −2

)
eAt =

(
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

)(
e−t 0
0 e−2t

)(
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

)
=

(
e−t+e−2t

2
e−t−e−2t

2
e−t−e−2t

2
e−t+e−2t

2

)

2 Properties of Φ(t, t0)

1.Semi-Group Property:

Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

2.Φ(t0, t0) = I and for any number s,

Φ(ts, ts) = I

3.For any t0, t1,(Follow from 1 and 2)

Φ(t0, t1) = Φ(t1, t0)−1

EXAMPLE: A=const. coefficient (Semi-Group Property)

eAteAσ = eA(t+σ)
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What about eA+B where A, B are constant n× n matrix?

eA+B = I + (A+B) +
1

2
(A+B)2 +

1

3!
(A+B)3 + . . .

eAeB = (I +A+
1

2
A2 +

1

3!
A3 + . . .)(I +B +

1

2
B2 +

1

3!
B3 + . . .)

Compare terms:
The second order term in eA+B is

1

2
(A2 +AB +BA+B2)

The second order term in eAeB is

1

2
A2 +AB +

1

2
B2

These are equal ⇐⇒ AB = BA
Terms of all orders are equal ⇐⇒ AB = BA

Example of why this is useful information:
Considering

e



λ 1
. . .

. . .

. . . 1
λ


t

It’s not difficult to calculate:λ λ
λ

0 1 0
0 1

0

 =

0 λ
0 λ

0


0 1 0

0 1
0

λ λ
λ

 =

0 λ
0 λ

0


Note:

e


0 1 0

0 1
0

t
= I +

0 t
0 t

0

+
1

2

0 0 t2

0 0
0


Nilpotent matrix A is one s.t. for some k, Ak = 0

eAt =

1 t 1
2 t

2

1 t
1
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e


λ 1

λ 1
λ

t
=

eλt eλt

eλt

1 t 1
2 t

2

1 t
1


=

eλt teλt t2

2 e
λt

eλt teλt

eλt


Similarly,

e



0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

. . .
. . .

...
...

. . .
. . .

...
...

. . . 1
0 . . . . . . . . . . . . 1


=



1 t 1
2 t

2 1
3! t

3 . . . tn−1

(n−1)!

1 t 1
2 t

2 . . . tn−2

(n−2)!
. . .

. . .

. . .

0 0 0 0 . . . 1


Show that if A =

(
σ 0
0 σ

)
, B =

(
0 −ω
ω 0

)
, then AB = BA. Use this fact to

compute e

σ −ω
ω σ


.

3 Inhomogeneous Linear Ordinary Differential
Equations

ẋ(t) = A(t)x(t) + f(t)

In special case that A(t) ≡ 0,

ẋ(t) = f(t)

⇒ x(t) = x0 +

∫ t

t0

f(s)ds

In the case that A(t) 6≡ 0, let Φ(t, t0) be the transition matrix associated with

ẋ(t) = A(t)x(t)

Define
z(t) = Φ(t0, t)x(t)
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then,

ż(t) = [
d

dt
Φ(t0, t)]x(t) + Φ(t0, t)ẋ(t)

Note:
Φ(t0, t)Φ(t, t0) ≡ I

[
d

dt
Φ(t0, t)]Φ(t, t0) + Φ(t0, t)[

d

dt
Φ(t, t0)] = 0

d

dt
[Φ(t0, t)] = −Φ(t0, t)[

d

dt
Φ(t, t0)]Φ(t0, t)

= −Φ(t0, t)[A(t)Φ(t, t0)]Φ(t0, t)

= −Φ(t0, t)A(t)

Going back to the differential equation for z(t)

ż(t) = −Φ(t0, t)A(t)x(t) + Φ(t0, t)A(t)x(t) + Φ(t0, t)f(t)

= Φ(t0, t)f(t)

z(t) = z0 +

∫ t

t0

Φ(t0, s)f(s)ds

x(t) = Φ(t, t0)z(t)

= Φ(t, t0)z0 + Φ(t, t0)

∫ t

t0

Φ(t0, s)f(s)ds

= Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)f(s)ds

The solution to the inhomogeneous ordinary differential equation

ẋ(t) = A(t)x(t) + f(t)

is given by the Variation of Constants Formula

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)f(s)ds

constant coefficients case:

x(t) = eAtx0 +

∫ t

t0

eA(t−s)f(s)ds

Example: Newton’s Second Law

ẍ(t) = u(t)

To put this into first order form, let

x1 = x

x2 = ẋ
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Then, (
ẋ1
ẋ2

)
=

(
x2
u

)
=

(
0 1
0 0

)(
x1
x2

)
+

(
0
1

)
u(t)

(ẋ = Ax+ bu)

e

0 1
0 0

t
=

(
1 0
0 1

)
+

(
0 t
0 0

)
=

(
1 t
0 1

)
By the variation of constants formula,(

x1(t)
x2(t)

)
=

(
1 t
0 1

)(
x1(0)
x2(0)

)
+

∫ t

0

(
1 t− s
0 1

)(
0
1

)
u(s)ds

=

(
1 t
0 1

)(
x1(0)
x2(0)

)
+

∫ t

0

(
(t− s)u(s)

u(s)

)
ds

x(t) = x1(t)

= x1(0) + x2(0)t+

∫ t

0

(t− s)u(s)ds

4 Frequency domain representations

Suppose there is a constant coefficient linear system with inputs and outputs
ẋ = Ax+Bu and y = Cx.
A classical approach to study such a dynamic system is to take Laplace trans-

form of it. (Recall: L{f(t)} = ˆf(s) =
∫∞
0
e−stf(t)dt)

L{ẋ = Ax+Bu} ⇔ sx̂(s) = Ax̂(s) +Bû(s)

Solving for x̂ in the above,

x̂(t) = (Is−A)−1Bû(s)

Then,
ŷ(s) = C(Is−A)−1Bû(s)

and
C(Is−A)−1B

is called the transfer factor.


