Lecture 6 Model: Linear System with Inputs and Output in Discrete and Continuous Time

September 20, 2012

1 Discrete Time

\[x(k + 1) = A(k)x(k) + B(k)u(k) \quad (*) \]

\[y(k) = C(k)x(k) \]

\[x(k) \in \mathbb{R}^n, \text{ 'state vector'} \]

\[u(k) \in \mathbb{R}^m, \text{ 'control or input vector'} \]

\[y(k) \in \mathbb{R}^p, \text{ 'output vector'} \]

\[x(k) = A(k-1)x(k-1) + B(k-1)u(k-1) \]

\[= A(k-1)[A(k-2)x(k-2) + B(k-2)u(k-2)] + B(k-1)u(k-1) \]

\[= A(k-1)A(k-2)x(k-2) + A(k-1)B(k-2)u(k-2) + B(k-1)u(k-1) \]

\[\vdots \]

\[= A(k-1)A(k-2) \cdots A(0)x(0) + A(k-1)A(k-2) \cdots A(1)B(0)u(0) + \]

\[\cdots + B(k-1)u(k-1) \]

If we define the state transition matrix

\[\Phi(k, l) = A(k-1)A(k-2) \cdots A(l), \]

then, the 'solution' to (*) is:

\[
 x(k) = \Phi(k, 0)x(0) + \sum_{l=1}^{k} \Phi(k, l)B(l-1)u(l-1)
\]

This work is being done by various members of the class of 2012
2 Continuous Time

Newton’s Law:
\[
d\frac{d^2x}{dt^2} = u(t)
\]
\[
\uparrow \text{(unit mass)}
\]

First orderize: Let \(x_1(t) = x(t), x_2(t) = \frac{dx}{dt}(t) \)

\[
\begin{pmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{pmatrix} = \begin{pmatrix}
x_2(t) \\
u(t)
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} + \begin{pmatrix}
0 \\
1
\end{pmatrix} u(t)
\]

The general form of state-space evolution equations for finite dimensional linear system in continuous time is:
\[
\dot{x}(t) = A(t)x(t) + B(t)u(t) \\
y(t) = C(t)x(t)
\]

where, \(x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p \).

3 Dynamic Diagrams

Basic elements are shown below:

Summation

Transmission

Splitting
Examples:

(i) \(x(k + 1) = a(k)x(k) + b(k)u(k) \)

(ii) Mass-spring System. (As shown in Figure 2)

\[
m\ddot{x} + kx = u(t)
\]

Think of how you would first orderize this system.

\[
\ddot{x} = \frac{1}{m}(-kx + u)
\]

\[\Rightarrow x(t) = \int \int \frac{1}{m}(-kx + u) dt dt\]

Hence, according to the expression, the dynamic diagram of the mass-spring system is shown as in Figure 3.
4 Equilibrium Points:

4.1 Discrete Time

\[x(k + 1) = Ax(k) \]

Equilibrium equation is:

\[x_e = Ax_e \]

if 1 is not an eigenvalue of \(A \), then the only equilibrium state is 0.

Case.

\[x(k + 1) = Ax(k) + b \]

Equilibrium equation is:

\[x_e = Ax_e + b \]

\[\Rightarrow x_e = (I - A)^{-1}b \]

is the unique solution provided \(A \) does not have 1 as an eigenvalue.

4.2 Continuous Time

Case of no input/forcing \(\dot{x} = Ax \)
The equilibrium equation is:

\[Ax = 0 \]

If 0 is not an eigenvalue of \(A \), the only equilibrium equation is \(x = 0 \).

\[\dot{x} = Ax + b \]

The equilibrium equation is \(0 = Ax_e + b \). If 0 is not an eigenvalue of \(A \), the equilibrium (unique) equation is:

\[x_e = -A^{-1}b \]

4.3 Other Physical System That Will Be Used To Illustrate General Principles

4.3.1 RLC-Circuits and Ohm’s Laws

- Voltage drop across a resistance is \(V = IR \)
- Voltage drop across a inductance is \(V = L \frac{dI}{dt} \)
- Voltage drop across a capacitance is \(V = \frac{Q}{C} \), where \(Q \) is charge on the capacitor, and \(Q(t) = \int I(s) ds \)

4.3.2 Kirchoff’s Law.

The sum of voltage drops around any loop equals the applied voltage. As in the circuit in Figure 4:

\[L \frac{dI}{dt} + RI + \frac{Q}{C} = E(t) \]

This looks like a first order system, but it is actually second order in disguise since \(Q = \int I dt \). We can equivalently write:

\[L \frac{d^2I}{dt^2} + R \frac{dI}{dt} + \frac{I}{C} = E'(t) \]

We can think of this as a linear control system. It could be first orderized. We can ask questions such as how does \(I \) change as we prescribe to \(E \)?
4.3.3 The simple pendulum

At rest, the pendulum in Figure 5 is at
\[
\begin{pmatrix}
x \\
y
\end{pmatrix} = \begin{pmatrix} 0 \\ l \end{pmatrix}
\]

In general, \(\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} l \sin \theta(t) \\ l \cos \theta(t) \end{pmatrix} \). The force of gravity is resolved as illustrated:

\[
\begin{pmatrix}
\dot{x} \\
\dot{y}
\end{pmatrix} = \begin{pmatrix} l \cos \theta \\ -l \sin \theta \end{pmatrix} \theta
\]

\[
\begin{pmatrix}
\ddot{x} \\
\ddot{y}
\end{pmatrix} = \begin{pmatrix} -l \sin \theta \\ -l \cos \theta \end{pmatrix} \dot{\theta}^2 + \begin{pmatrix} l \cos \theta \\ -l \sin \theta \end{pmatrix} \ddot{\theta}
\]

Gravitational force is: \(mg \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)
Acceleration force is:

\[m \begin{pmatrix} \ddot{x} \\ \dot{y} \end{pmatrix} = -ml \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} \dot{\theta}^2 + ml \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} \ddot{\theta} \]

Net torque

\[l \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} \begin{pmatrix} \text{Net force vector} \\ \text{(Gravitation + acceleration)} \end{pmatrix} = l \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} \left[-ml \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} \dot{\theta}^2 + ml \begin{pmatrix} \cos \theta \\ -\sin \theta \end{pmatrix} \ddot{\theta} - mg \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] \]

= ml^2 \ddot{\theta} + mgl \sin \theta

If there is an exogenously applied torque \(\tau \), the equation of motion is:

\[ml^2 \ddot{\theta} + mgl \sin \theta = \tau \]

Think of \(\tau \) as a control input, determining the behavior of \(\theta(t) \) is a nonlinear control. But we will see how linear techniques can be applied.

Consider a nonlinear control system of the form introduced in the last class:

\[\dot{x}(t) = f(x(t), u(t), t) \quad (1) \]

Think about a variational trajectory with respect to some nominal control input \(u(t) \):

\[\frac{d}{dt} \delta x(t) = A(t) \delta x(t) + B(t) \delta u(t) \]

To first order, the variation is given by

\[\frac{d}{dt} \delta x(t) = A(t) \delta x(t) + B(t) \delta u(t) \]

where

\[A(t) = \left. \frac{\partial f}{\partial x} \right|_{\Phi(t; x_0, t_0, u_0(t), t)} \]

\[B(t) = \left. \frac{\partial f}{\partial u} \right|_{\Phi(t; x_0, t_0, u_0(t), t)} \]

where \(\Phi(t; x_0, t_0, u_0(t), t) \) is the flow corresponding to the nominal control input \(u_0(\cdot) \). This is especially going to be of interest when we linearize about an equilibrium trajectory.

Returning to the pendulum example, first orderize the equation in the box:

\[x_1 = \theta, \quad x_2 = \dot{\theta}. \]
\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} = \begin{pmatrix}
\frac{x_2}{m} \\
\frac{x_2}{l} \sin x_1
\end{pmatrix} + \begin{pmatrix}
n 0 \\
1 \frac{1}{ml^2}
\end{pmatrix} \tau(t)
\]

= \begin{pmatrix}
\frac{x_2}{l} \\
\frac{x_2}{l} \sin x_1 + \tau(t) \frac{1}{ml^2}
\end{pmatrix}

Under the nominal control $\tau \equiv 0$, there are two equilibrium equations:

\[
\begin{pmatrix}
\dot{x}_1 \\
\dot{x}_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}, \quad \begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
\pi \\
0
\end{pmatrix}
\]

To find the variational equations, we write:

\[
\left. \begin{pmatrix}
\frac{x_2}{l} + \delta x_2 \\
-\frac{g}{l} \sin(x_1 + \delta x_1)
\end{pmatrix} \right|_{(x_1, x_2) = (0, 0)} = \begin{pmatrix}
\delta x_2 \\
-\frac{g}{l} \delta x_1
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
-\frac{g}{l} & 0
\end{pmatrix} \begin{pmatrix}
\delta x_1 \\
\delta x_2
\end{pmatrix}
\]

The linearized pendulum control system relative to the equilibrium equation

\[
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

is:

\[
\begin{pmatrix}
\delta x_1 \\
\delta x_2
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
-\frac{g}{l} & 0
\end{pmatrix} \begin{pmatrix}
\delta x_1 \\
\delta x_2
\end{pmatrix} + \begin{pmatrix}
0 \\
\frac{1}{ml^2}
\end{pmatrix} \tau(t)
\]

The pendulum system linearized about $\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix} = \begin{pmatrix}
\pi \\
0
\end{pmatrix}$ is similarly show to be:

\[
\begin{pmatrix}
\delta x_1 \\
\delta x_2
\end{pmatrix} = \begin{pmatrix}
0 & 1 \\
\frac{g}{l} & 0
\end{pmatrix} \begin{pmatrix}
\delta x_1 \\
\delta x_2
\end{pmatrix} + \begin{pmatrix}
0 \\
\frac{1}{ml^2}
\end{pmatrix} \tau(t)
\]