Dynamic Systems Theory - State-space Linear Systems *

September 13, 2012

Jordan Normal Form

For each λ_j , define the sequence of generalized eigenspaces

 $M^{k} = ker(A - \lambda I)^{k}$ $M^{0} \subset M^{1} \subset \ldots \subset M^{t} = M_{(\lambda)}$

(This is called as a flag of sub-spaces)

Note: Since we are only working with one eigenvalue, we dropped the subscript.

Also define

$$W^{k} = (A - \lambda I)^{k} \mathbb{C}^{n}$$
$$W_{(\lambda)} = W^{k}$$

We choose a basis for $M_{(\lambda)} = M^t$ of the form $\{u_1, \ldots, u_{m_t}\}$ such that $\{u_1, \ldots, u_{m_k}\}$ is a basis for M^k . Other than this, there is nothing special about this basis.

We now modify the basis through a step-by-step procedure to get a representation of the desired form for the eigenvalue λ .

Let $\{u_{m_{t-1}+1}, \ldots, u_{m_t}\}$ be those basis elements that are in M^t but <u>not</u> in M^{t-1} . These elements do not need to be replaced but for consistency of notation, we change their names to

 $v_{m_{t-1}+1},\ldots,v_{m_t}$

^{*}This work is being done by various members of the class of 2012

Dynamic Systems Theory

Now set

$$v_{m_{t-2}+\nu} = (A - \lambda I)_{v_{m_{t-1}+\nu}}$$

(recalling $(A - \lambda I)M^{k+1} \to M^k$)

Consider the set $\{u_1, \ldots, u_{m_{t-2}}\} \cup \{v_{m_{t-2}+1}, \ldots, v_{m_{t-2}+m_t-m_{t-1}}\}$ and we claim that this is a linearly independent set.

<u>Proof of claim</u>: If it is not linearly independent, there will be a non-trivial linear combination yielding θ , in which atleast one of the coefficients of one of the v_i 's would be non zero(this is because the set $\{u_1, \ldots, u_{m_{t-2}}\}$ is linearly independent of construction).

This means that a non-trivial linear combination of v_j 's is in M^{t-2} and thus, $(A - \lambda I)^{t-2}$ would map this linear combination to zero. Then, $(A - \lambda I)^{t-1}$ would map a non-trivial linear combination of vectors in $\{v_{m_{t-1}+1}, \ldots, v_{m_t}\}$ to 0. This non-trivial linear combination would thus be in M^{t-1} , contradicting the construction of the basis $\{u_1, \ldots, u_{m_t}\}$. This proves the claim.

Now, this linearly independent subset of M^{t-1} can be extended to form a basis $\{u_1, \ldots, u_{m_t}\} \cup \{v_{m_{t-2}+1}, \ldots, v_{m_{t-1}}\}$ for M^{t-1} . Next set,

$$(A - \lambda I)v_{m_{t-2}+\nu} = v_{m_{t-3}+\nu}$$
 for $\nu = 1, \dots, m_{t-1} - m_{t-2}$

Proceed as before to obtain a new basis, $\{u_1, \ldots, u_{m_{t-3}}\} \cup \{v_{m_{t-3}+1}, \ldots, v_{m_{t-2}}\}$ of M^{t-2} .

Proceeding in this manner, we obtain a basis $\{v_1, \ldots, v_{m_t}\}$ of the entire generalized eigenspace $(M_{(\lambda)})$ such that $\{v_1, \ldots, v_{m_k}\}$ is a basis for M^k and $(A - \lambda I)v_{m_k+\nu} = v_{m_{k-1}+\nu}$ for $k \ge 1$ (and $m_0 = 0$). Another way to write this is,

$$Av_{m_k+\nu} = \lambda v_{m_k+\nu} + v_{m_{k-1}+\nu}$$
 for $k \ge 1$

The basis we seek is obtained by re-ordering these spaces,

$$v_1, v_{m_1+1}, v_{m_2+1}, \dots, v_{m_{t-1}+1}$$

 v_2, v_{m_1+2}
 \vdots
 $v_{m_1}, ?$

With respect to this ordering of the basis, the matrix has the form,

Each of the blocks has the eigenvalue λ on the diagonal and 1's on the super diagonal. The diagonal blocks are called <u>Jordan Blocks</u>.

Example:

(λ	1	0	0	0	
	0	λ	1	0	0	
	0	0	λ	0	0	
	0	0	0	λ	1	
	0	0	0	0	λ)

Suppose, a matrix with real entries has complex eigenvalues. Then you might have a Jordan normal form such as

$$\left(\begin{array}{cccc} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ \hline 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & \lambda \end{array}\right)$$

Dynamic Systems Theory

Where λ is complex ($\lambda = \alpha + \iota \beta$) and ($\overline{\lambda} = \alpha - \iota \beta$) is it's complex conjugate. One can do a similarity transformation

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 1 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \overline{\lambda} & 1 \\ 0 & 0 & 0 & \overline{\lambda} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha + \iota\beta & 0 & 1 & 0 \\ 0 & \alpha - \iota\beta & 0 & 0 \\ 0 & 0 & \alpha + \iota\beta & 0 \\ 0 & 0 & 0 & \alpha + \iota\beta \end{pmatrix}$$

A matrix **U** is said to be <u>unitary</u> if $\mathbf{U}^* = \mathbf{U}^{-1}$, where $\mathbf{U}^* = \overline{\mathbf{U}^T}$. Consider the unitary matrix.

$$U = \begin{pmatrix} 1/\sqrt{2} & -\iota/\sqrt{2} \\ -\iota/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$

$$\begin{pmatrix} 1/\sqrt{2} & -\iota/\sqrt{2} \\ -\iota/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{pmatrix} \alpha + \iota\beta & 0 \\ 0 & \alpha - \iota\beta \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & \iota/\sqrt{2} \\ \iota/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
$$= \begin{pmatrix} (\alpha + \iota\beta)/\sqrt{2} & -(\iota\alpha - \beta)/\sqrt{2} \\ -(\iota\alpha + \beta)/\sqrt{2} & (\alpha - \iota\beta)/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & \iota/\sqrt{2} \\ \iota/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$$
$$= \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}$$

Similarly,

$$\begin{pmatrix} \mathbf{U} & | & 0 \\ \hline \mathbf{0} & | & \mathbf{U} \end{pmatrix} \begin{pmatrix} \alpha + \iota\beta & 0 & 1 & 0 \\ 0 & \alpha + \iota\beta & 0 & 1 \\ 0 & 0 & \alpha + \iota\beta & 0 \\ 0 & 0 & 0 & \alpha - \iota\beta \end{pmatrix} \begin{pmatrix} \mathbf{U}^* & | & 0 \\ \hline \mathbf{0} & | & \mathbf{U}^* \end{pmatrix}$$
$$= \begin{pmatrix} \alpha & -\beta & 1 & 0 \\ \beta & \alpha & 0 & 1 \\ 0 & 0 & \alpha & -\beta \\ 0 & 0 & \beta & \alpha \end{pmatrix}$$

This computation can be generalized to lead us to the notion of real Jordan Normal Form.

If $\lambda = \alpha + \iota\beta$, $\overline{\lambda} = \alpha - \iota\beta$ are complex conjugate eigenvalues of an $n \times n$ real matrix **A** and each of these eigenvalues has multiplicity S, the real Jordan form of the corresponding block is

$$\begin{pmatrix} \begin{bmatrix} \mathbf{A}_{(\alpha,\beta)} & I_2 & \dots & 0 & 0 \\ 0 & \mathbf{A}_{(\alpha,\beta)} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mathbf{A}_{\alpha,\beta)} & I_2 \\ 0 & 0 & \dots & 0 & \mathbf{A}_{\alpha,\beta} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A}_{(\alpha,\beta)} & I_2 & \dots & 0 & 0 \\ 0 & \mathbf{A}_{(\alpha,\beta)} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \mathbf{A}_{\alpha,\beta)} & I_2 \\ 0 & 0 & \dots & \mathbf{A}_{\alpha,\beta} \end{bmatrix}$$

$$M^{k+1} = ker(A - \lambda I)^{k+1} = \{v : (A - \lambda I)^{k+1}v = 0\}$$

 $\begin{aligned} M^k &= \{w: (A-\lambda I)^k w = 0\} \text{ Let } v \in M^{k+1}. \\ \text{Then, let } w &= (A-\lambda I) v \end{aligned}$

Then,
$$(A - \lambda I)^k w = (A - \lambda I)^{k+1} v = 0$$

 $\Rightarrow w \in M^k$