Dynamic Systems - State Space Control - Lecture 3 *

September 11, 2012

Recall some basic facts about finite dimensional vector spaces. Let v be a vector space whose field of scalars is \mathbb{R} or \mathbb{C} . There are two laws of combination,

1 Vector Addition

• For $v_1, v_2, v_3 \in V$, the laws of vector addition are associative;

$$(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

• For $v_1, v_2 \in V$, the laws of vector addition are commutative;

 $v_1 + v_2 = v_2 + v_1$

• There exists a zero vector $0 \in V$, such that;

$$v + 0 = v$$
 for all $v \in V$

• For every $v \in V, -v \in V$ as well.

^{*}This work is being done by various members of the class of 2012

2 Scalar Multiplication

• For any $\alpha \in \mathbb{R}(\mathbb{C})$ and $v \in V$,

 $\alpha v \in V$

• For $\alpha, \beta \in \mathbb{R}(\mathbb{C})$

 $\alpha(\beta v) = (\alpha \beta) v \qquad (\text{scalar multiplication is associative})$

• For $\alpha \in \mathbb{R}(\mathbb{C})$ and $v, w \in V$,

 $\alpha(v+w) = \alpha v + \alpha w$ (Distributive over vector spaces)

• For $\alpha, \beta \in \mathbb{R}(\mathbb{C}), v \text{ in } V$

 $(\alpha + \beta)v = \alpha v + \beta v$ (Distributive over scalar addition)

A <u>basis</u> for a vector space V is a linearly independent set of vectors: $v_1, ..., v_n$ that spans V. Saying that $v_1, ..., v_n$ spans V means that for every $w \in V$ there are scalars $\alpha_1, ..., \alpha_n$ such that,

$$W = \alpha_1 v_1, \dots, \alpha_n v_n$$

 $1, s, s^2, ..., s^n$ – These monomials are a basis of the vector space of polynomials p(s) having degree $\leq n$ A vector space V is finite dimensional of dimension n if it has a basis with n elements.

A finite dimensional vector space over $\mathbb{R}^n(\operatorname{resp} \mathbb{C}^n)$ is isomorphic to $\mathbb{R}^n(\operatorname{resp} \mathbb{C}^n)$.

<u>THEOREM</u>: Any square matrix with distinct eigenvalues can be put into a diagonal form by a change of basis.

<u>PROOF</u>: List the n eigenvalues corresponding to distinct eigenvalues. Prove this is a basis (DO THIS!). With respect to this basis, the matrix has diagonal form.

Matrices whose eigenvalues are <u>not</u> distinct

Examples:

1.

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

2.

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$$

Jordan Canonical Form:

Recall that the eigenvalues of a matrix A are the roots of the characteristic polynomial,

$$p(\lambda) = \det(\lambda I - A)$$

Suppose $p(\lambda)$ can be factored

$$p(\lambda) = (\lambda - \lambda_1)^{r_1} \dots (\lambda - \lambda_p)^{r_p}$$

where $\lambda_i \neq \lambda_j$ for $i \neq j$ (to be sure that such factorisation exists, we must allow for complex eigenvalues)

For each λ_j we are interested in the associated generalized eigenspace,

$$M^k = \ker(A - \lambda_j I)^k = \{v \in V : (A - \lambda_j I)^k v = 0\}$$

What are these?

$$M^{0} = \ker(A - \lambda_{j}I)^{0} = \ker(I) = \{0\}$$

 $M^1 = \ker(A - \lambda_i I) = \text{eigenspace of } \lambda_i$

For $v \in M^k$,

$$(A - \lambda_j I)^{k+1} v = (A - \lambda_j I)(A - \lambda_j I)^k v = (A - \lambda_j I)0 = 0$$

Therefore, $M^k \in M^{k+1}$ we have an increasing chain of subspaces $M^0 \subset M^1 \subset$

Since $M^k \subset \mathbb{C}$ for all k, there is some value t such that $M^k = M^t$ for all $k \geq t$, let t be the smallest integer such that $M^k = M^t$ for all $k \geq t$ (call $M^t = M_{\lambda_j}$)

Another (this time decreasing) subspace chain which is of interest is,

$$(A - \lambda_j I)^k \mathbb{C}^n = W^k$$

Here we have $\mathbb{C}^n = W^0 \subset W^1 \subset \ldots$

Let $m_{\lambda_j} = \dim M_{(\lambda_j)}$ The dim $W^t = n - m_{(\lambda_j)}$ (Since the dimensions of the range space and the null spec of $(A - \lambda_j I)^t$ must add up to r) We must have,

 $W^k = W^t$ for $k \ge t$

And we denote W^t by W_{λ_i}

Proposition 1: \mathbb{C}^n is the direct sum of $M_{(\lambda_j)}$ and $W_{(\lambda_j)}$ (i.e any $v \in \mathbb{C}^n$ maybe writen uniquely as $W = v_m + w_m$ where $v_m \in M_{(\lambda_j)}, w_m \in W_{(\lambda_j)}$)

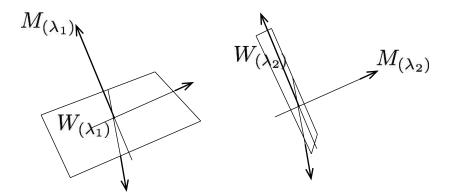
Proof: Since $(A - \lambda_j I)W_{(\lambda_j)} = (A - \lambda_j I)^{t+1}\mathbb{C}^n = (A - \lambda_j I)^t\mathbb{C}^n = W_{\lambda_j}$ We see that $A - \lambda_j I$ is nonsingular on $W_{(\lambda_j)}$. Let v be any vector in \mathbb{C}^n . Then $(A - \lambda_j I)^t v = 0 \in W_{(\lambda_j)}$. Because $(A - \lambda_j I)^t$ is nonsingular on $W_{(\lambda_j)}$. There is a unique $w_m = W_{(\lambda_j)}$ such that $(A - \lambda_j I)^t W_m = \gamma$. Let $v_m = V - w_m$. It is easily seen $(A - \lambda_j I)^t V_m = 0$, so that $V_m \in M_{(\lambda_j)}$.

Hence $\mathbb{C}^n = M_{(\lambda_j)} + W_{(\lambda_j)}$ and remains only to show that the expression $W = v_m + w_m$ is unique. This follows since dim $M_{(\lambda_j)} + \dim W_{(\lambda_j)} = n$, and any pair of respective basis.

For $M_{(\lambda_j)}$ and $W_{(\lambda_j)}\{v_1, \ldots, v_n\}, \{w_1, \ldots, w_n\}$ together define a basis for \mathbb{C}^n .

$$\mathbb{C}^n = M_{(\lambda_i)} \oplus W_{(\lambda_i)}$$

Where, \oplus is the notation for direct sum.



Proposition 2: For any $i, j, A - \lambda I$ maps $M_{(\lambda_j)}, W_{(\lambda_j)}$ onto themselves.

Proof: In the case i = j we've shown that $(A - \lambda_j I)M^{k+1} \subset M^k \subset M^{k+1}$ and $(A - \lambda_j I)W^k = W^{k+1} \subset W^k$. This implies $W_{(\lambda_j)}$ and $M_{(\lambda_j)}$ are invariant under $(A - \lambda_i I)$ But from this it follows that these subspaces are invariant under any

polynomial in $A - \lambda_i I$. In particular, under $A - \lambda_i I = A - \lambda_i I + (\lambda_i - \lambda_j)I$.

Proposition 3: For $\lambda_i \neq \lambda_j, M_{(\lambda_i)} \subset W_{(\lambda_j)}$

Proof: Let $v \in M_{(\lambda_j)}$. I claim that v cannot be in kernal of $A - \lambda_j I$. For $j \neq i$ suppose to the contrary, $V \in \ker(A - \lambda_j I)$. Then,

$$(\lambda_j - \lambda_i)^{t_i} v = \{A - \lambda_i I - (A - \lambda_j I)\}^{t_i} v$$
$$= (A - \lambda_i I)^{t_i} v + \sum_{k=1}^{t_i} (-1)^k \binom{t_i}{k} (A - \lambda_{iI})^{t_i - k} (A - \lambda_{jI})^k v$$

= 0 (the first term = 0 because $v \in M_{(\lambda_j)}$), the remaining terms would need to be zero under the assumption $v \in \ker(A - \lambda_j I)$

Since $\lambda_i - \lambda_j \neq 0$, this implies v = 0. This in turn implies $(A - \lambda_j I)|_{M_{\lambda_i}}$ (The linear transformation restricted to subspace $M_{(\lambda_i)}$) is non-singular. This means that $A - \lambda_j I$ maps $M_{(\lambda_i)}$ onto itself and hence, $M_{(\lambda_i)}$ is contained in the range of $(A - \lambda_j I)^{t_j}$ which is just $W_{(\lambda_i)}$.

Proposition 4: $\mathbb{C}^n = M_{(\lambda_1)} \oplus M_{(\lambda_2)} \oplus \cdots \oplus M_{(\lambda_p)}$ *Remark:* The direct sum notation means that any vector $v \in \mathbb{C}^n$ can be uniquely expressed as a sum, $V = v_1 + \cdots + v_p, v_j \in M_{(\lambda_j)}$

Proof: $\mathbb{C}^n = M_{(\lambda_1)} \oplus W_{(\lambda_1)}$ and since $W_{(\lambda_1)} \supset M_{(\lambda_2)}$, We can write,

$$\mathbb{C}^{n} = M_{(\lambda_{1})} \oplus (W_{(\lambda_{1})} \cap [M_{(\lambda_{2})} \oplus M_{(\lambda_{1})}]) = M_{(\lambda_{1})} \oplus ([W_{(\lambda_{1})} \cap M_{(\lambda_{2})}] \oplus (W_{(\lambda_{1})} \cap W_{(\lambda_{2})})) = M_{(\lambda_{1})} \oplus M_{(\lambda_{2})} \oplus (W_{(\lambda_{1})} \cap W_{(\lambda_{2})})$$

Similarly we obtain,

$$\mathbb{C}^n = M_{(\lambda_1)} \oplus M_{(\lambda_2)} \oplus M_{(\lambda_3)} \oplus (W_{(\lambda_1)} \cap W_{(\lambda_2)} \cap W_{(\lambda_3)})$$

Eventually we obtain,

$$\mathbb{C}^n = M_{(\lambda_1)} \oplus M_{(\lambda_2)} \cdots \oplus M_{(\lambda_p)} \oplus (W_{(\lambda_1)} \cap \cdots \cap W_{(\lambda_p)})$$

To complete the proof, we show that

$$W_{(\lambda_1)} \cap \dots \cap W_{(\lambda_p)} = \{0\}$$

Since each $W_{(\lambda_i)}$ is invarient under all $A - \lambda_j I, W_{(\lambda_1)} \cap \cdots \cap W_{(\lambda_p)}$ is invarient as well.

 $A - \lambda_j I$ is non-singular on $W_{(\lambda_1)} \cap \cdots \cap W_{(\lambda_p)}$. Otherwise it would be singular on all $W_{(\lambda_i)}$ s and $W_{(\lambda_j)}$ in particular. Hence,

$$(A - \lambda_1 I)^{r_1} (A - \lambda_2 I)^{r_2} \dots (A - \lambda_p I)^{r_p}$$

is nonsingular on $W_{(\lambda_1)} \cap \cdots \cap W_{(\lambda_p)}$. But since this operator maps all vectors in \mathbb{C}^n to zero, the only way it could be nonsingular on $W_{(\lambda_1)} \cap \cdots \cap W_{(\lambda_p)}$ is if this intersection is the zero subspace.