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Least Squares Optimization

Theorem 1. Suppose (A,B) is a controllable pair, then the control that steers

ẋ = Ax+Bu, x(0) = x0

so as to minimise (the Matrix Riccati equation)

η =

∫ T

0

xTQx+ uTRu dt

(Q positive semi-definite and R positive definite)
is given by

u(t) = −R−1BTM(t)x(t)

where M satisfies

Ṁ = −ATM −MA+MBR−1BTM −Q,M(T ) = 0

The minimum value of η is η0 = xT (0)M(0)x(0) (which can not be changed
with a control input).

Proof. Assume we have a solution to the Riccati equation that governs M(·).
∗This work is being done by various members of the class of 2012
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Write

η =

∫ T

0

xTQx+ uTRu dt

=

∫ T

0

−xT Ṁx− xTATMx− xTMAx+ xTMBR−1BTMx+ uTRu dt

=

∫ T

0

−xT Ṁx− ẋT Ṁx+ xTATMx+ uTBTMx− xTMẋ+ xTMAx

+xTMBu− xTATMx− xTMAx+ xTMBR−1BTMx+ uTRu dt

=

∫ T

0

− d

dt
(xTMx) + uTBTMx+ xTMBu+ xTMBR−1BTMx+ uTRu dt

= xT (0)M(0)x(0) +

∫ T

0

(u+R−1BTMx)TR(u+R−1BTMx) dt

Because R is positive-definite the last (integral) term is ≥ 0. We have equality
⇔ u(t) = −R−1BTM(t)x(t).

Theorem 2. Let W be the controllability Grammanian for the system

ẋ = Ax+Bu, x(0) = x0

If u0(·) is any control of the form

u0(t) = −BΦ(t, t0)ξ

where ξ satisfies
W (t0, t1)ξ = x0 − Φ(t0, t1)x1

then the control steers the system from x0 at t = t0 to x1 at t = t1, and if u1(·)
is any other control that steers the system from x0 at t0 to x1 at t1, then∫ t1

t0

‖u1(t)‖2 dt ≥
∫ t1

t0

‖u0(t)‖2 dt

Proof.

x1 = Φ(t1, t0)

(
x0

∫ t1

t0

Φ(t0, s)B(s)u1(s) ds

)
= Φ(t1, t0)

(
x0

∫ t1

t0

Φ(t0, s)B(s)u0(s) ds

)

Substracting ∫ t1

t0

Φ(t0, s)B(s)(u1(s)− u0(s)) ds = 0
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Premultiplication by ξT together with the definition of u0(·) gives∫ t1

t0

uT0 (t)(u1(t)− u0(t)) dt = 0∫ t1

t0

‖u1(t)‖2 − ‖u0(t)‖2 dt =

∫ t1

t0

uT1 (t)u1(t)− uT0 (t)u0(t) dt

=

∫ t1

t0

uT1 (t)u1(t)− uT0 (t)u0(t)− 2uT0 (t)u1(t) + 2uT0 (t)u0(t) dt

=

∫ t1

t0

uT1 (t)u1(t)− 2uT1 (t)u0(t) + uT0 (t)u0(t) dt

=

∫ t1

t0

(u1(t)− u0(t))T (u1(t)− u0(t)) dt

=

∫ t1

t0

‖u1(t)− u0(t)‖2 dt ≥ 0

And there is equality ⇔ u1(t) = u0(t).

η =

∫ T

0

l(x, u) d(t) + Ψ(x(T ))

Theorem 3 (Endpoint value penalized). Let A, B, Q, QT be matrices where
both Q and QT are n×n symmetric and positive semi-definite. Let M(·) be the
unique n× n positive semi-definite solution to

Ṁ = −ATM −MA+MBBTM −Q,M(T ) = QT

Then there exists a control u(·) that steers the system

ẋ = Ax+Bu, x(0) = x0

and minimized the performance metric

η =

∫ T

0

xTQx+ ‖u(t)‖2 dt+ xT (T )QTx(T )

The minimum value of η is xT (0)M(0)x(0), and the minimizing control is

u(t) = −BTM(t)Φ(t, 0)x0

where Φ(t, t0) is the transition matrix associated with

ẋ = (A−BBTM(t))x
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One can let T → ∞ and the form of the Riccati equation is such that we
need to consider a steady-state solution K

ATK +KA−KBBTK +Q = 0

If (A,B) is a controllable pair, a unique positive semi-definite solution exists.
Moreover, the matrix A−BBTK has all eigenvalues in the left half-plane.

With T → ∞, this linear quadratic optimization problem, becomes the
quadratic regulator problem (LQR problem).

1 Fixed endpoint problems

Consider
ẋ = Ax+Bu, x(0) = x0

η =

∫ T

0

xT (s)Qx(s) + uT (s)u(s)ds

Assume there is a solution to the Riccati equation

Ṁ = −ATM −MA+MBBTM −Q,M(t1) = M1

on the interval [t0, t1].

Theorem 4. A trajectory x(t) minimizes η for the given system and boundary
conditions x(t0) = x0, x(t1) = x1 ⇔ it minimizes

η̄ =

∫ t1

t0

‖v(t)‖2 dt

for the differential equation

ẋ = (A−BBTM(t))x(t) +Bv(t)

with the same boundary conditions x(t0) = x0, x(t1) = x1.

Proof. Assume the system

ẋ = Ax(t) +Bu(t)

is driven from x0 at t = t0 to x1 at t = t1 by a control of the form

u(t) = −BTM(t)x(t) + v(t)

where M(·) is the solution of the Riccati equation given above.
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The “cost” of the control is

η =

∫ t1

t0

xT (t)Qx(t) + uT (t)u(t) dt

=

∫ t1

t0

−xT Ṁx− xTATMx− xTMAx+ xTMBBTMx

+(vT − xTMB)(v −BTMx) dt

=

∫ t1

t0

−xT Ṁx− xTATMx− xTMAx+ xTMBBTMx

+vT v − xTMBv − vTBTMx+ xTMBBTMx dt

=

∫ t1

t0

−xT Ṁx− xT (A−MBBT )x− xTM(A−BBTM)x

−V TBTMx− xTMBv + vT v dt

=

∫ t1

t0

−xT Ṁx− ẋTMx− xTMẋ+ vT v dt

= −xT (t1)M(t1)x(t1) + xT (t0)M(t0)x(t0) +

∫ T

0

vT v dt

The first two quantities in the last relation are fixed. The only term that

can be adjusted is the integral term
∫ T

0
vT v dt.

This can be minimized subject to the differential equation

ẋ = (A−BBTM(t))x(t) +Bv(t)

together with the boundary conditions

x(t0) = x0, x(t1) = x1

This yields an algorithm for finding the fixed endpoint control:

1. Solve the Riccati equation for M(·).

2. Use the procedure outlined at the beginning of the class to find vopt which
steers

ẋ = (A−BBTM(t))x(t) +Bv(t)

from x(t0) = x0 to x(t1) = x1 so as to minimize the integral∫ t1

t0

‖v(t)‖2 dt

3. The control for the original problem is

u(t) = −BTM(t)x(t) + vopt(t)
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2 Summary

The PMP yields necessary conditions for optimal control problems of the form
Find u(·) that steers the system

ẋ = f(x, u)

so as to minimize

η =

∫ t1

t0

l(x, u) dt+ Ψ(x(t1))

PMP solution: there is λ(t) such that

ẋ = f(x(t), u(t)), x(t0) = x0

λ̇ = −
(
∂f

∂x

)T

λ(t)− ∂l

∂x

For components of the state that are not specified at t = t1, the correspond-
ing components of λ(t1) and ∂Ψ

∂x (x(t1)) are equal.

∂l

∂u
+

∂

∂u
(λT f(x, u)) ≡ 0

Very important special cases:

1. l(x, u) ≡ 1 corresponds to the time optimal problem (not covered).

2. l(x, u) = xTQX+uTRu and f(x, u) = Ax+Bu corresponds to the problem
of linear-quadratic optimization.


