Least Squares Optimization - Lecture 21 *

November 29, 2012

Least Squares Optimization
Theorem 1. Suppose (A, B) is a controllable pair, then the control that steers
& = Az + Bu, x(0) = g

so as to minimise (the Matriz Riccati equation)
T
n= / 2TQx + v Ru dt
0

(Q positive semi-definite and R positive definite)
is given by
u(t) = —R™'BTM(t)z(t)

where M satisfies
M=—-ATM — MA+MBR*B™M - Q,M(T) =0

The minimum value of 1 is ng = =7 (0)M (0)x(0) (which can not be changed
with a control input).

Proof. Assume we have a solution to the Riccati equation that governs M(-).

*This work is being done by various members of the class of 2012
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Write
T
n= / zTQx + v Ru dt
0
T .
= / —aTMz —2TA"T Mz — 2" M Az + 2" MBR™ BT Mz + u” Ru dt
0

T
= / 2Tz — T Mz + 2T AT Mz + uTBT Mz — 2T Mz + 2T MAx
0
+2T"MBu — 2TAT Mz — 2" MAz + 2" MBR'B" Mz + «" Ru dt
T
d
_ / — (@ M2) + u? BT M + 2" MBu+ o MBR VB M + " Ru dt
0
T

=27 (0)M(0)x(0) + / (u+ R'B"M2)"R(u+ R™'BT Mz) dt
0

Because R is positive-definite the last (integral) term is > 0. We have equality
s u(t) = —RIBTM(t)x(t). O

Theorem 2. Let W be the controllability Grammanian for the system
& = Az + Bu, x(0) = o
If ug(+) is any control of the form
uo(t) = —B®(t, )¢

where & satisfies
W (to, t1)§ = xo — ®(to, t1)21

then the control steers the system from xg at t =tg to 1 at t = t1, and if ui(-)
is any other control that steers the system from xzy at ty to x1 at t1, then

/ll\ul(t)ll2 dtZ/llluo(t)Hz dt

to tO
Proof.
ty
x1 = D(ty,10) (a:o D(tg, s)B(s)uy(s) ds)
to
t1
= (I)(tl,to) <I‘0/ (I)(to,S)B(S)Uo(S) dS)
to
Substracting

/ 1 D (tg, s)B(s)(ui(s) —up(s)) ds =0

to
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Premultiplication by ¢7 together with the definition of ug(-) gives

/“uawwmw—uawwﬂ=o

[mewwmwwa=l”ﬁ@mw—ﬁwm@m

- /t uT (Bun(t) — uT (uo(t) — 2uT (ua () + 20T (Huo () dt
= /t 1 uf (t)uy (t) — 2ut ()ug(t) + ud (H)uo(t) dt

— [ ) = unle) (a(8) ~ o) de

to

=/me—mwwwzo

to

And there is equality < uq(t) = uo(t). O

T
n= [ e Ao+ V(1)
0
Theorem 3 (Endpoint value penalized). Let A, B, Q, Qr be matrices where
both Q and Q1 are n x n symmetric and positive semi-definite. Let M(-) be the
unique n X n positive semi-definite solution to
M=—-A"M - MA+ MBBYM —Q,M(T) = Qr
Then there exists a control u(-) that steers the system
& = Az + Bu, x(0) = g

and minimized the performance metric
T
7= / TQr + [u(®)|? dt + 7 (T)Qrex(T)
0

The minimum value of  is z7 (0)M(0)z(0), and the minimizing control is
u(t) = =BT M(t)®(t,0)x
where ®(t,to) is the transition matriz associated with

&= (A—-BBT"M())z
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One can let T — oo and the form of the Riccati equation is such that we
need to consider a steady-state solution K

ATK + KA-KBBTK+Q=0

If (A, B) is a controllable pair, a unique positive semi-definite solution exists.
Moreover, the matrix A — BBT K has all eigenvalues in the left half-plane.

With T' — oo, this linear quadratic optimization problem, becomes the
quadratic regulator problem (LQR problem).

1 Fixed endpoint problems

Consider
& = Az + Bu, z(0) =z

v= [ 46 + T ue)ds
0
Assume there is a solution to the Riccati equation
M=—-ATM - MA+ MBBYM —Q,M(t,) = M,
on the interval [tg, t1].

Theorem 4. A trajectory x(t) minimizes n for the given system and boundary
conditions x(tg) = o, x(t1) = x1 < it minimizes

i= [ Il a

to

for the differential equation
i = (A— BBTM(t))x(t) + Bu(t)
with the same boundary conditions x(tg) = g, x(t1) = x1.
Proof. Assume the system
& = Az(t) + Bu(t)
is driven from xg at t = tg to 1 at t = ¢; by a control of the form
u(t) = =BT M (t)xz(t) + v(t)

where M (-) is the solution of the Riccati equation given above.
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The “cost” of the control is
t1
n= / T (4)Qx(t) +u” (t)u(t) dt
to
ty )
= / —aT Mz — 2T AT Mz — 2" M Az + 2 MBBT M«

to

+(T —2"MB)(v — BT Mz) dt

t] .
= / — "Mz — 2TAT Mz — 2" MAx + 2T MBBT Mz
to
+vTv— 2" MBv —ov"B" Mz + 2" MBBT Mz dt
tl .
= / — 2T Mz — 2T(A— MBB")z — 2" M(A - BBT M)z
to

—VTBT Mz — 2" MBv +vTv dt

11 .
= / 2T Mz — "Mz — 2" Mi + 0o dt

to

T
= —aT(t1)M(t)x(ty) + x7 (to) M (to)z(to) +/0 vl dt

The first two quantities in the last relation are fixed. The only term that

can be adjusted is the integral term fOT vTo dt.
This can be minimized subject to the differential equation

i = (A— BBTM(t))x(t) + Bu(t)
together with the boundary conditions

z(to) = zo, z(t1) = a1

This yields an algorithm for finding the fixed endpoint control:
1. Solve the Riccati equation for M(-).

2. Use the procedure outlined at the beginning of the class to find v, which
steers
&= (A—BBT"M(t))z(t) + Bu(t)

from x(tyg) = o to x(t1) = x1 so as to minimize the integral

t1
/ () dt
to

3. The control for the original problem is

u(t) = =BT M(t)x(t) + vopt (t)
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2 Summary

The PMP yields necessary conditions for optimal control problems of the form
Find u(-) that steers the system

&= f(z,u)
SO as to minimize .
n:/ Uz, ) dt+ ()
to

PMP solution: there is A(t) such that
&= [f(z(t),u(d)), z(to) = zo
. af\" ol
A=—(==| At)— —
(636) ®) ox
For components of the state that are not specified at ¢t = ¢y, the correspond-
ing components of A(t;) and %—i’(m(tl)) are equal.

ol 0
90 + %()\Tf(;v,u)) =0

Very important special cases:

1. I(z,u) =1 corresponds to the time optimal problem (not covered).

2. I(z,u) = 2T QX+uT Ru and f(x,u) = Axr+Bu corresponds to the problem
of linear-quadratic optimization.



