Lecture 20 *

December 5, 2012

1 Pontryagin Maximum Principal (First Version)

Theorem: Pontryagin Maximum Principal-First Version suppose it is desired to
steer the sate of

x=f(x,u),x(0)=xg

S0 as to maximize (minimize)

T
sz l(x,u)dt+yx(T)))de
0

If this defines a normal problem then there exists a costate vector A(¢) such
that A, together with the optimizing values of x,u jointly satisfy

R

7Y

5
AT = 2 )
ox
oH _
Su
Where the Hamiltonian H is defined as
HX,u)=ATF(x,u)+1(x,u)

Consider the same problem, optimization, in which the terminal value of x(T)
is (partially) specified

x=f(x,u),x(0)=xg

*This work is being done by various members of the class of 2012
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and we wish to optimize

T
J = w(x(®) + f 1x(0), u(t))dt
0

with specific terminal values X(M),...X(T) (r=<n)

The approach for the solution again involves infinite dimensional Lagrange
Multipliers

T
J =yt + f HO®),x(0), u(®) — M) (o) dt
0

with
H,x,u) = AT f(x,u) + 1(x, u).
suppose
x1(T)
x(T) =
x-(T)
xp(T)

with X1(T),....,X,(T) specified.

In order to first orderize J

T T
5J=6—w(x*(T)—)L(T))T6x(t)+ f 6—H(/1,x*,u*)+/1(t))T6x(t)dt+ f 6—H()L,x*,u*)6u(t)dt
ox 0o O0x 0o Ox

As in the last lecture we choose A(t) to satisfy A(t) = %making the 2nd term
in the above equation vanish since §,;(T) = 0fori = 1,.....,r The corresponding
costate component A;(T') are not constrained so now the P.M.P. becomes

x = f(x,u),x(0)=x

- 51
A=—L A)-—
ox ) ox

o
A1 (T) = (T2
ox

o
An(T) = Y (T,
ox
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O0H 0
sU
X1(T)=x1
Xo(T)=Xo
|
Xr(T) = Xr
Example Finite Dimensional LTI system
We would like to steer
x=Ax+Bu

from x(0) = x¢ to x(T") = x1 so as to minimize

Jz—f @)l 2de
2 Jo

To solve, first let us write down the Hamiltonia

1
HA,x,u)=ATAx+ATBu + 5||u||2

the P.M.P. necessary conditions say that there is a costate A(t), which

nn no_n

together with the optimizing values of "x" and "u" satisfy

A=-ATA@)
BTA®)+u@®) =0
A=Ax+Bu

From the first equation A(¢) = e’ATt/lo for some Ay € R™
u(t) = —BT A1)

- _BTe 4",

Now Ag must be chosen s.t. the boundary conditions x(0) = x¢, x(¢) = x, are
met, so from the variation of constants formula

T T
x(t)=eatxo—f eAt=9BBT =4 54352,
0
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having the boundary conditions met requires that

T
x(t) = e (x —f e_A(S)BBTe_ATSds/lo
0

In other words
T T
f e AOBBTe A 5dsAg = (xg —e AT xy)
0
Hence,

Ao =W l(xg—eATx1)

where
T T
f e A®BRBT A sgg
0

Note: That W is an invertible n x n matrix if the system is controllable.

Summary: The control law that steers x = Ax + Bufromx(0) = xotoX (T') = x1
S0 as to minimize the norm of control squared is integrated

T
f lu(®)|*dt
0
Is given by

u(t) = —BTeAT0),

where A is the soltuion to xg — e’ATxl =Wy with

T T
f e A®BRBT A sgg
0

Other linear quadratic Optimization problems:

Free Endpoint Problem (not specifying the final endpoint)

x=Ax+Bu
steer this system so as to minimize
1 T
J=3 f T (H)Qux(t) +uT (Ru(t)dt
0

Where R is symmetric and positive definite, and Q is symmetric and positive
semi-definite.



Dynamic Systems: State-space control 5
For this problem the Hamiltonian is AT Ax + ATBu + %uTR u the PM.P
necessary conditions are
x=ATA-Qx;MT)=0
i=-ATA1-Qx
Ru+BTA=0
R is invertable because it is positive definite u(t) = —R BT A(¢)

%=Ax-BR™'BT)
A=-AT1-Qx

x(0) =29, (T)=0«— fromP.M.P

suppose we can write

MT) = M(8)x(t)

A=MMx+Mzx

from x equation
=Mx+MA-MBR BT Mx

from the A equation

=-ATMx-Q«x
This will be satisfied for any X(t) of M(t) satisfies the matrix Riccoti equation

M+ATM+MA-MBR 'BTM+Q = 0(R)

To meet the boundary conditions A(T") = 0 we require that M(t)=0
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The question of Existance of M

Consider the Scalar Riccoti equation

M=-2M+M?+1

M(T)=0

(This would be associated with Optimization)

x=x+u

T
J:j'u%n—x%ndt
0

note: m = (m —1)? and get

k=k2
This is a solution of the form
a
k()= ——
®) 1-at
2
. a
E(t)= ——— = k(¢)?
@) 1_ai? )

One can prove that the solution is unique. Choose a s.t. M(t) = 0 i.e. K(T) =
-1 then

a
:—]_—»a:—
1-at T-1

For example when T=2 and @ =1 and k(¢) = ﬁ
1
M@t)=—
®) 1—;
Which blowsupatt=1

So the quadratic is not always the best option since it has a finite blow up
times

We state the following without proof
Theorem: If A,B is a controllable pair, @ = QT is positive semi-definite, then

the solution to the Riccoti equation (T) passing through 0 at t=T exists and is
positive semi-definite on an interval [¢¢g,T] for any to < T
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Previw of the next time

Theorem: Suppose A,B is a controllabe pair. The conrol law that steers

x=Ax+Bu

so as to minimize r
f xTQx+uTRudt
0

is given by
u(t) = —RIBTM(t)x(2)

where M satisfies

M+MA+ATM-MBR'BTM+@=0

M(T)=0



