
Lecture 20 ∗

December 5, 2012

1 Pontryagin Maximum Principal (First Version)
Theorem: Pontryagin Maximum Principal-First Version suppose it is desired to
steer the sate of

ẋ = f (x,u), x(0)= x0

so as to maximize (minimize)

J =
∫ T

0
l(x,u)dt+ψ(x(T)))dt

If this defines a normal problem then there exists a costate vector λ(t) such
that λ, together with the optimizing values of x,u jointly satisfy

ẋ = δH
δλ

λ(T)= δψ

δx
(x(t))

δH
δu

= 0

Where the Hamiltonian H is defined as

H(λ, X ,u)=λT F(x,u)+ l(x,u)

Consider the same problem, optimization, in which the terminal value of x(T)
is (partially) specified

ẋ = f (x,u), x(0)= x0

∗This work is being done by various members of the class of 2012
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and we wish to optimize

J =ψ(x(t))+
∫ T

0
l(x(t),u(t))dt

with specific terminal values X1(T), ...., Xr(T) (r ≤ n)

The approach for the solution again involves infinite dimensional Lagrange
Multipliers

Ĵ =ψ(x, t)+
∫ T

0
H(λ(t), x(t),u(t))−λ(t)T ẋ(t)dt

with
H(λ, x,u)=λT f (x,u)+ l(x,u).

suppose

x(T)=



x1(T)
.
.
.

xr(T)
xn(T)


with X1(T), ...., Xr(T) specified.

In order to first orderize J

δJ̄ = δψ

δx
(x∗(T)−λ(T))Tδx(t)+

∫ T

0

δH
δx

(λ, x∗,u∗)+λ̇(t))Tδx(t)dt+
∫ T

0

δH
δx

(λ, x∗,u∗)δu(t)dt

As in the last lecture we choose λ(t) to satisfy ˙λ(t)= −δH
δx making the 2nd term

in the above equation vanish since δx j(T) = 0 f ori = 1, ....., r The corresponding
costate component λ j(T) are not constrained so now the P.M.P. becomes

ẋ = f (x,u), x(0)= x0

λ̇= −δ f
δx

T
λ(t)− δl

δx

λr+1(T)= δψ

δx
(x(T))r+1

.........

λn(T)= δψ

δx
(x(T))n
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δH
δU

= 0,

X1(T)= x1

X2(T)= X2

↓
Xr(T)= Xr

Example Finite Dimensional LTI system

We would like to steer

ẋ = Ax+Bu

from x(0)= x0 to x(T)= x1 so as to minimize

J = 1
2

∫ T

0
||u(t)||2dt

To solve, first let us write down the Hamiltonia

H(λ, x,u)=λT Ax+λTBu+ 1
2
||u||2

the P.M.P. necessary conditions say that there is a costate λ(t), which
together with the optimizing values of "x" and "u" satisfy

λ̇=−ATλ(t)

BTλ(t)+u(t)= 0

λ̇= Ax+Bu

From the first equation λ(t)= e−AT tλ0 for some λ0 ∈Rn

u(t)=−BTλ(t)

=−BT e−AT
λ0

Now λ0 must be chosen s.t. the boundary conditions x(0) = x0, x(t) = x, are
met, so from the variation of constants formula

x(t)= eatx0 −
∫ T

0
eA(t−s)BBT e−AT sdsλ0
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having the boundary conditions met requires that

x(t)= eat(x0 −
∫ T

0
e−A(s)BBT e−AT sdsλ0

In other words ∫ T

0
e−A(s)BBT e−AT sdsλ0 = (x0 − e−AT x1)

Hence,

λ0 =W−1(x0 − eATx1)

where ∫ T

0
e−A(s)BBT e−AT sds

Note: That W is an invertible n x n matrix if the system is controllable.

Summary: The control law that steers ẋ = Ax+Buf romx(0) = x0toX (T) = x1
so as to minimize the norm of control squared is integrated∫ T

0
||u(t)||2dt

Is given by

u(t)=−BT e(−AT t)λ0

where λ0 is the soltuion to x0 − e−AT
x1 =Wλ0 with∫ T

0
e−A(s)BBT e−AT sds

Other linear quadratic Optimization problems:

Free Endpoint Problem (not specifying the final endpoint)

ẋ = Ax+Bu

steer this system so as to minimize

J = 1
2

∫ T

0
xT (t)Qx(t)+uT (t)Ru(t)dt

Where R is symmetric and positive definite, and Q is symmetric and positive
semi-definite.
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For this problem the Hamiltonian is λT Ax+λTBu+ 1
2 uT Ru the P.M.P

necessary conditions are

x = ATλ−Qx;λ(T)= 0

ẋ =−ATλ−Qx

Ru+BTλ= 0

R is invertable because it is positive definite u(t)=−R−1BTλ(t)

ẋ = Ax−BR−1BTλ

λ̇=−ATλ−Qx

x(0)= x0,λ(T)= 0← f romP.M.P

suppose we can write

λ(T)= M(t)x(t)

λ̇= MṀx+Mẋ

from x equation

= Ṁx+MA−MBR−1BT Mx

from the λ equation

=−AT Mx−Qx

This will be satisfied for any X(t) of M(t) satisfies the matrix Riccoti equation

Ṁ+ AT M+MA−MBR−1BT M+Q = 0(R)

To meet the boundary conditions λ(T)= 0 we require that M(t)=0
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The question of Existance of M

Consider the Scalar Riccoti equation

Ṁ =−2M+M2 +1

M(T)= 0

(This would be associated with Optimization)

ẋ = x+u

J =
∫ T

0
u2(t)− x2(t)dt

note: ṁ = (m−1)2 and get
k̇ = k2

This is a solution of the form

k(t)= α

1−αt

k̇(t)= α2

(1−αt)2
= k(t)2

One can prove that the solution is unique. Choose α s.t. M(t) = 0 i.e. K(T) =
-1 then

α

1−αt
=−1→α= 1

T −1

For example when T=2 and α= 1 and k(t)= 1
1−T

M(t)= 1
1− t

Which blows up at t = 1

So the quadratic is not always the best option since it has a finite blow up
times

We state the following without proof

Theorem: If A,B is a controllable pair, Q = QT is positive semi-definite, then
the solution to the Riccoti equation (T) passing through 0 at t=T exists and is
positive semi-definite on an interval [t0,T] for any t0 ≺ T
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Previw of the next time

Theorem: Suppose A,B is a controllabe pair. The conrol law that steers

ẋ = Ax+Bu

so as to minimize ∫ T

0
xTQx+uT Rudt

is given by
u(t)=−R−1BT M(t)x(t)

where M satisfies

Ṁ+MA+ AT M−MBR−1BT M+Q = 0

M(T)= 0


