
Background on Linear Algebra - Lecture 2 ∗

September 6, 2012

1 Introduction

Recall from your math classes the notion of vector spaces and fields of scalars.
We shall be interested in finite dimensional vector spaces, and the scalar fields
of interest will be real R and C complex numbers.

Because the vector spaces of interest are finite dimensional, there is no loss
of generality in thinking of them as Rn and Cn for appropriate position integer n.

consider the linear transformation

L : Cn → Cn

Recall that in a linear transformation is a function such that for all vectors
x, y ε Cn and scalars α and β ∈ C

L(αx + βy) = (αLx + βLy)

If we choose a basis {vi, ......, vn} for Cn

then L may be represented by a matrix as follows

Lvj =

n∑
i=1

αijvi

L ∼ (αij) = A)

where matrix A has its ij-th entry is αij

∗This work is being done by various members of the class of 2012
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What if we choose another basis

{w1, ......, wn} and write

L ∼ (bij) = B ?

While it might look like a given linear transformation can be represented by
any of a given number of arbitrary different matrices, this is not a case

Note: any two basis are related by a “change of basis” matrix

wj =

n∑
i=1

pijvi

where the pij ’s are uniquely determined scalars. Write P ∼ (pij)

Note that P is an invertable matrix. This follows easily because the basis
(vi . . . , vn) may be expressed in terms of the basis (wi, . . . , wn)

vj =

n∑
i=1

qijwi

(qiy) ∼ Q

clearly Q = P−1 (Proof for this is left to the students.)

On the one hand

Lwj =

n∑
`=1

p`jLv`

=

n∑
`=1

(

n∑
k=1

αk`vk)

=

n∑
k=1

(

n∑
`=1

αk`p`j)vk.
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On the other hand

Lwj =

n∑
i=1

βijwi

=

n∑
i=1

βij(

n∑
k=1

pkivk)

=

n∑
k=1

(

n∑
i=1

pkiβij)vk

n∑
k=1

(
n∑

i=1

pkiβij)vk =
n∑

k=1

(
n∑

`=1

αk`p`j)vk.

Because the vk
′s form a basis , the coefficients of the vk

′s in this equation
are equal term by term

n∑
i=1

pkiβij =

n∑
l=1

αklp`j (k = 1, ...n), (j = 1, ..., n)

The left hand side is the kj entry in the matrix product AP. The right hand
side is the kj entry in the matrix product PB.

Theorem

Two square matrices A,B represent the same linear transformation if and
only if there is a non singular matrix P such that

B = P−1AP

Proof

The calculation shows that there is a matrix P such that

PB = AP

Since P is invertible, the conclusion of the theorem follows.

Terminology

A→ P−1AP is called a similarity transformation.

Two matrices represent the same linear transformation if and only if they
are similar
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Goal
When we look for matrix representations the goal will be to find expressions
that are as simple as possible—

for instance, we would like matrices to be sparse i.e. to have as many zero
elements as possible

Example

A =

(
3 1
1 3

)
Propose we let

P =

(
1√
2

1√
2

− 1√
2

1√
2

)
then it is (almost) obvious that

P−1 =

(
1√
2
− 1√

2
1√
2

1√
2

)
we find that

B =

(
1√
2
− 1√

2
1√
2

1√
2

)(
3 1
1 3

)( 1√
2

1√
2

− 1√
2

1√
2

)

=

(
2 0
0 4

)
.

Generally speaking square matrices with all non-zero elements (if any) con-
fined to the principal diagno are as sparse as possible. under the operation of
similarity transformations.

Theorem

Any square n×n matrix with n distinct eigenvalues can be put into diagonal
form by a change of basis.

Proof

Let {e1, ....., en} be any set of eigenvectors corresponding to the distinct
eigenvalues (λ1, ......, λn)

Aej = λjej (j = 1, ...., n)

Think of the eigenvectors as n-tuples of scalars, and if we think of these n-
tuples as column vectors, we can put them side by side to form an n×n matrix
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M = (e1 · · · en)

AM = (λiei :: λnen) = MΛ
where

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


This proves the theorem.

Exercise: M is non-singular hint: (e1, ....., en) form a basis

Example

(
1 1
0 a

)
this has an eigenvalue that are distinct if and only if a ¬1

might as well take the eigen vector corresponding to 1 to be

~e1 =

(
1
0

)
Note: eigenvectors remain eigenvectors if they are multiplied by a nonzero

scalar

we can take the eigen vector corresponding to a to be

~ea =

(
1

a− 1

)
A diagnolizing transformation M such that

M−1
(

1 1
0 a

)
M

=

(
1 0
0 a

)
is

M =

(
1 1
0 a− 1

)
.

Note that as a → 1, ~ea → e1, and moreover, M becomes singular. What to
do?
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Homework - go back and review what you know about elementary linear
algebra

next: where to go when eigenvalues are not distinct

2 Recommended reading

B.Noble & J.W. Daniel, Applied Linear Algebra, Prentice Hall, 1977

Gilbert Strang, Introduction to Linear Algebra 4th Edition, Wellesley Cam-
bridge Press

Steven Roman, Advanced linear Algebra (Graduate texts in mathematics),
Springer 3rd Edition

F.R. Gantmacher, Matrix theory, Chealsea, NY 1960


