
Dynamic Systems - State Space Control

- Lecture 14 ∗

October 23, 2012

1 Equilibirum Points

THEOREM: A necessary a sufficient condition for the equilibrium point of
xdot = Ax+ b is that the Eigenvalues of A have negative real parts. That is to
say that the eigenvalues lie in the left half complex planes.

ẋ = Ax+Bu

y = Cx

State feedback u(t) = Kx(t)
Compared to output feedback u(t) = Ky(t)

The closed loop system with state feedback is:

ẋ = (A+Bk)x

Examples:

1. RLC Circuit

Insert drawing here

Kirchoff’s Law (Voltage Drops)

V = IR

V = dFL/dt

V = 1/C

∫
Ids

∗This work is being done by various members of the class of 2012
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L = d2I/dt2 +RdI/dt+ 1/cI = E(t)

RLC circuit is controlled by voltage flux

2. Positioning a Mass Spring Dashpot System

Insert drawing here

mẍ+ cẋ+ kx = u(t)(c > 0)

First orderizing the system yields

x1 = x, x2 = ẋ

(
ẋ1
ẋ2

)
=

(
0 1

−k/m −c/m

)(
x1
x2

)

The characteristic polynomial is

λ2 + cλ/m+ k/m = 0

Roots λi = −c/2m± 1/2m
√
c2 − 4km

x(t) = a1e
λ1t + a2e

λ2t

If there is a large damping c2 >> 4km
Insert drawing here

If either k or m or both are large

x(t) = a1e
−c/2m∗tcos(1/2m

√
|c2 − 4km|t) + a2e

−c/2msin(1/2m
√
|c2 − 4km|t)

What can be achieved with feedback

u(t) = −kpx1(t)− kvx2(t)(
ẋ1
ẋ2

)
=

(
0 1

−k/m −c/m

)(
x1
x2

)
+

(
0

−kpx1(t)− kvx2(t)

)

=

(
0 1

−k/m− kp −c/m− kv

)(
x1
x2

)
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The closed loop characteristic polynomial equation is

λ2 + (c/m+ kv)λ+ k/m+ kp = 0

Second order control systems

ẍ+ 2ζωẋ+ ω2x = 0, ζ > 0

ζ is the damping ratio
ω is the natural frequency

The three cases of interest are ζ < 1, ζ = 1, ζ > 1

Why these are of interest

s2 + 2ζωs+ ω2 = 0

s = −ζω ± ω
√
ζ2 − 1

Case ζ < 1

Let a = −ζω, ω > 0
Then a2 = ζ2ω2 < ω2

Hence we can choose b s.t a2 + b2 = ω2

The differential equation becomes:

ẍ− 2aẋ+ (a2 + b2)x = 0

First orderize as follows
x1 = x

x2 = ẋ− ax/b

Then

ẋ1 = ax1 + bx2

ẋ2 = −bx1 + ax2(
ẋ1
ẋ2

)
=

(
a b
−b a

)(
x1
x2

)
We have computed

Φ(t, 0) = e

 a b
−b a

t

=

(
eatcos(bt) eatsin(bt)
−eatsin(bt) eatcos(bt)

)
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x(t) = x1(t) = eatcos(bt)x1(0) + eatsin(bt)x2(0)

Insert drawing here

= Ce(at)sin(bt+ φ)

C =
√
x1(0)2 + x2(0)2

Φ = arctan(x1(0), x2(0)

If a > 0

Insert drawing here

Case ζ > 1

λ1 = −ζ omega− ω
√
ζ2 − 1

λ2 = −ζ omega+ ω
√
ζ2 − 1

These roots are either both positive or both negative. Again let a = −ζω, ω > 0
Then a2 = ζ2ω2 > ω2 Hence there is a b2 < a2sich that a2 − b2 = ω2

First orderize as the system

ẋ1 = ax1 + bx2

ẋ2 = bx1 + ax2(
ẋ1
ẋ2

)
=

(
a b
b a

)(
x1
x2

)
The transition matrix is

e

a 0
0 a

t
e

0 b
b 0

t

e

a 0
0 a

t
=

(
eat 0
0 eat

)

e

0 b
b 0

t
=

(
1 0
0 1

)
+

(
0 b
b 0

)
+ 1/2

 b2 0
0 b2

+...


The even terms sum to (

ebt + e−bt/2 0
0 ebt + e−bt/2

)
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The odd terms sum to (
0 ebt − e−bt/2

ebt − e−bt/2 0

)
The transition matrix is(

eat 0
0 eat

)(
ebt + e−bt/2 ebt − e−bt/2
ebt − e−bt/2 ebt + e−bt/2

)
Assuming (without loss of generality) b > 0 we have |a| > b

x(t) = C1e
(a+b)t + C2e

(a−b)t

a < 0
Insert drawing here

a > 0
Insert drawing here

Case ζ = 1

ẋ1 = x

ẋ2 = ẋ1 + ωx1(
ẋ1
ẋ2

)
=

(
−ω 1
0 −ω

)(
x1
x2

)
x(t) = e−ωt(x1cost+ x2(0))

Summary -

Pole locations and closed loop dynamics. Poles occur as complex conjugate
pairs.

Insert drawing here

2 Mass Spring System Reprise

mẍ+ cẋ+ km = u(t)

Assuming we can measure x, ẋ and feed them back

u(t) = −kpx(t)− kvẋ(t)
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The closed loop system is

mẍ+ (c+ kv)ẋ+ (k − kp)x = 0

k + kp/m = ω2

c+ kv/m = 2ζω

ζ = c+ kv/2
√
k + kp

√
m

When ζ < 1
ω2 = a2 + b2

ζ = −a/ω = −a/
√
a2 + b2

When ζ > 1
ω2 = a2 − b2

ζ = −a/ω = −a/
√
a2 − b2

When ζ = 1
ω2 = a2 + b2

x(t) = C1e
(a+b)t + C2e

(a−b)t, a < 0, b > 0, |a| > b

If —a— is very large compared to b ζ = 1

x(t) = Ceat

Insert drawing here

If kv is very large ζ >> 1 and —a—, b have similar magnitude

a+ b = −ω < 0

x(t) = C1e
−ωt + C2e

(−2b−ω)t

Insert drawing here

When ζ = 1 there is fast damping but there is danger if there are modeling
errors of the system actually being underdeveloped

3 Roth, Hurwitz Asymptotic Stability

-> G(s) ->

Suppose g(s) is a proper rational transfer function, g(s) = n(s)/d(s)
Asymptotic stability depends on the zeros of g(s)

d(s) = sn + an − 1sn−1 + ...+ a0
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They need to be in the left half plane.
d(s) is said to be a Hurwitz polynomial when they are.
Since d(s) is the product of factors of the form s+a and s2 + b1s+ b0
With a, b1, b0 real and positive, a necessary condition for d(s) to be Hurwitz is
that all coefficients ak be positive. This however is not sufficient.

Exercise 1. For a polynomial having all coefficients positive such that it is
not Hurwitz.

The Routh table associated with d(s) = sn + an − 1sn−1 + ...+ a0

a0 a2 a4 a6 ...
a1 a3 a5 a7 ...
b1 b2 b3 b4 ...
c1 c2 c3 c4 ...
d1 d2 d3 d4 ...

The entries below the two rows of a’s are”

b1 = a1a2 − a0a3/a1

b2 = a1a4 − a0a5/a1
b3 = a1a6 − a0a7/a1
c1 = b1a3 − b2a1/b1
c2 = b1a5 − b3a1/b1
d1 = c1b2 − b1c2/c1

etc ...

ROUTH-HURWITZ THEOREM: The number of sign changes in the left-
hand column as you go down is equal to the number of zeros in the right half
plane.

Example : d(s) = s4 + s3 + s2 + 11s+ 10

Routh Table :
10 1 1
11 1 0

1/11 1 0
−120 0 0

1 0 0

b1 = 11 ∗ 1− 1 ∗ 10/11

b2 = 1 ∗ 1− 1 ∗ 0/11

c1 = 1/11− 1 ∗ 11/1/11 = −120
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Two sign changes in the first column means two zeros in the right half plane.

Reference : Lerrant, Lepschy, Viavo. 1999. ”A Simple Proof of the Routh
Test”. IEEE Transactions on Automatic Conrol. 44(6). 1306-1309.


