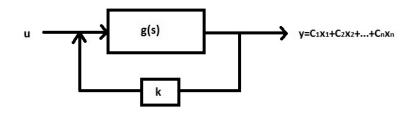
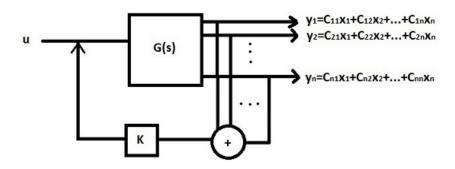
Dynamic Systems Theory - State-space Linear Systems

October 18, 2012



Output Feedback



(If $C=(c_{ij})$ is invertible, you can do more)

$\underline{\text{Case 1}}:$

$$g(s)(u - ky) = y \Longleftrightarrow y = \frac{g(s)}{1 + k g(s)} u$$

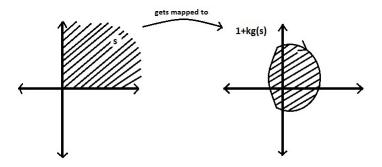
 If

$$g(s) = \frac{C_n s^{n-1} + \ldots + C_2 s + C_1}{s^n + a_{n-1} s^{n-1} + \ldots + a_0}$$

then,

$$\frac{g(s)}{1+kg(s)} = \frac{C_n s^{n-1} + \dots + C_1}{s^n + (a_{n-1} + k C_n) s^{n-1} + \dots + (a_0 + k C_1)}$$

We're interested in the zeros of 1 + k g(s) being in the right hand plane. We can check the image of 1 + k g(s) for $\Re(s) > 0$



It's easier to check $\{1 + k g(s) : s = \iota \omega; -\infty \le \omega \le \infty\}$

Nyquist Criterion Let g(s) be a scalar rational function of a complex variable $s: \sigma + \iota \omega$.

$$\Gamma(g) = \{ u + \iota v : u = \Re(g(\iota \omega)), v = \Im(g(\iota \omega)); -\infty \le \omega \le \infty \}$$

is called the Nyquist locus of q.

If $\Gamma(g)$ is bounded, we say the Nyquist locus encircles $(u_0 + \iota v_0)$, ρ times if

- (a) $u_0 + \iota v \notin \Gamma(g)$, and
- (b) $2\pi\rho$ is the net increase in the argument of $g(\iota\omega) u_0 \iota v_0$

Theorem: Suppose g(s) has a bounded Nyquist locus. If g(s) has γ poles in the r.h.p.($\Re(s)>0$), then $\frac{g(s)}{1+k\,g(s)}$ has $\rho+\gamma$ poles in the r.h.p. if the point $-\frac{1}{k}+\iota\,0$ is not on the Nyquist locus, and $\Gamma(g)$ encircles $-\frac{1}{k}+\iota\,0$ times in the clockwise sense.

Example:

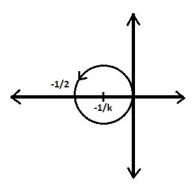
$$g(s) = \frac{1}{s-2}$$

$$\Gamma(g) = \{ \frac{1}{\iota \, \omega - 2} : -\infty \le \omega \le \infty \}$$

Multiplying & dividing by $(-\iota \omega - 2)$,

$$\Gamma(g) = \{\frac{-2}{\omega^2 + 4} - \iota \frac{\omega}{\omega^2 + 4} : -\infty \leq \omega \leq \infty\}$$

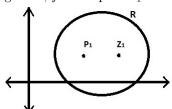
The Nyquist locus looks like:



The Nyquist locus encircles -1/k either 0 times if $-1/k < -1/2 \iff 1/k > 1/2 \iff k < 2$

$$-1$$
 times if $-1/k > -1/2 \iff 1/k < 1/2 \iff k > 2$

Proof: Let f be a rational function of a complex variable s. Suppose that in a region R, f has a pole P_1 and a zero Z_1 .



Write
$$f(s) = K \frac{(s-z_1)(s-z_2)\dots(s-z_m)}{(s-p_1)(s-p_2)(s-p_3)\dots(s-p_n)}$$

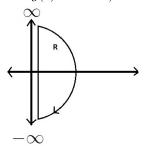
Let s trace a tiny circle clockwise about z_1

$$s = s(\theta) = (z_1 + \varepsilon e^{\iota \omega})$$
 $0 < \omega < \infty$

Then,

$$\hat{f}(\theta) = \frac{K \varepsilon e^{i\theta}(s(\theta) - z_2) \dots (s(\theta) - z_n)}{\varepsilon e^{i\theta} \dots (s(\theta) - p)} = \frac{K}{\varepsilon} e^{-i\theta} g(\theta) \text{ and}$$

the argument decreases by 2π . More generally, the argument of f changes by $(z-p)2\pi$ as a curve is traversed clockwise around a region containing z-zeros and p-poles (counting multiplicities). Hence, as ω runs from $-\infty$ to ∞ , we can think of tracing a very large "D" shaped region in the r.h.p., and the argument of $1+k\,g(s)$ changes by $2\pi\times$ (no. of times origin is encircled) $=2\pi\times\rho=2\pi\times$ (no. of times g(s) encircles).



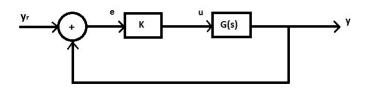
Further remarks on frequency domain stability analysis Type-m systems and the "Final Value Theorem":

Consider a signal e^t ; $0 \le t \le \infty$, $\lim_{s \to 0} s \hat{e}(s) = \int_0^\infty s e(t) e^{-st} du$ $= \lim_{s \to 0} \left[-e(t) e^{-st} \Big|_0^\infty + \int_0^\infty e'(t) e^{-st} \right]$ $= e(0) + \int_0^\infty e'(t) dt$ $= e(0) + \lim_{t \to \infty} e(t) - e(\theta)$ $= \lim_{t \to \infty} e(t)$

Laplace Transform Final Value Theorem:

$$\lim_{t \to \infty} e(t) = \lim_{s \to \infty} s \,\hat{e}(s)$$

An Application: Tracking



$$e = y_{\nu} - y$$

$$\hat{e} = \hat{y}_{\nu} = (I + G(s) K) \hat{y}_{\nu}$$

The transfer function is $(I + G(s) K)^{-1}$ from y_{ν} to e.

<u>Definition</u>: A system is said to be of Type-m if it can track a polynomial input of degree m with finite, but non-zero steady state error. Suppose,

$$y_{\nu}(t) = C_0 + C_1 t + \ldots + C_m t^m$$

$$\hat{y}_{\nu}(s) = \frac{C_0}{s} + \frac{C_1}{s^2} + \dots + \frac{C_m}{s^{m+1}} = \frac{1}{s^{m+1}} \left(C_0 \, s^m + \dots + c_m \right)$$

Then,

$$s\,\hat{e}(s) = \frac{1}{1+k\,g(s)}$$

If g(0) is finite, $\lim_{s\to 0} s \, \hat{e}(s) = \infty$. The only way $s \, \hat{e}(s) \to 0$ is if g(s) has $s \to 0$ pole of order > m at s = 0.

Given

 $\dot{x} = A x + b$, x_0 is an equilibrium.

Solution

$$\iff A x_0 + b = 0$$

 $\iff x_0 + A^{-1}b$ in the case that A is not invertible.

The equilibrium X_0 is <u>asymptotically stable</u> if the state converges X_0 for all initial conditions.

The solution to this differential equation is,

$$e^{At}(X(0) + A^{-1}b) - A^{(-1)b}$$

and the equilibrium will be asymptotically stable if $e^{At} \to 0$ as $f \to \infty$.

Let
$$\lambda = a + ib$$
, and write $e^{\lambda t} = e^{(a+ib)t}$
 $e^{\lambda t} = e^{(a+ib)t}$
 $= e^{at} e^{ibt}$
 $= e^{at} (\cos bt + i \sin bt)$

$$e^{\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}^{t}} = \begin{pmatrix} e^{\lambda t} & t e^{\lambda t} & \frac{t^{2} e^{(3} t)}{2} \\ 0 & e^{\lambda t} & t e^{\lambda t} \\ 0 & 0 & e^{\lambda t} \end{pmatrix}$$

In general, when there is a non-trivial Jordan block, there will be matrix entries involving terms $t^k e^{\lambda t}$ for positive integers k. Then,

$$\begin{split} &\lim_{t\to\infty} t^k \, e^{\lambda\,t} = \lim_{t\to\infty} \frac{t^k}{e^{-\lambda\,t}} = \lim_{t\to0} \frac{k\,t^{k-1}}{-\lambda\,e^{-\lambda\,t}} \ \text{(L'Hospital)} \\ &= \lim_{t\to\infty} \frac{k!}{(-\lambda)^k\,e^{-\lambda\,t}} = 0 \end{split}$$

In general, the dynamic characteristics associated with eigenvalue $\lambda = a + \iota b$ are.

$$e^{at} (\cos bt + i\sin bt)) p(t)$$