
Dynamic Systems - State Space Control

- Lecture 12 ∗

October 16, 2012

THEOREM: Suppose G(s) is a qxm matrix of rational functions such that
the degree of denominator of each element exceeds the degree of the
numerator. Then there exist constant matrices A,B and C such that,

G(s) = C(sI −A)−1B

PROOF: Let p(s) = sn + an−1s
n−1 + · · ·+ a1s+ a0 be the monic LCM of the

denominator. Write,

G(s) =
En−1s

n−1 + · · ·+ E0

sn + an−1sn−1 + · · ·+ a1s+ a0

Then,

A =


0m Im 0m · · · 0m
0m 0m Im · · · 0m
...

...
...

...
−a0Im −a1Im −a2Im · · · −an−1Im



B =


0m
...

0m
Im



C =
(
E0

... E1

... · · ·
... En−1

)

∗This work is being done by various members of the class of 2012
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Standard Controllable Realization

Let p(s) be the same LCM. This time expand G(s) about s =∞ to get,

G(s) = L0
1

s
+

1

s2
+ · · ·

Let,

A =


0q Iq 0q · · · 0q
0q 0q Iq · · · 0q
...

...
...

...
−a0Iq −a1Iq −a2Iq · · · −an−1Iq



B =


L0

L1

...
Ln−1


C =

(
Iq

... 0q
... · · ·

... 0q

)
We have already seen that C(sI −A)−1B = CB 1

s + CAB 1
s2 + · · ·

Since,

CB = L0

CAB =
(

0q
... Iq

... 0q · · · 0q

)
L0

L1

...
Ln

 = L1 CAn−1B = Ln−1

C(sI −A)−1B and G(s) agree upto the term Ln−1
1
sn .

Now,

det(sI −A) =

∣∣∣∣∣∣∣∣∣
Ins−A0 0n · · · 0n

0n Ins−A0 · · · 0n
...

...
. . .

...
0n 0n · · · Ins−A0

∣∣∣∣∣∣∣∣∣
= det(Ins−A0)

Where,

A0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1


(Verify this!)
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Since p(A0) = 0 we also have p(A) = 0

p(s)G(s) = (sn + an−1s
n−1 + · · ·+ a1s+ a0)(L0

1

s
+ L1

1

s2
+ · · · ) (∗)

The coefficient of
1
s in (∗) is,

a0L0 + a1L1 + · · ·+ an−1Ln−1 + Ln = 0

At the same time, since p(A) = 0,

a0CB + a1CAB + · · ·+ an−1CA
n−1B + CAnB = 0

⇒ Ln = CAn−1B

This argument can be repeated due to the fact that the coefficient of 1
s2 in

p(s)G(s) must also vanish and inductively it follows that CAkB = Lk for all
values of k.

This is standard observable realization.

EXAMPLE: g(s) = s+1
s2+1

The standard controllable realization is,

A =

(
0 1
−1 0

)
, B =

(
0
1

)
, C =

(
0 1

)
Check:

(sI −A) =

(
s −1
1 s

)

(sI −A)−1 =
1

s2 + 1

(
s 1
−1 s

)

C(sI −A)−1B =
(
1 1

)( s 1
−1 s

)(
0
1

)
1

s2 + 1
=

s+ 1

s2 + 1

The standard observable realization is,

A =

(
0 1
−1 0

)
, C =

(
1 0

)
, b =

(
L0

L1

)
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Find Lk’s by long division.

On dividing we obtain the quotient as
1
s +

1
s2 + · · ·

b =

(
1
1

)
Check:

C(sI −A)−1b =
(
1 0

)( s 1
−1 s

)(
1
1

)
1

s2 + 1
=

s+ 1

s2 + 1

General Remarks on Stability:(
ẋ1
ẋ2

)
=

(
λ 1
0 λ

)(
x1
x2

)
(∗)

e

λ 1
0 λ

 t
=

(
eλt teλt

0 eλt

)
When λ is real, there are three cases of interest

Case 1: λ < 0

lim
t→∞

eλt = 0

lim
t→∞

teλt = lim
t→∞

t

e−λt

= lim
t→∞

t

−λe−λt
(l’Hôpital)

= lim
t→∞

−λe−λt

= 0

λ < 0 =⇒ e

λ 1
0 λ

 t
=

(
0 0
0 0

)
as t→∞

The origin

(
x1
x2

)
=

(
0
0

)
is an equilibrium for the equation (*).

It is asymptotically stable in the sense that for any initial condition(
x1(t)
x2(t)

)
→
(

0
0

)
In general, if eigenvalues are real and < 0 then eAt → 0 as t→∞

More generally, if the real parts of the eigenvalues of A are < 0, eAt → 0 as
t→∞.
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We call a linear system ẋ = Ax which the eigenvalues of A < 0 an
asymptotically stable system.

Left hand plane eigenvalues of the matrix A correspond to the left half plane
poles of (sI −A)−1

Case 2: λ > 0

e

λ 1
0 λ

 t
=

(
eλt teλt

0 eλt

)
→
(
∞ ∞
0 ∞

)
as t→∞

In general, if A has any eigenvalue with positve real part, there are trajectories
x(t) such that ||x(t)|| → ∞ as t→∞.

Case 3: λ = 0

e

0 1
0 0

 t
=

(
1 t
0 1

)
→
(

1 ∞
0 1

)
as t→∞

In general, if A has any eigenvalue with positve real part, there are trajectories
x(t) such that ||x(t)|| → ∞ as t→∞.

Stability depends on the poles of the transfer function (C(sI −A)−1)

The simplest feedback control design is to use output feedback to modify
system dynamics:

ẋ = Ax+Bu

y = Cx

Let u = Ky = KCx for an appropriate gain k

ẋ = (A+BkC)x (Closed loop system)

Is it stable?
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The control input is u+G2y

y = G1(u+G2y)

Solving for y,

y =
G1

I −G1G2
u or (I −G1G2)−1G1u

Supposing G2(s) ≡ K,

y =
G1

I −G1K
u or (I −G1K)−1G1u

Suppose, G1(s) comes from a linear, time-invarient system,

G1 = C(sI −A)−1B

Then consider replacing the control with a feedback law,

U → U +KCx

The modified dynamics are,

ẋ = (A+BKC)x+Bu

y = Cx

The transfer function relationship is,

Y (s) = C(sI −A−BKC)−1Bu(s)

How does this relate to

?
From what we saw above, the closed loop transfer function is,

(I − C(sI −A)−1BK)−1C(sI −A)−1B

When C = I (i.e when all states are observed)

(I − (sI −A)−1BK)−1(sI −A)−1B = [(sI −A){ I − (sI −A)−1BK}]−1B
= [(sI −A)−BK]−1B

= (sI −A−BK)−1B
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Which is what we obtained from the time domain representation.

In this case, the poles of the system tell the stability story, and these are
accessible from the system outputs.

They are zeros, I −G(s)K. As K varies these constitute the root locus.


