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Geometric or Arithmetic Mean: A Reconsideration 

 

 
Mini-abstract 

 
Average past performance paints too rosy a view of future portfolio growth. 
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Geometric or Arithmetic Mean: A Reconsideration 

 

 
Abstract 

 

 An unbiased forecast of the terminal value of a portfolio requires compounding its 

initial value at its true arithmetic mean return for the length of the investment period.  

However, compounding at the arithmetic average historical return results in an upward 

biased forecast. This bias does not necessarily disappear even if the sample average 

return is an unbiased estimator of the true mean, computed from long data series, and 

returns are generated by a stable distribution. On the other hand, forecasts obtained by 

compounding at the geometric average generally will be downward biased.  For typical 

investment horizons, the proper compounding rate is in-between these two values. These 

biases are empirically significant. For investment horizons of 40 years, the difference in 

forecasts of cumulative performance easily can exceed a factor of two. The percentage 

differences in forecasts grows with the investment horizon, as well as with the 

imprecision in the estimate of the mean return. 
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Geometric or Arithmetic Mean: A Reconsideration 

 

Digest 
 
 
 It is well known that an unbiased forecast of the terminal value of a portfolio 

requires the initial value to be compounded at the arithmetic mean rate of return for the 

length of the investment period.  However, an upward bias in forecasted values results if 

one estimates the mean return with the sample average, and uses that average to 

compound forward.  This bias results from the facts that cumulative performance is a 

non-linear function of average return, and that the sample average is necessarily a noisy 

estimate of population mean.  Surprisingly, the bias does not necessarily disappear 

asymptotically, even if the sample average is computed from long data series and returns 

come from a stable distribution with no serial correlation.  Instead, the bias depends on 

the ratio of the length of the historic estimation period to that of the forecast period.  

 On the other hand, forecasts obtained by compounding at the geometric average 

generally will be downward biased.  For typical investment horizons, the proper 

compounding rate is in-between these two values.  Specifically, unbiased estimates of 

future portfolio value require that the current value be compounded forward at a weighted 

average of the two rates.  The proper weight on the geometric average equals the ratio of 

the investment horizon to the sample estimation period.  Therefore, for short investment 

horizons, the arithmetic average will be close to the “unbiased compounding rate.”  

However, as the horizon approaches the length of the estimation period, the weight on the 

geometric average approaches 1.  For even longer horizons, both the geometric and 

arithmetic average forecasts will be upward biased. 
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The implications of these results are generally sobering.  There is already an 

emerging consensus that the 1926-2002 historical average return on broad market indexes 

such as the S&P 500 are probably higher than likely future performance.  Our results 

imply that the best forecasts of compound growth rates for future investments are even 

lower than the estimates emerging from this new strain of research. 

The impact of these considerations on forecasts of future portfolio value can be 

dramatic.  Compounding at the arithmetic average return calculated from sample periods of 

either the most recent 77 or 52 years results in forecasts of future value for a sample of 

countries that are roughly double the corresponding unbiased forecasts based on the same 

data periods.  Indeed, for reasonable risk and return parameters, at investment horizons of 

40 years, the difference in forecasts of total return generally will exceed a factor of two.  

The percentage differences between unbiased forecasts versus forecasts obtained by 

compounding arithmetic or geometric average returns increase with the ratio of the 

investment horizon to the sample estimation period, as well as with the imprecision in the 

estimate of the mean return.  For this reason, emerging markets present the greatest 

problem.  These markets present historical estimation periods that are particularly short, and 

return histories that are particularly noisy.  For these markets, therefore, the biases analyzed 

in this paper can be especially acute.  Even for developed economies, which offer longer 

histories, there can be significant bias if one disregards data from very early periods because 

it is considered less predictive of future performance. 
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 Geometric or Arithmetic Mean: A Reconsideration 

 

Increased concern for long-term retirement planning, the associated growth of the 

defined-contribution investments market, and proposals for Social Security reform have 

all focused considerable attention on forecasts of long-term portfolio returns.  Moreover, 

recent academic studies1 suggest that conventional estimates of long-term performance, 

such as those guided by historical averages from the database in the popular Ibbotson 

Associates publication Stocks, Bonds, Bills and Inflation Annual Yearbook may paint far 

too rosy pictures of likely future performance.   

This paper returns to an old controversy in the forecasting of long-term portfolio 

performance: given a historical data series from which one estimates the mean and 

variance of portfolio returns, should one forecast future performance using arithmetic or 

geometric averages?  Finance texts2 generally (and correctly) note that if the arithmetic 

mean of the portfolio’s stochastic rate of return is known, an unbiased estimate of 

cumulative return is obtained by compounding at that rate. Despite this advice, many in 

the practitioner community prefer geometric averages, which are necessarily lower than 

arithmetic averages.   

                                                 
1 Fama and French (2002) and Jagannathan, McGratten and Scherbina (2000) show that estimates of 

expected return derived from a dividend discount model are substantially lower than historical average 

returns.  This suggests that U.S. experience has turned out better than market participants expected, 

rendering historical averages greater than equilibrium risk premia.  In addition, more inclusive data bases 

result in lower historical risk premia.  See for example, Dimson, Marsh and Staunton (2002), which shows 

that extending U.S. data to earlier historical periods reduces historical average returns. 
2 Including those of two of the authors; see for example, Bodie, Kane and Marcus (2002, pp. 810-811), but 

also Brealey and Myers (2003, pp. 156-157) or Ross, Westerfield, and Jaffe (2002, pp. 232-233). 
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We show in this paper that the practitioners are on to something.  When the true 

mean return of the portfolio is not known, but must be estimated, we demonstrate that 

compounding at the sample arithmetic average return results in an upwardly biased 

estimate of final portfolio value even if the sample estimate of mean return is itself 

unbiased.  Neither does the geometric average generally provide an unbiased forecast of 

cumulative return.  But compounding at a simple weighted average of the arithmetic and 

geometric averages does provide an unbiased forecast of cumulative return. 

The proper weights applied to the two averages depend on the ratio of the 

investment horizon to the length of the sample period used to estimate the mean return.  

When the forecast horizon is very short relative to the sample period, the weight on the 

arithmetic average return is close to 1.0; in this case, the “textbook wisdom” is correct.  

However, as the horizon extends, the weight progressively shifts in favor of the 

geometric average.  At a horizon equal to the historical sample period, the weight on the 

geometric average reaches 1.0, and “practitioner wisdom” is correct.  At even longer 

horizons, the weight on the geometric average exceeds 1.0, while that on the arithmetic 

average is negative, implying unbiased compounding rates below both the arithmetic and 

geometric averages.   

The implications of these results are quite sobering.  There is already an emerging 

consensus (see footnote 1) that the 1926-2002 historical average returns on broad market 

indexes such as the S&P 500 are probably higher than likely future performance.  We 

conclude that the best forecasts of future compound growth rates are even lower than the 

estimates emerging from this new strain of research. 
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In the next section we show why unbiased estimators of mean return result in 

overestimates of compound portfolio growth rates.  We illustrate there that the bias is a 

function both of the imprecision of the estimate and of the horizon for which portfolio 

performance is forecasted.  We present, easy to use,  exact formulas for this bias in the 

standard case that returns are log-normally distributed.  The formula indicates a simple 

correction for bias, which involves the weighted average of the arithmetic and geometric 

average.  In Section 2, we examine some implications of our results and demonstrate that 

this bias can be substantial, certainly large enough for significant implications for long-

term planning.  We show that the bias tends to be more severe when there is a shorter 

history of returns or when returns are more variable, making these issues particularly 

important for emerging markets.  Empirical estimates in this section demonstrate that 

potential bias in these markets is enormous.  Section 3 concludes 

 

1.  Forecasting Cumulative Returns with Noisy Estimates 

 Suppose the rate of return on a stock portfolio is log-normally distributed.  If the 

stock price today, at time t, is denoted St, then ln(St+1/St) has a normal distribution with 

mean µ and variance σ2.  Over an investment horizon of H periods, if returns are 

independent from one period to another, the cumulative return on the portfolio will also 

be log-normally distributed: ln(St+H/St) has a normal distribution with mean µH and 

variance σ2H.   
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For any historical sample of stock returns, the geometric average rate of return is 

defined as the compound growth rate of portfolio value over the investment period.3  

Suppose for example that we have observed stock prices over a sample period starting T 

periods ago (i.e., starting at time t − T) and ending today, at time t.  If the initial value of 

the portfolio was St−T, then the geometric average rate of return, g, is defined by 

 St−T egT  =  St 

or equivalently, 

g  =  
1
T ln(St/St−T)         (1) 

 

Because in each period, the expected value of ln(St+1/St) equals µ, the geometric average 

return is an unbiased estimator (in fact, the maximum likelihood estimator) of µ. 

 However, it is a well-known feature of the lognormal distribution that if ln(St+1/St) 

has mean µ, then the expected value of St+1 equals St eµ + ½σ2.  Thus, the expected rate of 

growth in portfolio value expressed at a continuously compounded rate is µ + ½ σ2.  This 

quantity is the arithmetic mean rate of return, which exceeds the geometric mean by ½σ2.  

After an investment horizon of H periods, the unbiased forecast of future portfolio value 

is therefore  

E(St+H)  =  St e(µ + ½σ2)H       (2) 

Equation (2) is the basis of the “textbook rule” that to forecast future value, one should 

compound forward at the mean arithmetic return. 

                                                 
3 For expositional simplicity, we assume the stock portfolio pays no dividends.  If there were dividends, we 

would simply add the dividend yield to obtain the total rate of return. 
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 The difference in these approaches can be empirically significant.  We estimate 

the arithmetic mean by computing the growth in portfolio value each period (i.e., St+1/St) 

and then calculating the sample period average.  This average is the estimate of St eµ + ½σ2.  

We estimate the geometric mean from equation (1).  Using the SBBI database from 1926 

to 2001, we find the geometric average annual return for the S&P 500 (expressed as a 

continuously compound rate) is 10.51%, while the arithmetic average is 12.49%.  The 

standard deviation of the index over this period was 20.3%, or .203, so the difference in 

the two measures returns is just about half the variance (½ × .2032 = .0206 or 2.06%), 

consistent with the fact that the annual return of the index is approximately log-normal.  

For more volatile investments such as small stocks, the difference in arithmetic and 

geometric average is even larger.   

 However, an often-overlooked presumption of the textbook formula is that the 

forecaster knows the true values of the parameters µ and σ.  In practice, of course, these 

are estimated, and even using the best estimation techniques, the estimators are subject to 

sampling error.   

One might think that simply substituting unbiased estimates of µ and σ into 

equation (2) would provide unbiased estimates of future portfolio value.  In fact, this is 

common practice.  For example, Ibbotson Associates simulates future portfolio values in 

SBBI by compounding forward using the historical arithmetic average as in equation (2).  

Unfortunately, even if the estimate of µ is unbiased and σ is known4, the forecast of 

                                                 
4 We will focus on the estimation error in µ, ignoring possible sampling error in σ.  The justification for 

this simplification is that if the return distribution is stable, one can estimate σ arbitrarily accurately by 

sampling returns more frequently.  In contrast, the precision of the estimate of µ depends solely on the 
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future portfolio value will be biased, possibly quite severely.  The reason for this result is 

that e(µ + ½σ2)H is a non-linear function of µ.  Symmetric errors in the estimate of µ 

therefore have asymmetric effects on the forecast of St e(µ + ½σ2)H .  Positive estimation 

error has a greater impact than an equal-magnitude negative error.  Therefore, even if the 

estimate of µ is unbiased, with estimation error centered around zero, the estimation error 

in St+H will be upward biased.   

Figure 1 illustrates this property.  Suppose the true mean value of µ is 10%, the 

standard deviation of annual returns is 20%, and we estimate µ from equation (1) using 

returns over a 30-year period.  The standard error of the estimate µ̂ is then 20/ 30 = 

3.65%.  Panel A (top left) shows that the probability density of µ̂ is symmetrically 

distributed around 10% with a standard deviation of 3.65%.  However, the probability 

densities for forecasted final wealth (all based on an initial investment of $1) are right-

skewed.  Observe the dashed vertical lines in Panels B − D, all corresponding to forecasts 

of final portfolio value obtained using estimates equal to µ = 10% plus or minus 3.65%.  

For short investment horizons such as 2 years (Panel B, bottom left) the effect of 

skewness is minimal.  But for a 10-year horizon (Panel C, top right), a one-standard-error 

positive error in the estimate of µ increases the forecast of final value by $1.5 from $3.3 

to $4.8, whereas the symmetric one-standard-error negative error in the estimate of µ 

reduces the forecast of final value by only $1.0, from $3.3 to $2.3.  The asymmetry at a 

20-year horizon is even more dramatic (Panel D, bottom right).  In all cases, the 

uncertainty in final wealth is considerable. 

                                                                                                                                                 
length of the sampling period and cannot be enhanced by sampling more frequently.  Merton (1980) 

demonstrates this result rigorously. 
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[Figure 1 here] 

 If the underlying stock price process is log-normal, it is relatively easy to derive 

the exact bias in the forecast.5  If we estimate µ using equation (1), then our estimate, µ̂, 

equals the geometric average return over the sample period of length T.  The standard 

error of µ̂ is σ/ T .  The (noisy) forecast extends for H periods, resulting in a standard 

deviation of the forecast equal to σH/ T , and variance σ2H2/T.  Thus, estimation error in 

µ increases the range of possible values we may infer for final portfolio value: in addition 

to the “irreducible noise” due to economic uncertainty (measured by σ), we add 

additional noise by using an estimate of µ to forecast.  We know from equation (2) that 

adding variance to a log-normal return increases the forecast of cumulative portfolio 

growth by one-half the variance of cumulative return.  Hence, the upward bias resulting 

from the extra volatility associated with sampling error is e½σ2H2/T.  Note that the bias 

increases in both investment horizon, H, and volatility, σ (which will make our statistical 

estimates less precise).  Conversely, bias declines with T, because longer sample periods 

increase the precision of our estimates.   

Table 1 computes this bias as a function of investment horizon, volatility, and 

sample estimation period.  The table demonstrates that using reasonable parameters, the 

bias can be dramatic, especially when volatility is high, or the sample period is short.  In 

these cases, 30 or 40-year forecasts can be biased by factors of 2 or more.   

                                                 
5 A more formal derivation of this formula for bias may be found in Eric Jacquier, Alex Kane, Alan J. 

Marcus,  “Optimal Forecasts of Long-Term Returns and Asset Allocation: Geometric, Arithmetic, or Other 

Means?” working paper, 2002.  Blume (1974) first discusses the bias in forecasted portfolio value.  However, 

because he assumes that returns are normally rather than log-normally distributed, he does not obtain exact 

formulas for expected values or bias.  A log-normal specification is also preferable as it rules out  returns 

below −100%. 
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[Table 1 here] 

 We conclude that while the expected future value at horizon t + H of a portfolio 

currently worth $1 can be described by equation (2), we may not simply substitute an 

estimate of µ such as the historical geometric average into this formula.  As noted, 

substituting µ̂ for µ adds extra variability to the distribution of portfolio values, and 

results in the following bias: 

 E[e(µ^  + ½ σ2)H] =  E(St+H) e½σ2H2/T      (3) 

Equation (3) does, however, indicate how one can adjust the estimate of the 

compound growth rate of the portfolio to render the forecast of portfolio value unbiased.  

Suppose we start with the sample estimate of the continuously compounded arithmetic 

average rate of return, i.e., µ̂ + ½ σ2, but then reduce this estimate by the amount ½ σ2H/T.  

Call this modified estimator µ* + ½ σ2.   This reduction is just sufficient to undo the bias 

associated with the use of µ̂: 

 

  e(µ* + ½σ2)H =  e(µ^  + ½ σ2 − ½σ2H/T)H   =  e(µ^  + ½ σ2)H e−½σ2H2/T   

=  [E(St+H) e½σ2H2/T ] × e−½σ2H2/T  

=  E(St+H)       (5) 

 

Thus µ* + ½ σ2  is the compound growth rate that provides unbiased estimates of future 

portfolio value.   
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Now notice that this growth rate is a weighted average of the geometric and 

arithmetic averages with weights that depend on the ratio of the investment horizon to the 

sample estimation period6:  

µ* + ½ σ2  ≡  µ̂ + ½ σ2 − ½ σ2H/T  =  (µ̂ + ½ σ2)(1 − H/T) + µ̂ H/T  (6)  

The growth rate that gives an unbiased forecast of final portfolio value will be 

very close to the arithmetic average for very short investment horizons (i.e., for which 

H/T is close to zero).  But as the horizon extends, the weight on the geometric average 

increases.  Therefore, µ* falls as horizon lengthens.  For H = T, the unbiased forecast 

compounds initial portfolio value at the geometric average return.  For even longer 

horizons, one would apply a weight greater than 1.0 to the geometric average, and a 

negative weight to the arithmetic average, resulting in a growth rate below either the 

geometric or arithmetic mean.7 

This analysis sheds light on an apparent paradox.  Suppose we assume that returns 

come from a distribution that is stable over time.  In that case, the 76-year historic return 

from the SBBI data base ending in 2001 would be a reasonable (albeit imprecise) estimate of 

cumulative return over the next 76 years.  Compounding at the historic geometric average 

over a 76-year horizon would (by construction) match the proportional growth in wealth 

                                                 
6 This result is similar to that of Blume (1974).  He shows that final wealth is approximately a weighted 

average of wealth relatives based on geometric and arithmetic means.  In contrast, we are able to obtain an 

exact result by focusing on drift rates of wealth (rather than wealth per se) under log-normality. 
7 Cooper (1996) analyzes bias due to estimation error in the context of discount factors.  However, because 

discount factors involve powers of the reciprocal of the rate of return, the biases he finds differ from those 

here.  He finds that both arithmetic and geometric averages result in downward biased estimators of the 

appropriate discount factor, but that the arithmetic average is typically very close to the unbiased discount 

rate.  In contrast, we find that the arithmetic average always results in upward bias, that the bias can be 

substantial, and that the geometric average can result in either upward or downward bias. 
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realized over the past 76 years.  In contrast, compounding at the sample arithmetic average 

for 76 years (as typically prescribed by the literature) would necessarily give a forecast of 

growth in wealth greater than the one realized historically.  Following standard practice thus 

ensures a forecast of future portfolio growth that exceeds historic experience.  The bias 

correction described in equation (6) shows that this forecasting exercise (with T = H = 76 

years) actually would call for compounding at the geometric average, so that the forecast of 

76-year cumulative return would match that experienced historically.  

 

2. Indicative biases 

Is the potential bias in forecasts of cumulative returns economically significant?  

Unfortunately, it seems to be.   

Assume that µ̂ = .10 and σ = .20.  Figure 2, Panel A, shows the forecasted growth of 

funds over investment horizons ranging from 0 to 40 years for four forecasts: arithmetic 

average (labeled A), geometric average (labeled G), and two unbiased growth rates (labeled 

U), computed based on historical sample periods of different durations.  (The unbiased 

estimator weights the geometric and arithmetic rates using weights H/T and 1 − H/T, so each 

sample period results in a different estimator.)  We assume in Figure 2 that µ̂ is estimated 

using either a 76-year sample period (corresponding to the SBBI period for the U.S.) or a 30-

year period, a sample period that might be available for an emerging market, or even for a 

developed capital market such as that of U.S. if one believes that the post-Vietnam era 

represents a structural economic break.   

[Figure 2 here] 
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Panel A shows that the arithmetic estimator suffers from severe upward bias at long 

horizons.  In contrast, the bias of the geometric estimator depends on the relation between H 

and T.  When they are close, the estimator is relatively unbiased.  In fact, the Figure 

illustrates that for H = T = 30 years, the geometric and unbiased estimators are equal.  In 

general in Panel A, the geometric and unbiased estimators for T = 30 years do not diverge 

much for investment horizons less than 35 years.  However, when the discrepancy between 

H and T is greater, for example, when T = 76 years, the downward bias in the geometric 

estimator can be profound, in fact, roughly equal to the upward bias in the arithmetic 

estimator at the equivalent horizon.  

Panel B presents another view of the relative biases.  It presents the ratios of 

arithmetic or geometric forecasts of cumulative return to unbiased forecasts.  For T = 30 

years, the bias in the arithmetic estimator rises dramatically with investment horizon: at a 

horizon of H = 20 years, bias is about 30 percent, but at a 40-year horizon, bias rises to 

almost 200 percent.  For T = 76 years, the arithmetic estimator performs much better, but 

still is subject to an upward bias of about 50 percent at a horizon of 40 years.  Using longer 

sample periods, T, the arithmetic forecast obviously performs better; however, the stability 

of the underlying return process at ever-longer horizons becomes increasingly suspect.  

Symmetrically, for long T, the geometric estimator can be severely downward biased.  

Using T = 76 years of data and an investment horizon of H = 40 years, for example, the 

geometric forecast of final wealth is only about 60 percent of the unbiased forecast.   

The tradeoff between long sample periods (which would increase precision when the 

underlying return process is stable) versus truncated sample periods (which disregard old 

and possibly no-longer-representative experience) is highlighted in Table 2, which presents 
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40-year return forecasts for a small sample of countries based on historical sample periods 

of different lengths.  The longest series available from Datastream for France, Germany, and 

the U.K. are well more than a century in length.  For the U.K, with a 201-year data span, the 

arithmetic average return is almost equal to the unbiased compounding rate even for a 

horizon as long as 40 years.  But notice for these countries that the estimates of µ over these 

long periods are far lower than estimates derived over the last 82 years, and smaller still 

than estimates based on the latest 52 years.  Do we conclude that the estimates based on 

longer data series are more reliable by virtue of their higher sample size, or that structural 

change over the last century or two makes returns from the nineteenth century of dubious 

value for predicting twenty-first century returns?   

We would point out that regardless of how one might answer this question, 

arithmetic averages based on relatively recent experience will result in compounding rates 

that are far too high, at least for these countries.  If we accept the long-duration estimates, 

the resulting values of µ̂ are far lower than estimates obtained from more recent periods.  In 

contrast, if we rely on only more recent data we obtain higher µ̂, but now the unbiased 

estimator gives higher weight to the (lower) geometric average (since H/T is larger).  In 

either case, the compound growth rates that give unbiased forecasts of cumulative returns 

are substantially below results using conventional arithmetic averages. 

The impact of these considerations on forecasts of future portfolio value is dramatic.  

For any of these countries, compounding at the arithmetic average return calculated from 

sample periods of either the most recent 82 or 52 years results in forecasts of future value 

that are roughly double the corresponding unbiased forecasts based on the same data 

periods. 
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Emerging markets present an even greater problem.  At the bottom of Table 2, we 

present estimates for Hong Kong and the MSCI emerging market index (both in dollar-

denominated returns), where available data span only 17.6 or 13.6 years respectively, and 

volatility is high (especially for Hong Kong).  With such short historical estimation periods, 

the unbiased forecast of future value at H = 40 is below both the geometric and arithmetic 

forecasts, and by enormous margins.  For the emerging market index, with T equal to only 

13.6 years, the unbiased forecast is only 3.1% the forecast obtained by compounding at the 

arithmetic average, and is only 10.1% of the compound geometric average. 

 

3.  Conclusion 

A longstanding debate on forecasting future portfolio value has focused on the 

relative merits of the geometric versus arithmetic average return as a compounding rate.  We 

have shown in this paper that when these averages must be estimated subject to sampling 

error, neither approach yields unbiased forecasts.  For typical investment horizons, the 

proper compounding rate is in-between these two values.  Specifically, unbiased estimates 

of future portfolio value require that the current value be compounded forward at a weighted 

average of the arithmetic and geometric rates.  The proper weight placed on the geometric 

rate equals the ratio of the investment horizon to the sample estimation period.  Therefore, 

for short investment horizons, the arithmetic average will be close to the “unbiased 

compounding rate.”  However, as the horizon approaches the length of the estimation 

period, the weight on the geometric average approaches 1.  For even longer horizons, both 

the geometric and arithmetic average forecasts will be upward biased. 
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We demonstrate that these biases can be empirically significant.  For investment 

horizons of 40 years, for example, the difference in forecasts of cumulative performance 

easily can exceed a factor of two.  The percentage differences in forecasts grows along 

with the investment horizon, as well as with the imprecision in the estimate of the mean 

return. 

 For future research we reserve questions concerning the robustness of our results 

to distributional assumptions concerning rates of return. From preliminary research 

(Jacquier, Kane and Marcus, 2002) the results appear robust to heteroskedasticity and 

serial correlation.  We also address there forecasting criteria other than unbiasedness, for 

example, minimum mean squared error forecasts. These forecasts also depend critically 

on the ratio of the investment horizon to the sample estimation period, and present 

qualitatively similar patterns as those presented in this paper.   
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Table 1: Bias induced by forecasting final portfolio value using arithmetic average return of 
portfolio over a sample period.   Ratio of forecast to true expected value of cumulative 
return.  [σ is the standard deviation of annual returns.] 

 
 

A. Sample period = 76 years 

  Horizon (years)   

σ 10 20 30 40  

0.15 1.015 1.062 1.145 1.271 
0.2 1.027 1.113 1.271 1.532 
0.25 1.043 1.181 1.455 1.948 
0.3 1.062 1.271 1.716 2.612 
 

     

B. Sample period = 30 years 

  Horizon (years)   

σ 10 20 30 40  

0.15 1.038 1.162 1.401   1.822 
0.2 1.069 1.306 1.822   2.906 
0.25 1.110 1.517 2.554   5.294 
0.3 1.162 1.822 3.857 11.023 
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Table 2: Estimates of compounding rates and future portfolio values.  A, G, U: are annual compounding rates using arithmetic average A, geometric 
average G, and unbiased estimator U (H = 40) computed over the sample period specified.  Corresponding forecasts of future portfolio values 
(relative to an initial $1 investment) for an investment horizon H = 40 years are denoted V(A), V(G), V(U). 
 
 
   T   Sample estimates Compound growth rates Future portfolio value  
Country/Index Freqa (years) Begin End µ̂ σ̂      A   G     U    V(A)   V(G)  V(U) 

Canada/TSE A 78 1914 2001 4.8 16.7  6.4 4.9 5.6 11.9  6.8 9.0 
Canada/TSE A 52 1950 2001 6.6 14.9 8.0 6.8 7.1 21.8 14.0 15.5 
 
France/SBF250 A 145 1857 2001 5.1 19.7 7.3 5.2  6.7 16.7 7.7 13.5 
France/SBF250 A 82 1920 2001 8.5 24.7 12.2  8.9 10.6 101.5 30.0 56.0 
France/SBF250 A 52 1950 2001 8.7 22.2 11.8 9.1 9.7 87.0 32.5 40.8 
 
Germany/DAX A 145 1857 2001 1.9 32.2 7.3 1.9  5.8 17.0 2.1 9.6 
Germany/DAX A 82 1920 2001 5.5 37.0 13.1 5.7 9.4 139.5 9.0 36.7 
Germany/DAX A 52 1950 2001 8.0 22.8 11.2 8.3 9.0 69.4 24.5 31.2 
 
UK/FTAS A 201 1801 2001 2.4 15.6 3.7 2.4 3.4 4.2 2.6 3.9 
UK/FTAS A 82 1920 2001 5.5 20.0 7.8 5.7 6.7 20.1 9.0 13.6 
UK/FTAS A 52 1950 2001 6.4 24.7 9.9 6.6 8.3 43.8 12.9 24.2 
 
Japan/Nikkei A 52 1950 2001 8.8 24.1 12.4 9.2 9.9 107.9 33.8 44.2 
Hong Kongb D 27.6 5/31/73 1/2/01 10.7  30.7 16.7 11.3 9.0 475.8 72.2 31.0 
MSCI/$Emg Mkt M 13.6 1/88 7/01 8.2 24.2 11.8 8.5 2.5 85.7 26.6 2.7 
 
 
a: Frequency: A annual; M monthly; W weekly; D daily 
b: $HangSeng Without dividend yield. mu=13.5 with dividend yield
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Figure 1: Probability densities of estimates of µ̂, the unbiased estimate of µ, and estimates 
of final portfolio value, e(µ^  + ½ σ2)H. µ̂ is symmetrically distributed around µ (Panel A), 
but the distributions of estimates of final wealth obtained by compounding at the 
arithmetic average rate of return are skewed. Skewness and bias of the estimate of final 
value increase with the investment horizon, H.  Panels B, C, and D show investment 
horizons H = 2, 10, and 20 years respectively. Annual returns are assumed to be log-
normal with parameters µ = .10 and σ = .20. 
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Figure 2: Forecasts of final portfolio value.  Initial investment = $1. Annual returns are 
assumed to be log-normal with parameters µ̂ = .10 and σ = .20.  Forecast of final value using 
arithmetic average return is A = e(µ^  + ½ σ2)H, using arithmetic average return is G = eµ

^  H. The 
unbiased forecast is U = e(µ* + ½ σ2)H which amounts to compounding forward at a rate equal 
to a weighted average of the geometric and arithmetic averages with weights H/T and 1 − H/T. 
Panel (a) presents forecasts of final value Panel (b) presents ratios of the arithmetic or 
geometric forecast to the unbiased forecast. 

 


