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ABSTRACT

Speculative efficiency often requires that future changes in a series cannot be
forecast. In contrast, series with a cyclical component would seem to be fore-
castable with decreases, possibly relative to a trend, during the upper part
of the cycle and increases during the lower part. On the basis of autoregres-
sive model (AR) estimates, it is considered that there is strong evidence of
cycles in insurance underwriting performance as measured by the premium-
to-loss ratio. Indeed, a large literature attempts to explain this documented
cyclicality. First, we show that the parameter estimates from AR models do
not lead to any such inference and that in the contrary, the evidence in the
data is consistent with no cyclicality at all. Second, we show that a number
of different filters lead to the same conclusion: that there is no evidence of
in-sample or out-of-sample predictability in annual insurance underwriting
performance in the United States.

INTRODUCTION

The so-called “liability crisis” of 1985 through 1986 produced a large volume of
literature that attempted to explain why insurance markets go through periods of
high profitability followed by periods of low profitability. This succession of high-
and low-profitability periods is known in the academic and professional insurance
literature as an “underwriting cycle.” Since 1950, there have been six or seven
such underwriting cycles, lasting between 6 and 7 years on average in the United
States (see Venezian, 1985; Cummins and Outreville, 1987). These cycles appear to
exist as well in other Organisation for Economic Co-operation and Development
(OECD) countries. Cummins and Outreville (1987) document periods ranging from
4.7 years in Australia to 8.2 years in France (see Lamm-Tennant and Weiss, 1997;
Chen, Wong, and Lee, 1997; Meier, 2006b, for other international evidence). As Weiss
(2007) states, however, cycles seems to be lengthening or vanishing completely. For
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QC, Canada; and CIRANO. This research is financially supported by the Social Science and
Humanities Research Council of Canada, CIREQ, the HEC research workshops fund, and
the HEC Professorship in Derivative Securities. The first author can be contacted via e-mail:
martin.boyer@he.ca.

995



996 THE JOURNAL OF RISK AND INSURANCE

instance, Meier (2006a) shows that for the United States, cycle length increases to
10 years if we include different explanatory variables in the regression.

Many theories have been put forward to explain the existence of underwriting cy-
cles in the property and casualty insurance business: Forecasting errors (Venezian,
1985; Boyer, Eisenmann, and Outreville, 2011), insurer moral hazard (Harrington
and Danzon, 1994), arbitrage theory (Cummins and Outreville, 1987), risky debt
(Cummins and Danzon, 1997), interest rate variations (Doherty and Kang, 1988;
Doherty and Garven, 1995), and underwriting capacity constraints (Gron, 1994;
Niehaus and Terry, 1993; Winter, 1994). For a more in-depth literature review, see
Harrington (2004) and Weiss (2007).

A literature reports evidence of predictability and cyclicality in underwriting cycles.
For instance, Haley (1993, 1995) and Choi, Hardigree, and Thistle (2002) find a negative
cointegrating relationship between the underwriting margin and the risk-free rate.
Such evidence could have an implication on the modeling of the insurance sector.
However, one first needs to review the existing evidence. Indeed, the experience from
macroeconomic and empirical asset pricing shows us that evidence of predictability
can be elusive for two reasons. First, when analyzing in-sample time series properties,
cyclicality is typically overstated by standard estimation techniques. Second, the out-
of-sample performance of a model is adversely affected by the amount of data mining
as well as the instability of the parameters, even in the absence of data mining.
The latter typically causes some inevitable degree of model misspecification. With
these issues in mind, we reinterpret the predictability and cyclicality of insurance
profitability measures for the United States.

Our results are surprising for researchers who have studied insurance underwriting
data. Using time series techniques previously used to understand economic cycles
(GDP growth and inflation) and stock returns, we find that any evidence of un-
derwriting cycles in the property and casualty insurance market could simply be
spurious. Namely, we find that underwriting data in the United States follow time
series processes from which no profitable investment strategy or product pricing can
be developed. This means that there is no significant evidence against the null hy-
pothesis of speculative efficiency. Therefore, to the extent that cycles may exist, they
do not appear to help speculators or sophisticated underwriters forecast movements
in underwriting ratios and industry profitability.

Our investigation of insurance cycles is motivated in part by the results in Harrington
and Yu (2003) and Jawadi, Catherine, and Sghaier (2009). Harrington and Yu exam-
ine loss ratios, expense ratios, combined ratios, and economic loss ratios for many
insurance lines and for all lines combined from 1953 through 1998. After careful
consideration of multiple unit root tests and their power to detect unit roots, they
conclude that most of these series appear to be trend stationary. This in turn implies
that deviations from trend are expected to diminish over time and, if the trend is
known with certainty, that these deviations will have a predictable component. When
these deviations are persistent, such series are commonly characterized as containing
a short-term cyclical component and a long-run deterministic trend. Jawadi, Cather-
ine, and Sghaier find that the convergence to equilibrium of property and casualty
premiums toward equilibrium is time varying depending on the importance of the
disequilibrium. These authors do not study the loss or combined ratio, however.
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The remainder of the article is as follows. First, we review the in-sample evidence
and properly characterize the times series process of the data. Drawing from the
empirical literature on departures from rational expectations, we test for deviations
from the random walk. In addition to standard tests, for example, generalized method
of moments or variance ratios, we also use a test powerful under cyclical alternatives.
We then measure predictability and cyclicality within the framework of a classic
linear autoregressive model (AR). Because cyclicality is generally overstated by the
classical estimation of these ARs, we compare competing models and hypotheses
using posterior analysis and odds ratios, paying special attention to the effect of
the prior information. Second, we conduct out-of-sample diagnostics to assess the
economic significance of the in-sample cyclicality. This approach allows us to verify
whether the best estimated models in-sample produce out-of-sample forecasts that are
superior to naı̈ve benchmarks consistent with unpredictability. Finally, we conclude
with a discussion of the economic implications of our results.

IN-SAMPLE EVIDENCE OF CYCLICALITY

We first review the evidence in well-known empirical studies. We then conduct cer-
tain reality checks and show the limitations of the evidence. The data used in our
study were acquired from “Best’s Aggregates and Averages” and spans the years
1967 through 2004. This is the main source of information for property and casu-
alty insurance cycle studies in the United States (see, among many others, Cummins
and Outreville, 1987; Lamm-Tennant and Weiss, 1997; Harrington and Niehaus, 2001;
Harrington and Yu, 2003; Meier, 2006a, 2006b).

Background
The insurance industry goes through periods of high and low premiums relative to
losses. These peaks and troughs culminated during the so-called liability crisis of
1985 through 1986. This produced a large literature, which attempted to explain why
insurance markets cycle through periods of high and low profitability. The literature
in insurance agrees that there have been seven such cycles in the United States since
1950. The typical methodology is twofold. First, it uses econometric models of uni-
variate cycles to document the existence of cycles. Second, it uses regressions to link
the variations in premiums to exogenous variables suggested by theoretical models.
Herein, we concentrate on the univariate evidence, and will argue that properly used
time series methods neither produce any evidence of cyclicality, nor of predictability
owing to cyclicality.

Consider the standard univariate AR:

�(B)qt = μ+ εt εt ∼ i.i.d.N(0, σ ), (1)

where qt is the underwriting ratio, and �(B) is a polynomial of degree p in the
backshift operator B. When p is larger than 1, the characteristic equation may have
pairs of complex roots, if the corresponding determinant is negative. Then, for each
such pair, of norm ||λ|| and real part R(λ), there is a cycle in the autocorrelation
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TABLE 1
Selected Univariate and Multivariate Cycle Analyses in the Literature

φ1 φ2 %R2 Period No. Obs.

Panel A: Univariate Cycle Analysis

Tables 1 and 2 in Cummins & Outreville (1987)
USA 0.90 (6.8) −0.77 (5.9) 90 6.1 23
13 countries 0.29, 0.96 −0.67, 0.23 16, 90 4.7, 11.7 23
6 Auto 0.45, 1.26 −0.65, −0.40 43, 70, 90 5.2, 7.1, 9.9 23

Appendix in Chen, Wong, and Lee (1997)
20 Asian series 40, 58, 78 7.8, 11, 13 25

Table 1 in Harrington and Niehaus (2001)
6 U.S. series 0.86, 1.00, 1.30 −0.80, −0.59, −0.42 69, 75, 82 6.2, 7.6, 9.2 23–40

Table 1 in Meier (2006a)
USA 0.90 (5.4) −0.33 (1.9) 82 9.4 41
Switzerland 0.73 (4.5) −0.19 (1.2) 82 10.6 41
Japan 0.93 (4.7) −0.24 (1.2) 67 18.7 28
Germany 0.70 (3.7) −0.18 (1.0) 57 10.5 31

Panel B: Multivariate Cycle Analysis

Table 6 in Meier (2006b)
7 USA 0.67, 0.72, 0.79 −0.35, −0.26, −0.15 67, 80 6.8, 9.1, 14 37 (30)
5 Switzerland 0.55, 0.61, 0.69 −0.16, −0.12, −0.07 21, 78 8.1, 11.7, 22 37 (22)

Table 1 in Harrington and Niehaus (2001)
6 USA 0.73, 0.94, 1.21 −0.79, −0.48, −0.26 70, 78, 82 6.2, 8.3, 9.6 23–40

Note: In the case of several series, we report the average estimate (if one number), the range of
estimates (if two numbers), or the range and the average (if three numbers) over the series. For
one series, we report the estimate, and its standard error between parentheses.

function of Rt , with period

τ = 2π

arccos
(R(λ)

||λ||
) . (2)

This suggests a maximum likelihood estimator of τ based upon the maximum likeli-
hood estimator of the complex roots, which itself follows from the maximum likeli-
hood estimators of �, the vector of autoregressive parameters in Equation (1).

The insurance literature essentially uses this method, reporting the estimates �̂ and
the corresponding period of a cycle, when there is one. Typically, standard errors for
�̂ pointing toward strong statistical significance are used to assess the validity of the
model. Table 1 shows the results of some well-known studies.

Cummins and Outreville (1987) analyze annual data for 13 countries from 1957 to
1979. They find R-squares between 0.16 and 0.90, and the existence of a cycle for
10 countries. When there is a cycle, the periods range from 4.7 years (Australia) to
11.7 years (France). The cycle period exceeds 6 years for 8 out of these 10 countries.
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Given that 23 years of data cover less than four cycles of 6 years, one suspects that
these periods are not estimated with much precision. They also study the automobile
insurance for six countries, all with statistically significant coefficients, high R-squares,
and a cycle. Note again that the average cycle period is high, 7.1 years, which amounts
to about three cycles for the entire sample of 23 years; the periods range from 5.2 years
(Switzerland) to 9.9 years (Italy).

Chen, Wong, and Lee (1997) also report cycles. They analyze four lines of insurance
business in five Asian countries from 1970 to 1995 and report a cycle for 10 estimates.
For these 10 cycles, the period exceeds 10 years for three series, which is fewer than
two cycles over the calendar span. This leaves seven estimates out of 25 for which
one can hope for some acceptable degree of precision. Yet the authors conclude:

The results of the second-order autoregressive model largely support the
existence of the underwriting cycle in Asia because underwriting cycles
are found in at least one line of all five Asian countries tested.

Lamm-Tennant and Weiss (1997), not reported in our Table 1, analyze 23 years of
OECD data from 1965 to 1987. They report period estimates for six lines of insurance
as well as the overall country cycle for 12 countries. Overall, they estimate AR(2)
models on 80 series of insurance loss ratios. They find a cycle for 49 series, that is, 61
percent of the series. On the basis of this evidence they conclude, “This study further
substantiates the presence of underwriting cycles in the average loss ratio and by-line
loss ratios for a sample of twelve countries.”

Harrington and Niehaus (2001) analyze the combined ratio (loss ratio plus expense
ratio) for U.S. data, but different time periods. They find evidence of cycles with
periods averaging 8 years. They conclude that:

the evidence of second-order autoregression . . .must be considered
anomalous from the perspective of the perfect markets model . . . (and) be-
cause there is no reason to expect that shocks are predictable, the evidence
of second-order autoregression is combined ratios or the other variables
also is not readily explained by shock models.

Finally, Meier (2006a, 2006b) expands the Cummins and Outreville (1987) study by
adding exogenous variables to the AR(2) model. The cycle periods increase to approx-
imately 10 years on average in the United States and Switzerland, compared to 5 to 6
years in Cummins and Outreville. The author concludes that “the theory of cycles of
about six years in length . . .may no longer be capable of adequately explaining the
development of the insurance markets in the 1980s and 1990s.” We report some of
these multivariate results with exogenous variables in Table 1, Panel B.

Despite these authors’ strong conclusions, we do not believe that these previous re-
sults are strong enough to conclude, in-sample, that underwriting cycles are anything
but spurious. Next, we show that such estimates do not allow one to conclude that
there is any evidence that would support the existence of univariate cycles in prop-
erty and casualty loss ratios. The key to understanding the time series properties of
cycles (including underwriting cycles) lies in the nonlinear relationship between the
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TABLE 2
Univariate AR(p) Estimation on Underwriting Ratio 1967 to 2004

AR(2) With Time Trend: qt = φ0 + φ1qt−1 + φ2qt−2 + γ× trend
φ1 φ2 φ3 γ %R2 Period

0.94 −0.40 – 0.08 58 8.6
(5.6) (−2.3) – (1.1)

AR(3): qt = φ0 + φ1qt−1 + φ2qt−2 + φ3qt−3

φ1 φ2 φ3 γ %R2 Period
0.94 −0.27 −0.05 – 56 10.9
(6.1) (−1.3) (−0.33) –

Note: The t-statistics are reported in parentheses.

basic parameter estimate of � and the cycle period τ . This relationship appears to
have been either misunderstood in the insurance literature, or at least judged to be
irrelevant.

Reality Check: Bayesian Inference
This section provides two sets of results based on an in-sample assessment of cycles in
the property and casualty insurance industry in the United States. Our first reported
results will show that the main results presented by insurance economists, as reported
previously, do not constitute evidence of cyclicality. Our second result will show that
the period estimates are uninformative.

Aforementioned studies often add a linear time trend to an AR(2) to detrend the data.
As shown in Nelson and Plosser (1988), Rudebusch (1993), and Stock and Watson
(1988), the detrending method has a strong influence on the estimated deviation from
the trend (see Harrington and Yu, 2003, for an application of these techniques to
underwriting margins). This means that a simple linear time trend may not be the
ideal way to stationarize data, in which case alternative methods are often preferred.
For instance, Geweke (1988) argues in favor of using an AR(3) process that allows for
a unit root as a preferable alternative to adding a linear trend to the AR(2) process.
Table 2 reports the estimation of both the AR(2) process with a time trend and the
AR(3) process for our time series data that spans 38 years from 1967 to 2004.

These results look somewhat similar to those obtained in the existing literature, albeit
with a longer calendar span. Clearly, the point estimate of the period is sensitive
to small changes in φ2 and the presence of the preferred stochastic rather than a
deterministic trend. The period point estimate are 8.6 and 10.9 years. Although our
argument is not dependent on the AR(2) versus AR(3) issue, the results in the table
do raise a first important issue, which is the reliability of the point estimate of the
period. This issue is of paramount importance when the point estimate for the period
is high relative to the calendar span of the data. Here, an 11-year period means that
the data barely cover three cycles. What is clearly missing in the existing literature
is a specification of the uncertainty surrounding the point estimate of the period.
More fundamental is that the existing results do not produce the probability of the
existence of a cycle, which can be inferred from the data. The estimation method in
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the empirical insurance literature only computes a point estimate of the period given
the point estimates of φ1.

Estimating the standard error of the point estimate of the cycle period is easily done.
A first approach would be to invoke asymptotic theory and the 
-method, even
though an asymptotic framework is not the most appropriate approach for such a
short (38 observations) time series. This approach gives an approximate expression
for the variance of the estimator of any function of parameters estimated by maximum
likelihood. Namely, the asymptotic variance of T̂ based upon the covariance matrix of
�̂, and an expansion of T(�̂) around the true value � can be shown to be

V(T̂) ≈ T ′ �φ T , (3)

where�φ is the variance–covariance matrix of (φ̂1, φ̂2). An estimate of V(T̂) is obtained
by substituting for the estimate of�φ . Such estimates reveal very high standard errors,
basically implying that the point estimates of cycle periods in the literature are not
informative.

As it results from asymptotic theory, the delta method is possibly misleading in small
samples. An exact, small-sample approach should be used to calculate the cycle period
by simple Monte Carlo estimation as in Geweke (1988) and Jacquier (1991). Namely,
one draws from the posterior distribution �|D, with mean �̂ and covariance matrix
��. One then computes the determinant and the roots of the characteristic equation
for each draw. Clearly, even if �̂ lies in the cyclical region, many draws do not due
to the uncertainty of �. The mere counting of the draws that lie in the cyclical region
yields the posterior probability of the existence of a cycle, which is not reported in the
insurance literature. In turn, each draw resulting a cycle yields a draw for the period
of this cycle. These draws describe the posterior density of the cycle’s period given
that there is a cycle.1

So what does one expect the distribution of the period to look like? The draws can
be represented on a histogram, and quantiles can be computed. Figure 1 shows such
a histogram constructed with 50,000 draws. The median of the period in Figure 1
is 3.8 years; 55 percent of the probabilities lie between 3 and 6 years. This appears
quite informative and, as intuition would have it, constitutes a precise inference on the
period. However, Figure 1 was not constructed with draws from the parameters in the
literature such as in Tables 1 or 2. In fact, we assumed no knowledge ofφ1,φ2 other than
imposing stationarity on the AR(2) process. We drew from a uniform distribution in
the well-known triangle of stationarity of an AR(2) (see Zellner, 1971, p. 196; Sargent,
1986). Specifically, we imposed φ2 > −1, φ2 > −φ1 + 1, and φ2 < φ1 + 1. Figure 1
represents the prior density of the period, the density representing uncertainty before
looking at the data.

What Figure 1 shows is that, due to the nonlinearity of T with respect to �, diffuse
information on � implies a quite informative-looking prior on the period T . As for
the probability of observing a cycle given the random distribution of φ1 and φ2, it is

1 For a standard analysis, with diffuse or conjugate prior, the posterior density of the AR
parameters is a multivariate Student-t. See Zellner (1971) and many others.
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FIGURE 1
Prior Distribution of the Period of the Cycle of a Stationary AR(2) Process
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easy to show by analytical integration that it is two-thirds, a probability disturbingly
higher than 50 percent. It can be computed analytically as the area below the parabola
φ2

1 + 4φ2 < 0 and above the base of the base of the triangle φ2 > −1, where the AR(2)
has two complex roots (see Zellner, 1971, p. 196). For an AR(3), it can easily be shown
that this prior probability of the existence of a cycle jumps to 93 percent.

So any posterior estimate of the probability of a cycle should be higher than
66 percent; otherwise, it means that the data brought evidence against cyclicality.
Posterior densities for the period of the cycle should look tighter than in Figure 1.
Looking back at the period estimates in Tables 1 and 2, they now appear remarkably
uninformative. Namely, their posterior distribution is no more precise than inferred
by knowing nothing about the parameters. Consider the evidence of the very exis-
tence of a cycle; this simple output of estimation is not provided by the empirical
studies in insurance. We can, however, compare the 66 percent probability of a cycle
implied by knowing nothing about the parameters to the frequency of cycles reported
in the literature: 10 out of 13 in Cummins and Outreville (1987), 10 out of 25 in Chen,
Wong, and Lee (1997), 49 out of 80 in Lamn-Tennant and Weiss (1997), and 11 out of 16
in Meier (2006b) for a total of 80 out of 134, or 60 percent. It appears that the literature
has inadvertently started the analysis with strong priors in favor of the existence of
a cycle. To remedy this, especially given the short samples available, one needs to
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compare the posterior density of the period with the prior density implied by the
priors on the parameters.2 One can compute odds ratios for the competing models
and alternatives so as to take into account the short sample size. Odds ratios allow a
“horse race” between multiple competing alternatives.

This Bayesian exercise allows us to suggest that underwriting cycles in the property
and casualty insurance industry exist only because we expect them to exist. Similar
to the debate surrounding Rorschach ink blot tests, where an objective meaning
is thought to be extracted from responses to meaningless blots of ink, our results
suggest that insurance economists studying underwriting cycles attempted to extract
a cyclical pattern from nothing more than a random walk.

OUT-OF-SAMPLE EVIDENCE OF CYCLICALITY

Speculative efficiency requires that future changes in a series cannot be forecast.
In contrast, series with a cyclical component would seem to be forecastable with
predicted decreases (perhaps relative to a trend) during the upper part of the cy-
cle and increases during the lower part. It is therefore crucial to determine the ro-
bustness of the evidence of cyclicality and predictability. This is the purpose of this
article.

The analysis presented in the previous section of the article examined whether cycles
can be identified ex post. For questions of speculative efficiency however, the key issue
is whether cycles can help forecast ex ante future changes in levels. Once we allow for
measurement error in our estimates of the cycle, the former need not imply the latter.
To understand why, it may be useful to consider the literature on business cycles.

Business Cycles: Ex Post and Ex Ante
It is often observed that the estimates of business cycles undergo large revisions. For
example, Orphanides (2003) analyzes the successive estimates of the cycle in U.S.
Real Output at the end of 1974. He reports that in 1976, economists estimated that
the output was at 14 percent below trend, but this estimate was revised to 9 percent
by 1979 and to 4 percent by 1994. Although extreme, this episode highlights the fact
that the subsequent behavior of a time series may have an important influence on
our perception of cycles. Orphanides and van Norden (2002) show that, as a result,
most common methods of estimating business cycles are subject to large revisions
over time.

The existence of such revisions means that speculative efficiency could be compati-
ble with the presence of some types of cycles. As discussed previously, speculative
efficiency simply requires that changes in the level of the series are not forecastable.
More precisely, this means that contemporary, or end-of-sample, estimates of the cycle
cannot help predict future changes in levels. It is noteworthy to mention, however,
that the analysis presented earlier focused on historical, or in-sample, estimates of the
cycle. It should not be assumed that these are similar to estimates economic agents
would have formed based only on the information available to them at the time. In
the case of business cycles for example, Orphanides and van Norden (2005) find that

2 One can use modified prior distributions, that is, diffuse priors on the roots themselves, to
alleviate this problem.
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although in-sample estimates of the business cycle were very useful in predicting
inflation, end-of-sample estimates were not.

To better understand the relationship between speculative efficiency and insurance
cycles therefore, we now turn to consider the behavior of end-of-sample estimates.
Specifically, we consider whether contemporary estimates of cycles are sufficiently
accurate to enable underwriters to forecast changes in the loss ratios. To do so, we
follow the experimental design along the lines of that in Orphanides and van Norden
(2005). We begin by reviewing, in the next subsection, a variety of different estimators
of cycles and thereafter discuss tests of forecast accuracy.

Estimating Cycles
The estimation of the cycle involves a detrending method that decomposes the un-
derwriting ratio, qt , into a trend component, μt , and a cycle component, zt .

qt = μt + zt. (4)

Some methods use the data to estimate the trend,μt , and define the cyclical component
as the residual. Others specify a dynamic structure for both the trend and cycle
components and estimate them jointly. We examine detrending methods that fall into
both categories.

Deterministic Trends. The first set of detrending methods we consider assumes that
the trend in the variable of interest (output or loss ratio) is well approximated as
a simple deterministic function of time. The linear trend is the oldest and sim-
plest of these models and has been used in the insurance literature as mentioned
previously. The quadratic trend is a popular alternative in the output forecasting
literature.

Mechanical Filters. Dissatisfaction with the assumption of deterministic trends has
led many to prefer cycle models that allow for stochastic trends. Harvey (1989) pop-
ularized the structural time series model, which attempts to separately characterize
the dynamics of the trend and the cycle. A simpler (but related) approach prefers
to remain agnostic about their dynamics, or to simply model their joint dynamics
as some autoregressive integrated moving average (ARIMA) process. We examine
three examples of this approach: the Hodrick–Prescott filter, the band-pass filter, and
the Beveridge–Nelson decomposition. The distinction between these approaches and
the structural time series approach is somewhat arbitrary as any of these models
can be related to a particular unobserved components model. This is rarely done in
practice however.

The earliest approach was to model potential output with a smoothing spline, as
shown in Henderson (1924). A popular smoothing spline nowadays is obtained using
the filter proposed by Hodrick and Prescott (1997), and known as the HP filter. We
apply the HP filter with a smoothing parameter of 400 for annual data.
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Band-Pass Filter. Another approach to cycle-trend decomposition is via the use of
band-pass filters in the frequency domain. The clearest exponent of this approach is
Baxter and King (1999), who suggest the use of truncated versions of the ideal (and
therefore infinitely long) band-pass filter with a band passing fluctuations with du-
rations between 6 and 32 quarters in length. Stock and Watson (1998) adapt this
for use at the end of data samples by padding the available observations with
forecasts from a low-order AR model fit to the data series. We use a filter tuned
to capture fluctuations between 2 and 8 years in length and pad using an AR(2)
forecast.

Beveridge–Nelson Decomposition. A very different approach is that of Beveridge and
Nelson (1981), who consider the case of an ARIMA(p,1,q) series y, which is to be
decomposed into a trend and a cyclical component. For simplicity, we can assume
that all deterministic components belong to the trend component and have already
been removed from the series. Since the first difference of the series is stationary, it
has an infinite-order MA representation of the form


yt = εt + β1 · εt−1 + β2 · εt−2 + · · · = et , (5)

where ε is assumed to be an innovations sequence. The change in the series over the
next s periods is simply

yt+s − yt =
s∑

j=1


yt+ j =
s∑

j=1

et+ j . (6)

The trend is defined to be

lim
s→∞ Et(yt+s) = yt + lim

s→∞ Et

⎛
⎝ s∑

j=1

et+ j

⎞
⎠ . (7)

From Equation (5), we can see that

Et(et+ j ) = Et(εt+ j + β1 · εt+ j−1 + β2 · εt+ j−2 + · · · ) =
∞∑

i=0

β j+i · εt−i . (8)

Since changes in the trend are therefore not forecastable, this has the effect of decom-
posing the series into a random walk and a cyclical component, so that

yt = τt + ct , (9)

where the trend is

τt = τt−1 + et , (10)
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and et is white noise. Morley, Nelson and Zivot (2003) discuss the relationship between
this model of the cycle and the unobserved components models, which we discuss
next. To use the Beveridge–Nelson decomposition one must therefore

1. Identify p and q in the ARIMA(p,1,q) model.

2. Identify the {β j } in Equation (5).

3. Choose some large enough but finite value of s to approximate the limit in
Equation (7).

4. For all t and for j = 1, . . . , s, calculate Et(et+ j ) from Equation (8).

5. Calculate the trend at time t as yt + Et(
∑s

j=1 et+ j ) and the cycle as yt minus the
trend.

Based on results for the full sample, we use an ARIMA(1,1,2), with parameters re-
estimated by maximum likelihood methods before each recomputation of the trend.

Unobserved Component Models. Unobserved component models offer a general
framework for decomposing output into an unobserved trend and a cycle, allow-
ing for an explicit dynamic structure for these components. We examine three such
alternatives, by Watson (1986), by Harvey (1985) and Clark (1987), and by Harvey
and Jaeger (1993). All are estimated by maximum likelihood.

The Watson model modifies Harvey’s linear level model to allow for greater business
cycle persistence. Specifically, it models the trend as a random walk with drift and
the cycle as an AR(2) process:

μt = δ + μt−1 + ηt , (11)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt. (12)

Here εt and ηt are assumed to be i.i.d. mean-zero, Gaussian and mutually uncorrelated
and δ, ρ1, and ρ2 , and the variances of the two shocks are parameters to be estimated
(five in total).

The Harvey–Clark model (CL) similarly modifies Harvey’s local linear trend model:

μt = gt−1 + μt−1 + ηt , (13)

gt = gt−1 + νt , (14)

zt = ρ1 · zt−1 + ρ2 · zt−2 + εt. (15)

Here ηt , νt , and εt are assumed to be independently and identically Gaussian dis-
tributed random variables with mean-zero and mutually uncorrelated processes,
whereas ρ1, ρ2, and the variances of the three shocks are parameters to be estimated
(five in total).
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TABLE 3
Root Mean Squared Error of Forecasts for Changes in the Underwriting Ratio, 1967 to
2004

Model h = 1 Year h = 2 Years

Linear trend 5.25 6.31
Quadratic trend 4.88 7.50
Hodrick–Prescott 4.89 5.69
Band-pass filter 4.75 6.99
Beveridge–Nelson 5.37 7.00
Watson 4.38 5.92
Harvey–Clark 4.32 6.12
Harvey–Jaeger 4.42 5.71
Benchmark 4.42 5.82

Forecast Evaluation
Constructing the Forecasts. Let 
q h

t = qt − qt−h denote the change in the underwrit-
ing ratio over h years ending in t. We will examine forecasts of this change over
horizons of 1 and 2 years. Note that we assume reporting lags imply that the under-
writing ratio for period t; that is qt , is not first reported until period t + 1. Thus, a
1-year-ahead forecast is a forecast of the change between the first and second years
after the last period for which data are available.

We examine simple linear forecasting models of the form:


q h
t+h = α +

m∑
i=1

γi · zt−i + et+h , (16)

where m denotes the number of lags of the cycle included in the equation. To provide
a benchmark for comparison, we estimate the same equation after replacing lags of
the estimated cycle zt−i with lags of the underwriting ratio qt−i .

We use this equation to construct feasible forecasts that closely mirror the forecasts
speculators could construct. All parameters are estimated by ordinary least squares.
For each period in which a forecast is made, the parameters of the forecasting equation
(and the underlying model of the cycle zt) are reestimated using the latest available
data.3 In addition, the lag lengths for the explanatory variables are reestimated each
period using the Bayes information criterion. The fitted value of the equation using
the last available data point then becomes the forecast change in the underwriting
ratio. Table 3 summarizes the results of the forecasting experiment.

3 For the Watson, Harvey–Clark, and Harvey–Jaeger models, we use smoothed rather than
filtered estimates of the cycle. This reflects the common practice of practitioners, which is to
use the most accurate possible estimate of the cycle in estimating their forecast equations.
Orphanides and van Norden (2005) find that their results were insensitive to this distinction.
As the cycle estimates appear to exhibit relatively smaller revisions, we expect the results here
to be even less sensitive to this distinction.
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Table 3 reports the root mean squared (RMS) forecast errors for each of the measures
of the cycle, as well as the benchmark which simply uses the underwriting ratio. The
smaller is the RMS error, the better is the forecasting model. We calibrated the 10
models using data up to 1980, so that the first forecast period is 1981. We see that the
benchmark model produces forecasts more accurate than most of the cyclical models
at both the h = 1-year and h = 2-year forecast horizons. The best-performing cyclic
models produced forecasts only slightly more accurate than those of the benchmark
model. It would therefore be interesting to determine whether any of the cyclic models
produce forecasts that are significantly more reliable, or whether this result could
simply be due to chance.

Evaluating Forecast Performance. Figure 2 shows the estimated cycles for each method.
We wish to test the null hypothesis that forecasts from a given cyclic model have the
same RMS forecast error as that of the benchmark model. Various tests of equality of
forecasting accuracy have been proposed, notably asymptotic tests by Diebold and
Mariano (1995) and finite-sample refinements by Harvey, Leybourne, and Newbold
(1998). We calculated both. As they gave the same conclusions; we only report the
Diebold and Mariano statistics in Table 4.4

The first and third columns show the Diebold–Mariano (DM) statistics for a test of
the null hypothesis that the indicated model has the same RMS forecast error as the
benchmark model. The second and fourth columns show the associated p-values. Note
that this is a two-tailed test; negative DM statistics indicate that the cyclical model
performed worse than the benchmark model. Evidence against market efficiency
requires a positive statistic, indicating that the cyclical model forecasts better than
the benchmark model. We see that none of the models have a forecast performance
significantly better than that of the benchmark model for any reasonable significance
level; p-values are notoriously hard to interpret due to the Lindley–Smith paradox.
Furthermore, when multiple p-values are produced, their naı̈ve use (rather than a
Bonferroni adjustment) overstates the evidence against the null. There is no such
problem here as we report no evidence against the null. Moreover, over a 2-year
forecast, only one model performs better than the benchmark, as we see from the
negative DM statistic for all cyclical models except the Harvey–Jeager model.

Given these results, we can only conclude that there appears to be no evidence that
conventional end-of-sample measures of cycles imply a violation of speculative effi-
ciency. Put differently, and given our current knowledge of time series econometrics,
our results imply that it is impossible to reliably forecast loss ratios for the property
and casualty insurance industry using only their past values.

Could the lack of evidence of predictable variation in loss ratios be due to the lack of
power in the methods used to detect cycles? In the Appendix we report the results of
a simulation experiment that investigates the power of these methods to detect cycles
when they exist. These results show that when cycles are sufficiently important, these
methods detect statistically significant evidence of cycles in the majority of cases,

4 Many authors have noted that such tests are not appropriate for forecasts from estimated
models when the models are nested. Because our models have different explanatory variables,
they are not nested.
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TABLE 4
Diebold–Mariano Test of Equality of Predictive Accuracy for Changes in the
Underwriting Ratio

1 Year 2 Years

Model DM p-value DM p-value

Linear trend −1.68 0.09 −1.79 0.07
Quadratic trend −1.66 0.09 −1.63 0.10
Hodrick-Prescott −1.16 0.24 −0.35 0.73
Band-pass filter −0.62 0.53 −1.41 0.16
Beveridge–Nelson −1.78 0.07 −1.13 0.26
Watson 0.09 0.92 −0.12 0.90
Harvey–Clark 0.17 0.86 −0.34 0.73
Harvey–Jaeger 0.00 0.99 0.15 0.88

even with rather short calendar spans for the data. The absence of similar results for
existing loss ratios suggests that underwriting cycles are either absent or relatively
small.5

CONCLUSION

Our investigation of insurance cycles was motivated in part by the results of
Harrington and Yu (2003), who conclude that most time series of insurer profitability
appear to be trend stationary. This implies that deviations from trend are expected to
diminish over time and, if the trend is known with certainty, that these deviations will
have a predictable component. When these deviations are persistent, such series are
commonly characterized as containing a short-term cyclic component and a long-run
deterministic trend. Our results provide an updated assessment of the existence of
cycles in the property and liability insurance industry in the United States. In as much
as the existence of underwriting cycles in property and liability insurance is well es-
tablished in the insurance economic literature, there is little evidence that insurers
are able to forecast these cycles to make a profit. There are two reasons that explain
this forecasting inability. The first is that standard estimation techniques overstate the
likelihood of having a cycle in that the tests are biased in favor of finding one. The
second reason that explains cycle unpredictability is that out-of-sample tests are not
powerful enough to yield any robust economic inference.

5 A referee wondered whether the tests might lack power because “the statistical models
to capture the cyclical pattern . . . (are) . . . outdated” and therefore the article might lack a
foundation to dismiss the presence of cycles. The plethora of cyclical models used here covers
the spectrum of modern time series analysis. Therefore, there is little risk of lack of power
due to a misspecification of any one cyclical model. Further, we are unaware of any model
of cyclical behavior that has been posited for the insurance industry and cannot be detected
by one or more of the models used here. Finally, recall that Bayesian methods are somewhat
immune to this notion of the power of the test; they basically report the evidence in the data
without favoring an alternative or the other.
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Using the same traditional time series as in previous studies on underwriting cycles,
which is the annual loss ratio in the U.S. property and liability insurance market,
we first apply in-sample tests of the cyclicality of time series data. Our data span
the years 1967 through 2004. We show that the results from AR estimation as used in
Cummins and Outreville (1987), Lamm-Tennant and Weiss (1997), and others must be
interpreted with care. Namely, although we find AR(2) and AR(3) parameters similar
to those found in these studies, we show that naı̈ve inference on the existence and the
period of a cycle based on the point estimates is misleading. Namely, it is strongly
biased in favor of finding a cycle. When we correct for this bias, we no longer find
any evidence of a cycle.

We then analyze the existence of underwriting cycles by looking at the in-sample and
out-of-sample predictability of these time series with several different filters often
used in macroeconomic forecasting. Using eight different filters that attempt to test
for the presence of cycles, we find that none yield any forecasting power that would
be profitable for insurance companies.

Our results have the interesting economic implication that underwriting cycles in the
property and casualty insurance market are normal time series processes from which
no profitable investment strategy or product pricing can be developed. We fail to
find any significant evidence against the null hypothesis of (weak form) speculative
efficiency. Therefore, to the extent that cycles may exist, they do not appear to help
speculators forecast movements in underwriting ratios.

APPENDIX: POWER OF FORECAST TESTS FOR CYCLES

An alternative explanation for the lack of evidence of predictable variation in loss
ratios is that our forecast tests lack power to detect cycles. Here, we investigate this
possibility with a simulation experiment. The results show that our methods detect
cycles with high probability when the cycles are sufficiently important.

We begin by choosing a stochastic process to simulate, which is capable of capturing
both cyclical and acyclical behavior. We selected the stochastic cycle model of Harvey
and Jaeger (1993), which takes the form

yt = μt + ψt + εt

μt = μt−1 + βt−1 + ηt

βt = βt−1 + ζt

ψt = ρ · cos (λ) · ψt−1 + ρ · sin (λ) · ψ∗
t−1 + κt

ψ∗
t = −ρ · sin (λ) · ψt−1 + ρ · cos (λ) · ψ∗

t−1 + κ
∗
t ,

where {εt , ηt , ζt , κt , κ∗
t } are all mean-zero Gaussian i.i.d. errors that are mutually un-

correlated at all leads and lags; yt is the observed series (the underwriting loss ratio
in our case), which is composed of a cyclical component ψt , a noise term εt , and a
“trend” μt . The trend is sufficiently general to allow for highly nonstationary, I(2),
processes, but also allow for a simple random walk or a stationary process as special
cases.
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The cycles are completely characterized by (1) ρ, which controls the cycle damping,
0 ≤ ρ ≤ 1; (2) λ, the frequency of the cycles (in radians per period, not cycles per
period); and (3) σκ, which controls the noise in the cycle. This allows for both regular
cyclical behavior (with a period of 2π/λ) and random shocks to the cycle. High values
of ρ imply persistent cyclical behavior whereas low values of ρ allow the random
shocks to dominate the cyclical component.

The maximum likelihood estimation of the parameters of the Harvey–Jaeger model on
the available loss ratio data yielded the values shown in the table below. We then chose
three alternative parameterizations (Cases 1 to 3) of this process to reflect differing
amounts of cyclical behavior. Case 1 should produce cycles of importance similar to
that found in the loss ratio data. Cases 2 and 3 accentuate these cycles by making them
much more persistent without changing their frequency. Increasing the persistence
of these regular cyclical fluctuations should make them easier to distinguish from
random shocks.

Parameter MLE Case 1 Case 2 Case 3

ρ 0.818 0.75 0.9 0.99
λ 0.777 0.8 0.8 0.8
σε 0.0025 0.002 0.002 0.002
ση 0.0100 0.01 0.01 0.01
σζ 0.224 0.2 0.2 0.2
σ

κ
2.64 2.5 2.5 2.5

For each of these three cases, we simulated 5,000 samples, each with the same number
of observations as the original loss ratio data. For each of these 15,000 simulated
samples, we

1. estimated the cyclical component using the linear trend (LT), quadratic trend
(QT), Hodrick–Prescott (HP), and band-pass (BP) methods;

2. examined the ability of each of these 15,000 × 4 = 60,000 estimated cyclical
components to forecast both the loss ratio and the change in the loss ratio out of
sample using the same rolling estimation technique described in the body of the
article;

3. evaluated each of these 2 × 60,000 = 120,000 series of forecasts using both the
Diebold–Mariano and the modified Diebold–Mariano statistics described in the
body of the article;

4. compared each of the 2 × 120,000 = 240,000 test statistics to their 5 percent
asymptotic critical values.

Before turning to results, one should note that none of the methods used to estimate
the cyclical component in this experiment are ideal as none of them use the true
model generating the data in order to estimate the cycle. This makes the experiment
more realistic as it avoids the assumption that one knows the true process driving
industry loss ratios. Also note that we use only the four simplest methods to estimate
cycles in this experiment, as the computational costs of the other models made their
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simulation cumbersome. To the extent that these other models could have greater
power to detect cycles, our results may understate the power of the methods that we
used.

Loss Ratio 
 Loss Ratio
Variable
Cycle Estimate ρ = 0.75 ρ = 0.90 ρ = 0.99 ρ = 0.75 ρ = 0.90 ρ = 0.99

LT 0.04 0.11 0.36 0.10 0.10 0.13
QT 0.05 0.20 0.36 0.05 0.04 0.27
HP 0.04 0.15 0.90 0.11 0.08 0.82
BP 0.11 0.29 0.57 0.04 0.06 0.22

The table above shows the results of our simulation experiments. The numbers shown
are the fraction of outcomes in which we were able to reject the null hypothesis of
no forecastable variation in the loss ratio (or change in the loss ratio) at the 5 percent
significance level. All results shown are based on the modified Diebold–Mariano
statistics. The Diebold–Mariano statistics were less conservative and gave higher
numbers in every case.

Looking at the first column of results, we see that we are able to reject the null hypoth-
esis of no forecastability at the 5 percent significance level only about 5 percent of the
time. This is precisely what we would expect when the loss ratio is not forecastable.
However, as we increase the persistence of the cyclical component (without chang-
ing its frequency) in columns 3 and 4, the frequency with which we reject the null
hypothesis steady increases. Depending on the detrending method used, the chances
of detecting the cycle range from roughly 33 to 90 percent. The final three columns
show the results for forecasts of the change in the loss ratio. Although the number
are generally lower than before, when cycles are sufficiently persistent, the HP filter
is still capable of detecting its presence in more than 80 percent of simulated trials.

We therefore conclude that, taken together, these forecasting tests have high power
to detect cyclical behavior when the cycles are sufficiently persistent.
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