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This paper introduces a new estimation for the dynamics of betas. It combines two previously separate

approaches in the literature, data-driven filters and parametric methods. Namely, we show how to estimate

the parametric beta dynamics by instrumental variables combined with block-sampling - but not overlapping

window filters - of data-driven betas. Instrumental variables are needed because of the measurement errors

in empirical betas. We find that, while betas are very strongly autocorrelated, neither aggregate nor firm-

specific variables explain much of their quarterly variation. We then compare block-samplers and overlapping

window filters using a criterion of economic significance. Namely, we track the out-of-sample performance

of portfolios optimized subject to target beta constraints. For target betas of zero, the case of many hedge

funds, we show that estimation error results in systematic overshooting of the target beta. These portfolios

benefit from the use of medium to long term estimation windows of daily returns.
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1. Introduction

The empirical limitations of the CAPM have directed research toward models of conditional

expected excess returns where expectations are conditional on the investor’s, intrinsically hidden,

time varying information set, see e.g., Merton (1973), Jagannathan and Wang (1996), Campbell

(1996). This makes the models very hard to test as one needs proxies for the information set

to capture properly the dynamics of factor premia and betas, see e.g., Cochrane (2005, p. 145).

Expected returns typically involve products of a factor risk premium by the asset beta with respect

to the factor, The empirical literature has so far focused more on conditional time varying factor

premia than betas. However, time-varying risk premia, now well accepted, can not alone address

the deficiencies of basic models, see for example Lewellen and Nagel (2006).

1
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There is no consensus on the nature of the time variation of betas. Optimal investment in Berk

et al. (1999) links predictability in betas to changes in growth options. Conditional betas in Santos

and Veronesi (2004) depend on firm characteristics and state variables driving the opportunity

set. The structural links in these models are too complex for direct estimation. In Hamada (1972)

and Rubinstein (1973), levered equity betas rise with financial leverage. But they can move in

the opposite direction in even simple models of growth options, e.g., Jacquier et al. (2004). The

empirical evidence is also ambiguous. Braun et al. (1996) incorporate time varying betas with

leverage effects in a GARCH. They find little leverage effect or even time variation. Bekaert and

Wu (2000) find weak evidence of leverage in betas. Jacquier et al. (2004) conclude that growth

options effects dominate financial leverage, but their cross-sectional results characterize more the

long-run variation in betas than those over shorter horizons below a year.

This lack of clear characterization of the time variation of betas is unfortunate because of mount-

ing evidence that mis-specified beta dynamics can seriously affect asset pricing tests, e.g., Wang

(2003). For portfolio optimization, large covariance matrices are often modeled with parsimonious

factor structures, a strategy only as good as its imbedded forecasts of betas. There are two main

empirical approaches to modeling the dynamics of conditional betas. One can use purely data-

driven filters such as the rolling sample estimates in Fama and MacBeth (1973) and many after. Or,

one can impose parametric relationships between betas and proxies for the state of the economy,

as Shanken (1990), Harvey (1991), and Ferson and Harvey (1993, 1999). This second approach

has been argued to be more powerful as it ties directly to theory, but it is vulnerable to mis-

specifications. Indeed, Ghysels (1998) shows that several well-known parametric time-varying beta

models are so badly mis-specified that constant beta models outperform them.

This paper combines the robustness of data-driven filters with the power of parametric methods

to estimate β dynamics. Namely, we estimate nesting models βt = αβt−1 + γXt−1+υt, where past

beta and economic variables determine the current beta.1 Naive estimation suffers from biases due

1 The analysis can extend to non-linear specifications, we concentrate here on linear dynamics.
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to errors in the variables as one must use an estimate of the true βt−1. We design an instrumental

variables (IV) estimator of α,γ, the dynamics of the true unobserved β.2 This allows us to incor-

porate into the robust data-driven filters the added precision of the parametric approach, without

its potential mis-specification or errors in the variables. We show that not using the IV estimator

leads to large downward biases in the estimate of the persistence of βt. Properties of IV estimators

are only asymptotic, so we simulate the small-sample behavior of our IV estimator. We show that

it has good small sample properties, capturing well the true beta dynamics.

With this new estimator, we can reassess the empirical specification of beta dynamics, here at

quarterly horizons. First, we find that true betas exhibit far higher autocorrelation than previously

estimated. Indeed, one would expect the β’s of large firms to change slowly as projects are added

or concluded. Economic theory also implies that betas should vary slowly. For example, in Gomes

et al. (2003) betas are linked to productivity shocks, themselves often calibrated with quarterly

autocorrelations above 0.9. Counter to intuition and theory, the empirical evidence was that betas

had low persistence. Our IV estimator corrects for this, reconciling evidence and theory. Second,

and less encouraging, we find that neither aggregate nor firm-specific variables explain much of

the time-variation of quarterly betas. This is in contrast with theoretical models that link time

variation in betas to economic variables, e.g., Gomes et al.(2003) and Santos and Veronesi (2004),

and parameterizations that link beta dynamics to macro and firm-specific variables as Ferson and

Harvey (1999) and Petkova and Zhang (2005).3

As true betas are latent, comparing the usefulness of models for beta dynamics is not easy. Hedge

funds often need to neutralize factor betas. Pension funds optimize portfolios subject to target

betas. They all need good forecasts of betas. To evaluate the economic value of competing out-of-

sample forecasts of β, we build optimized portfolios subject to target betas, using these forecasts.

2 An alternate, computationally intensive approach would be a Markov Chain Monte Carlo algorithm to simulate
the latent βt. It requires additional distributional assumptions, with their associated potential mis-specifications. See
Jostova and Philipov (2005) and Ang et al. (2006).

3 This also relates to Lewellen and Nagel (2003) who model variations in betas with data-driven estimators. But the
objectives differ. They want to test the conditional CAPM without having to specify conditioning information. So
they do not link betas to the economy.



Ghysels and Jacquier: Beta Dynamics and Portfolio Efficiency
4

We document the performance of these portfolios, especially their realized betas.4 We find that

filters with short historical windows produce the worst portfolio performance. Also, of daily returns

always result in performance superior to the more often used monthly returns. Finally, funds that

set target betas far from the average beta of one are most vulnerable to estimation error.

The paper is organized as follows. Section 2 reviews the theoretical motivations of beta dynamics.

Section 3 introduces the new instrumental variable estimator. Section 4 reports the empirical

results. Section 5 ranks filters via their out-of-sample portfolio performance. Section 6 concludes.

2. Conditional Beta Dynamics: Theoretical Implications

Modern asset pricing models have implication on the dynamics of conditional betas. Typically, the

stochastic discount factor is a deterministic function of latent state variables Yt, and factors Ft. In

turn, the conditional expected excess return of asset i is written as a linear projection:

Et[ri
t+1|Yt] =

F∑
j=1

βi
jt(Yt)λjt(Yt),

where λjt is the premium associated with risk factor j.5 The βt’s are then deterministic functions of

the state variable, by virtue of their definition. Namely for factor k and the vector of state variables

Yt, βi
k,t = Cov[ri

t+1,Fk,t+1|Yt]/V ar[Fk,t+1|Yt].

Purely data-driven forecasts of β’s, even somewhat parameterized as in GARCH, do not exploit

the implications of asset pricing models on the dynamics of betas. So, they may lack precision.

See, .e.g, the lack of sharp results in Braun et al. (1996) and Bekaert and Wu (1999). On the other

hand, strict parameterizations of betas as deterministic functions of state variables are subject to

model misspecification, as shown in Ghysels (1998).

There are many state variable specifications. For example, in Brennan et al. (2004) and Brandt

and Chapman (2005), betas are functions of random state variables driving the investment oppor-

tunity set. In Campbell and Cochrane (1999), the surplus consumption ratio with respect to an

4 Minimizing variance avoids confusions due to the notoriously difficult issue of mean forecast. DeMiguel et al.(2004)
find that simple strategies that ignore changes in the mean do surprisingly well.

5 A starting point is generally the fundamental pricing equation as in Harrison and Kreps (1979). See for example
Assumption 3.4 and Theorem 2 in Garcia and Renault (2001). See also the technical supplement to this paper for a
more detailed discussion.
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external habit level is a state variable. Bansal and Yaron (2005) use predictable components of

consumption and dividend growth as well as consumption volatility. For all these variations of the

state variables, factors, and their dynamics, the betas inherit their dynamics from their complex

deterministic link with the state variables.

While the above models are in discrete time, continuous-time models yield similar results for the

dynamics of betas. The latter are possibly more relevant to our empirical approach, as one studies

the properties of filters through their limit to continuous time. Consider for example Santos and

Veronesi (2004), hereafter SV. In their economy, conditional betas are a complex, deterministic

function of both aggregate and firm-specific state variables. As the state variables have diffusive

dynamics, so does β by Itô’s Lemma. That is:

dβi
t = µi

β(t)dt+σi
β(t)dBt. (1)

The drift and volatility functions µi
β(t) and σi

β(t) follow from the functionals in SV and the dynamics

of the state variables, but the mapping is too complex to be practically useful. See SV for the

difficulties of structural estimation of β in an equilibrium model.

We can however incorporate some implications of models such as SV into a simpler reduced form

approach. Starting from an Euler discretization of equation (1):

βi
t −βi

t−1 = µi
β(t− 1)+σi

β(t− 1)εi
t,

we will consider linear projections of βi
t - βi

t−1 onto past betas, i.e. βi
t−1 and the state variables,

taking into account the fact that neither state variables nor β’s are observable.

This reduced form approach is more than just a work around the complex mapping in (1). Unlike

the strict parametric approach, it is robust to mis-specifications of the underlying equilibrium

model, and to the additional error introduced by the use of proxies in lieu of the unobservable

state variables. Denote X i
t−1 the vector of these proxies, the linear projection becomes

Et−1[βi
t −βi

t−1|βi
t−1,X

i
t−1]≡Et−1[µi

β(t− 1)|βi
t−1,X

i
t−1]≡ (αi− 1)βi

t−1 + γiX
i
t−1.
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It can be viewed as a linear dynamic approximation to the theoretical specifications of betas.

Consequently, we focus on linear regression models:

βi
t −βi

t−1 = (αi− 1)βi
t−1 + γX i

t−1 + υi
t. (2)

When αi = 1, the proxies completely capture the dynamics of betas. Equation (1) suggests this could

be the case if 1) the model was correct, 2) the linear projection was a good enough approximation

of the structural function, and 3) we could observe the state variables without error. So, βi
t−1 on

the right-hand side of (2) allows for persistence not captured by the proxies. Alternatively, when

γi = 0, the proxies do not capture any beta dynamics.

3. Estimating beta dynamics: a new approach

To estimate (2), one needs to substitute a data-driven filter for β. The true βt is replaced with

βt + εJ
t , where εJ

t is the estimation error of a candidate filter J for β. Regression (2) then becomes:

βt−βt−1 = (α− 1)(βt−1 + εJ
t−1)+ γXt−1 +(υt + εJ

t−1− εJ
t ),

where the explanatory variable is correlated with the error. This results in, typically downward,

biased estimates of α the parameter of the beta dynamics. The bias can be sizeable. An example

of this bias may be found in Hsieh (1991) who estimates daily standard deviations from intra-day

IBM returns, a block-sampling estimator. He then fits an AR(5) on the logarithm of the daily

standard deviation estimate. The five coefficients sum up to 0.77, well below the typical values

above 0.95 found by GARCH or stochastic volatility likelihood-based estimation.

The classic approach to eliminate the bias requires instrumental variables orthogonal to εJ
t−1.

The orthogonality guarantees a consistent estimation of α. The instruments must also be highly

correlated with βt−1 itself for the procedure to have some power. So, we need instruments orthogonal

to the measurement error in βt−1 and highly correlated with the true βt−1? We will see that we

can indeed find such instruments if we use block-sampling filters for β, not so if we use overlapping

rolling-window estimators. We will show how to exploit the properties of block-sampling filters, to

design an instrumental variables estimator of beta dynamics, i.e., of the parameters in (2). We now

review the asymptotic properties of overlapping and block-sampling estimators
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3.1. Properties of data-driven filters

Data-driven estimators specify a sampling frequency for the underlying returns, a data window

length and a weighting scheme. Various combinations of sampling frequencies and window length

can produce rolling-sample estimators where adjacent estimates of beta use overlapping blocks of

data. or block-sampling where adjacent estimates contain no overlapping returns. There are no

clear rules on the choice of sampling frequency and the number of lags, although many still use

overlapping windows of 60 monthly returns as Fama and MacBeth.

Two types of asymptotic arguments can be used to model how discretely sampled returns approx-

imate a continuous time process. First, as in Foster and Nelson (1996), we center on rolling sample

estimators. Second, we discuss the more recent development in Barndorff-Nielsen and Shephard

(2004), who concentrate on non-overlapping block-sampling estimators. Typically, the analysis ini-

tiates from a continuous time diffusion process for the vector of stock prices:

dSt = Stµtdt +StΩ
1/2
t dBS

t , (3)

where the drift and volatility are characterized as measurable functions of the filtration generated

by the price process St.6 Ωt contain the conditional variance and covariances necessary for the

computation of conditional betas. Here, the first element of St is the market portfolio. So, βi,t =

Ω(1i),t/Ω(ii),t. The asymptotic arguments then relate to the estimation of Ωt, looking at limits to

continuous time from discretely sampled data.

3.1.1. Overlapping rolling-sample estimators In Foster and Nelson (1996), one samples

data at discrete fixed interval h and denotes S(h)
τ for τ = 0, h,2h, . . . the discretely sampled realiza-

tions St. Given, regularity conditions they show that the shock to the discretized process ∆S(h)
τ ≡

S(h)
τ − S

(h)
τ−h is a local martingale difference with an almost surely finite conditional covariance

hΩ(h)
τ , i.e., Ω(h)

τ is measurable. Then they discuss rolling sample estimators of Ω, denoted Ω̂(h)

(ij)τ ,

that are asymptotically normally distributed. Such an estimator with l lags can be written as:

Ω̂(h)

(ij)τ =
τ∑

t=τ−lh

w
(h)

(ij)τ [∆S
(h)
it −hµ̂

(h)
it ][∆S

(h)
jt −hµ̂

(h)
jt ], (4)

6 See our technical supplement and Nelson and Foster (1996) for further details on the steps in this section.
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where µ̂(h) estimates µ(h), typically also using a rolling sample. For an equal-weighting scheme,

w
(h)

(ij)t = [lh]−1. Foster and Nelson (1996) show that, symptotically, h−1/4[β̂(h)
iτ − β

(h)
iτ ] converges in

distribution to a standard normal with mean zero and some covariance matrix. That covariance is

a function of nuisance parameters involving higher moments of the underlying process St.

The asymptotic properties of the above estimator very much depends on the choice of the

weighting scheme. In turn the theoretically optimal, in mean squared error, weighting schemes

given by Foster and Nelson also rely on the above nuisance parameters and are not easily applied.7

Here we forego this “theoretical” optimality and use equal weights for the purpose of comparing

data-driven estimators.

3.1.2. Non-overlapping block-sampling estimators The other class of estimators often

used is the block-sampling estimator. For example, Merton (1980) and French et al. (1987) use

monthly windows of daily returns to compute monthly variances. Hsieh (1991) uses daily win-

dows of intraday returns to compute daily variances. Note that the asymptotics in Foster and

Nelson is about the estimation of Ωt, the instantaneous or “spot” covariance matrix. The focus in

Barndorff-Nielsen and Shephard (2004), hereafter BNS, is slightly different, and so are their result-

ing estimators and their asymptotic properties. Instead of the spot covariance matrix, they analyze

the ability of block-sampling estimators to estimate Λ[t−1,t] ≡
∫ t

t−1
Ωτdτ , denoted the ’integrated’

covariance matrix. They specifically consider non-overlapping blocks of data, and compute over

the interval [t− 1, t]:

Λ̃h
(ij)[t−1,t] =

1/h∑
k=1

[∆hSi(t+kh)−hµ̂
(h)

i[t−1,t]][∆hSj(t+kh)−hµ̂
(h)

j[t−1,t]]
′, (5)

where µ̂
(h)

[t−1,t] estimates
∫ t

t−1
µτ . The emphasis is on non-overlapping data blocks and estimators

that sum inner products of the return vector ∆hS. We denote β̃h
i[t−1,t] the conditional betas based

on the integrated covariance estimate Λ̃h
[t−1,t] in (5). In contrast, β̂h

it, based on the spot estimate Ω̂h
t

from (4) correspond to ’spot’ betas. There are distinctions. For example, the β̂s based on (4) are

7 They show for a large class of continuous path stochastic volatility models the optimal weighting scheme is expo-
nentially declining and provide formulas for the optimal decay rate and lag length of various estimation procedures.
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at conditional on the data window used in the rolling sample estimator.8 In contrast the integrated

conditional betas from (5) are conditional on the data sampled over the data block [τ − 1, τ ].

There is an important difference between the asymptotic behaviors of betas based on (4) and

(5). BNS consider a “fill-in” asymptotics, where one samples more frequently within the fixed block

[t− 1, t]. This is different from the continuous record asymptotic analysis of Foster and Nelson.

BN-S, theorem 2, show that as h → ∞ :

√
h vech(Λ̃h

(ij)[t−1,t] − Λt−1,t)→N(0,Πt),

where the covariance matrix Πt varies across sampling block. Hence the resulting asymptotic distri-

bution is a mixture of normals. This is different from the continuous record asymptotics of Foster

and Nelson, who obtain (1) a pure gaussian limit, and (2) a convergence rate of only h1/4, not
√

h.

Specifically, Πt involves the quarticity, that is, the fourth moments of returns.

Under BNS, we may, with mild regularity conditions, further assume that Πt is independent

across non-overlapping blocks. Hence, the sampling error of estimated betas is a mixed Gaussian

distribution independent across non-overlapping blocks of data. While the most general analysis in

BNS does not result in independence of conditional fourth moments across non-overlapping blocks,

this is a mild additional assumption with which we proceed to the estimation of beta dynamics.

3.2. IV estimation of β dynamics with the block-sampler

We therefore substitute the block-sampling estimator β̃h
[t−1,t] based on the covariance estimate (5),

for β in (2). We, in effect, approximate beta with an integrated rather than a spot beta. Since

empirical betas should be moving slowly through time , e.g., Braun et al. (1996), the difference

between a spot and integrated beta are minor is not an issue here. This will be confirmed by our

simulation results.9

Since the block-sampling method results in independent estimators of βt from block to block,

we will use as instruments for βt−1 in (2) simple lags of β̃h
[t−1,t]. The instruments will be highly

8 Strictly speaking, they are estimates of a spot beta process which is a measurable function of the entire past of
stock returns. As distant pasts don’t matter, rolling sample estimators do better with downward sloping weights.

9 For intuition, in the extreme case of constant spot betas, the integrated equals the spot times the length of the
block. All betas in the regressions are therefore simply re-scaled.
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correlated with βt−1 through the persistence of the true βt, yet uncorrelated with estimation error

because of the independence of the estimator across blocks. This exploits the results of BNS as

since in the previous section. In contrast, overlapping estimators in (2) would 1) introduce further

autocorrelation in the regression error and 2) preclude the use of lagged estimates as instruments.10

4. Empirical Results on Beta Dynamics

After describing the data, we report on the autoregressive beta dynamics estimated by IV. A

small-sample Monte Carlo study compares OLS and IV estimators.

4.1. The data

We compute the daily and monthly returns of 25 value-weighted industry portfolios formed on the

basis of 2 to 3 digit SIC codes, from July 1962 to December 2004. Such portfolios are widely used

in the empirical literature. We estimate β’s with respect to the weighted CRSP index. We will

illustrate a number of the many practical variations of the window length, the sampling frequency

of underlying returns, and the frequency of re-computation of betas. We denote β̂x,y,t the estimator,

with calendar span x, sampling frequency of the returns y, and time of computation t. As the

firm specific characteristics are only available quarterly, we recompute betas quarterly, i.e., t is a

quarterly index.

Absent the firm-specific variables, we could re-estimate β more frequently, for example monthly.

However the instrumental variables approach, while it can corrects for biases, can not change

the inherent lack of power of some implementations. With only 22 daily returns per month, the

resulting ˆbeta would be even more variable than β̂q,d, resulting in even more imprecise estimation for

regression 2. This could in principle be addressed by the use of intra-daily returns, as in Andersen

et al. (2005). However, intra-daily returns are available for relatively short data spans. Moreover,

intra-daily data would increase the potential problem of non-synchronous trading in the estimation

of β as in SW and of model error in the asymptotics, e.g., Bandi and Russell (200?) and Ait-Sahalia

(200?). So, to estimate β, we will sample returns no more frequently than daily.

10 One could, in principle, use a lag of the estimator long enough to eliminate correlation with the estimation error.
This lag would in turn render the procedure useless for lack of power.
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Table 1 Descriptive statistics on the 25 industry portfolios

We use daily returns from July 1962 to December 2004. “# stocks” shows the smallest and the average number of

stocks in a portfolio over the period. The next two columns show the time-series average and the first-order (quarterly)

autocorrelation of β̂q,d,t, the quarterly estimate of β from a quarterly window of daily returns. The last three columns

show the absolute value of quarterly changes in β’s, estimated from a quarterly window of daily returns (q,d), and

five-year windows of daily (5y,d) and monthly returns (5y,m).

Industry SIC code # stocks β̂q,d ρ |∆β̂q,d| |∆β̂5y,d| |∆β̂5y,m|
Mining & Minerals 10 12 14 61 62 0.74 0.65 0.28 0.028 0.040
Oil and Gas 13 29 46 117 221 0.91 0.70 0.16 0.021 0.034
Food wholesale 1 2 7 9 20 21 129 149 0.83 0.78 0.12 0.015 0.023
Food retail 54 28 43 0.70 0.56 0.15 0.016 0.031
Construction 15-17 24 32 52 85 148 1.06 0.64 0.13 0.015 0.025
Textile 22 23 31 87 132 0.87 0.58 0.15 0.019 0.034
Basic (metal,paper) 26 33 139 136 1.01 0.56 0.13 0.013 0.019
Durable goods 25 50 55 57 55 180 1.07 0.63 0.14 0.017 0.027
Printing 27 23 74 0.81 0.50 0.12 0.012 0.023
Chemicals 28 129 249 1.02 0.58 0.10 0.010 0.018
Rubber & Plastic 30 32 57 0.92 0.52 0.16 0.018 0.031
Metal 34 80 117 0.88 0.42 0.12 0.015 0.018
Machines 35 142 309 1.25 0.39 0.20 0.016 0.025
Electronics 36 152 360 1.31 0.66 0.16 0.015 0.021
Transport 37 40-42 44 45 47 192 218 1.13 0.60 0.13 0.012 0.022
Instruments 38 47 221 1.22 0.56 0.16 0.015 0.026
Misc. Manufacture 39 24 61 0.97 0.58 0.20 0.021 0.036
Communication 48 20 93 0.87 0.67 0.18 0.016 0.025
Utilities 49 117 186 0.56 0.53 0.13 0.014 0.021
Trade 51 53 56 59 72 93 248 1.03 0.56 0.14 0.015 0.027
Entertainment 58 78 79 41 132 1.17 0.60 0.20 0.018 0.031
Finance 60-64 45 468 0.97 0.71 0.12 0.016 0.026
Real Estate 65 33 58 0.83 0.78 0.20 0.028 0.042
Holdings Companies 67 59 554 0.84 0.73 0.08 0.011 0.016
Services 70 73 76 80-83 86 87 89 25 510 1.22 0.59 0.19 0.019 0.027

Average 78 199 0.97 0.60 0.15 0.017 0.027

Table 1 shows the composition of the portfolios and some descriptive statistics. The column β̂q,d

reports the average of β̂q,d,t for the period. It shows that, although the industry portfolios do not

explicitly sort on β, they do exhibit a good range of average betas, from 0.56 for utilities to 1.31

for the electronics industry.

To proxy for firm-specific state variables as in SV and others, we use the market value of equity

(MV), the ratio of debt to equity (DTE), and the ratio of book to market value (BTM). We

obtain quarterly values from COMPUSTAT from 1970Q4, until 2004Q1. These variables are used

extensively in the literature. DTE measures financial leverage, an increase of which should increase
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the levered equity beta, see Hamada (1972) and Rubinstein (1973). BTM is similar to the reciprocal

of the ratio of book value of assets to total firm value (A/V), see Smith and Watts (1992). It

is a measure of operating leverage, linked to past and possibly future performance, i.e., a proxy

for growth opportunities. Growth opportunities have higher betas than assets in place. If large

negative returns are linked to the loss of growth opportunities, the un-levered equity beta should

decline after large losses. So, variations in BTM could track variations in β, see e.g., Berk et al.

(1999) and Jacquier et al. (2004).

We also collect monthly values, until december 2004 of five series commonly used to proxy for the

global state variables. The level of interest rates is represented by the lagged value of the 30 day US

Treasury Bill return. The term premium is the difference between US long and intermediate term

yields. The default premium is the difference between the Moody Baa and the US long term yields.

The dividend yield is the average S&P500 income return over the past 12 months, lagged by one

month. The market return is the S&P500 total return lagged by one month. The government and

S&P500 series are extracted from the Ibbotson database. We compute quarterly values for these

five quantities. For the bonds and the dividend yield, we use the latest monthly value as of the

start of the quarter. For the market, we use the quarterly return lagged by one quarter.

4.2. Description of the β dynamics

Before proceeding with the formal estimation of equation (2), we document the salient differences

between major competing block-sampling and rolling estimators. Given our quarterly re-estimation

frequency, the only estimator to which the IV procedure can be applied is β̂q,d,t, the block-sampling

estimator which uses non-overlapping quarterly windows of daily returns. In contrast with this

short window of daily returns, the rolling estimator most commonly used in the finance literature

is β̂5y,m,t, based upon 5 years of monthly returns. Re-estimated quarterly, it does not qualify as

a block-sampling estimator. We also introduce β̂5y,d,t, which should be more precise according to

both asymptotics presented before. It is however rarely used. The last three columns in Table 1

show the average of |βt − βt−1|, for these estimators. The block-sampling estimator β̂q,d,t has the
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highest variability, 0.15 on average, from 0.08 for the Holding companies to 0.28 for Mining and

Minerals. The variability of β̂5y,d,t is about a tenth of that, 0.017 on average. The variability of the

commonly used β̂5y,m,t averages 0.027. Although much lower than for the quarterly block-sampler,

it is still 60% higher than for its daily-returns based counterpart.11

Figure 1 show how very different these estimators are. First consider the effect of window length:

The left-side plots show the quarterly estimates of the estimators based upon daily returns, for

three industries. The quarterly window β̂q,d displays enormous variability. The five-year window

β̂5y,d removes all the high frequency variability but displays a strong lag, a known and undesirable

feature of one-sided filters. While a lot of the variability of β̂q,d may owe to estimation error, β̂5y,d

may over-smoothe and delay a lot of information on the true beta. A 5 year window could be a

very costly way to reduce the estimation error in β̂q,d. As a compromise between these extreme

window lengths, we introduce β̂13m,d. With asymptotic arguments as in Foster and Nelson (1996),

one can show that β̂13m,d and β̂5y,m have similar asymptotic MSE, see Andreou and Ghysels (2006).

Indeed, this compromise candidate β̂13m,d, dashed line in the left plots, has a far smaller lag than

the five-year window estimator. It seems to preserve the core time-variation in β̂q,d, while removing

the high-frequency shocks likely due to estimation noise.

Consider now the effect of sampling frequency. The right plots in Figure 1 show β̂5y,m - solid

line, and β̂5y,d - dotted line, for the same industries and on the same scale as the left plots. Their

time-series patterns differ to a surprising extent. The two betas are often apart sometimes by large

amounts, as for Oil and Gas, and Durable Goods. So, in addition to a difference in variability, seen

in Table 1, these two sampling frequencies produce estimates far apart for long periods.

Although daily returns have been available since 1962 and β̂5y,d is preferable to β̂5y,m by all

asymptotic arguments, it is still hardly used. This may be because of the perceived effects of

non-trading on the estimation, discussed in Scholes and Williams (1977). We computed a Scholes-

Williams, hereafter SW, version of β̂5y,d with a five-day window. Namely, one regresses the portfolio

11 One may worry that the industry portfolios do not produce enough time-series variability in β, MV, DTE, and
BTM. So we also formed 27 portfolios sorted annually along three levels of MV, DTE, and BTM. The results were
similar and can be found in the technical appendix to the paper.
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returns on two lags, two leads, and the contemporaneous market returns. The SW beta is the

sum of these five coefficients. It is the dashed lines on the right plots of Figure 1. One sees that

it vindicates neither of the other two estimators. It sometimes agrees with β5y,m, sometimes with

β5y,d, sometimes traces a path of its own. It is indeed more often than not above the original

β̂5y,d, perhaps correcting a downward bias. However, while the SW beta may reduce a bias due to

non-trading, it is variable since it requires more regressors than the standard market model. The

SW estimator seems to offer no clear benefit.

4.3. Estimation of the β dynamics

We now estimate the dynamics of β using the quarterly block-sampling, aka integrated beta: β̂q,d,t.

Namely we implement the regression

β̂q,d,t− β̂q,d,t−1 = (α− 1)β̂q,d,t−1 + γXt + υt, (6)

by instrumental variables.

The empirical analysis focuses on three specifications of regression (6). First, Model 1 is a pure

AR(1) where Xt contains only an intercept. Then we consider models, where α = 1, to examine

the time series relation between the time variation of β̂q,d and the firm-specific and macroeconomic

variables. In, Model 2 the Xt contains only firm specific variables. Model 3 represents the case

where Xt contains only the economy-wide variables. We also consider the nesting combination of

Models 2 and 3, and of Models 1, 2, and 3.

The instrumental variables are the second lag of beta, and the X variables themselves. The

characteristics, BTM, DTE, and Log(MV) are scaled by their time series mean and variance, so

γ represents the change in β related to a one-standard deviation change in the variable. Table 2

reports estimates of the above models for the 25 industry portfolios. The industry portfolios are

not sorted by DTE, BTM and MV. On may worry that potential high correlations between the

three characteristics may affect the precisions of estimation. We computed these correlations. The

averages of the 25 correlations is 0.71 between BTM and DTE, -0.67 between BTM and MV, -0.45

between DTE and BTM, for the 27 sorted portfolios.
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Table 2 IV estimation of β dynamics for 25 industries

The table reports the time series IV estimation β dynamics as in equation (6): β̂q,d,t = αβ̂q,d,t−1 +γXt−1 +υt. Model

1 is a pure AR(1) where γXt−1 is an intercept. Otherwise α = 1, and Xt−1 is only firm characteristics (Model 2) or

only macro variables (Model 3). We also estimate the nesting models 2+3 and 1+2+3. The instrumental variables are

the second lag of beta and the X variables. The R-squares are adjusted for degrees of freedom. The characteristics,

BTM, DTE, and Log(MV) are scaled by their time series mean and variance. For each explanatory variable, the two

rows report the 15th, 50th, 85th percentiles of the 25 estimates (top row) and IV t-statistics (bottom row). The 85th

percentile of the z score is 1.04. The calendar span is from 1970 to 2004, when firm characteristics are available.

Model 1 Model 2+3 Model 1+2+3

β̂qd,t−1 0.81 0.93 0.98 0.67 0.79 0.96
7 8 11 3.0 4.3 5.5

Model 2
BTM -0.03 -0.01 0.01 -0.04 0.00 0.02 -0.06 -0.02 0.01

-0.9 -0.2 0.3 -1.1 -0.1 0.4 -1.1 -0.4 0.4
DTE -0.01 0.1 0.02 -0.02 0.01 0.05 -0.02 0.01 0.05

-0.4 0.2 0.08 -0.4 0.4 1.4 -0.5 0.3 1.1
Log(MV) -0.01 0.00 0.02 0.00 0.02 0.04 -0.01 -0.01 0.04

-0.2 0.0 0.7 -1.1 0.5 1.1 -0.3 0.3 1.2

R̄2 0.0 0.0 0.01
Model 3

Tbill -0.90 -0.41 0.15 -1.52 -0.47 0.11 -1.44 -0.62 0.34
-0.7 -0.4 0.1 -1.4 -0.3 0.1 -1.4 -0.4 0.3

TP -4.32 -2.63 0.79 -6.24 -3.63 0.62 -5.59 -2.77 3.40
-1.0 -0.5 0.2 -1.5 -0.7 0.1 -1.4 -0.6 0.6

DP -0.94 0.87 2.86 -0.77 1.03 3.01 -1.60 1.12 3.84
-0.2 0.3 1.0 -0.2 0.4 1.1 -0.8 0.3 1.1

DY -0.77 -0.24 0.45 -1.46 0.40 3.48 -0.84 1.42 3.81
-0.4 -0.1 0.3 -0.4 0.2 1.1 -0.3 0.4 1.2

Rm,t−1 -0.22 0.04 0.22 -0.26 -0.01 0.25 -0.28 -0.04 0.18
-1.3 0.2 1.0 -1.3 -0.1 1.1 -1.5 -0.2 0.8

R̄2 .01 .01 .02 .01 .03 .04 .03 .08 .11

The results for Model 1 are in Table 2. The magnitude of the lagged β coefficient is the same,

on average 0.93. Again none of the information variables can predict the time variation of β. In

fact, a large number of the t-values for the 15th and 85th percentiles have magnitude near 1.04, the

15% or 85% cutoff point of a z score.

The last three columns show that, even collectively, the information variables do not explain

more than about 10% of the lagged coefficient α. The latter falls to an average of 0.79 when the

variables are added to the estimation.

The results for the 27 sorted portfolios are in Table 2. For each explanatory variable, a first
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row reports the 15th, 50th, and 85th percentiles of the 25 point estimates, and just below, of the

25 t-statistics. We also report the adjusted R-squares. The first three columns contain the results

for each model estimated alone. The results for Model 1, show that the median autocorrelation

of β̂q,d is 0.93, with 70% above 0.81. This supports the view that β is time varying and highly

persistent. Below are the estimates of γ for Models 2. None of the firm characteristics explain the

time-series variability of β. The R-squares of Model 2 are close to zero. Model 3 is hardly more

successful than Model 2, with no significant coefficients and essentially zero R-squares. There is no

evidence of significance of any macro variable. Yet, there seems to be a systematic relationship for

two economic variables. The Term and Default Premium coefficients are very often negative and

positive respectively.

The three central columns report the results on the estimation of Models 2 and 3 together. As

expected, given the individual results, their R-squares are still extremely low. Again none of the

variables are significant. The complete model, 1+2+3, is in the last three columns. The R-squares

jump to 12% on average due to the introduction of the lagged β. The estimate of α is still very

high, on average 0.73, even in the presence of eight additional variables. The information variables

explain away little of the lagged value of β, about only 20%.

4.4. IV versus OLS: Rejoinder

At this stage one may wonder whether the classical OLS estimation would yield very different results

from the IV procedure proposed in this paper. We now show that not correcting for measurement

errors in estimates of beta leads to very misleading and biased results regarding the dynamics.

Hence, the use of the IV estimator is crucial. Table 3 reports the OLS and the IV estimation of α

for Models 1 and Models 1+2+3.

The differences are very large. For Model 1, parameter estimates go from an average across

industries of .59 for OLS to .90 for IV. For Model 3, the average change is from .40 to .80. We

do not report here on the other parameter estimates (γ for the economic variables), as they don’t

differ much across the two estimators. The IV procedure, which corrects for the errors in measuring
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Table 3 OLS versus IV Estimation of β Dynamics

The table reports the estimates α̂OLS and α̂IV , of the regression: β̂q,d,t − β̂q,d,t−1 = (α − 1)β̂q,d,t−1 + γXt−1 + υt.

Model 1 is an AR(1) where γXt−1 is an intercept. Model 1+2+3 is the nesting model with all the proxy variables.

Model 1 Model 1+2+3
Industry α̂OLS α̂IV α̂OLS α̂IV

Mining & Minerals 0.66 0.93 0.55 0.92
Oil and Gas 0.70 0.90 0.49 0.82
Food wholesale 0.78 0.93 0.54 0.74
Food retail 0.60 0.87 0.52 0.78
Construction 0.65 0.78 0.45 0.53
Textile 0.58 0.94 0.44 1.00
Basic (metal,paper) 0.58 0.83 0.41 0.79
Durable goods 0.64 0.79 0.58 0.65
Printing 0.49 0.64 0.48 0.68
Chemicals 0.58 0.83 0.45 0.70
Rubber & Plastic 0.51 0.85 0.42 0.82
Metal 0.42 0.93 0.30 0.76
Machines 0.38 0.78 0.30 0.53
Electronics 0.66 0.96 0.37 0.94
Transport 0.60 0.87 0.37 0.65
Instruments 0.56 1.04 0.45 0.79
Misc. Manufacture 0.57 0.93 0.56 0.79
Communication 0.67 1.00 0.37 0.73
Utilities 0.53 0.93 0.43 1.00
Trade 0.57 0.95 0.42 0.90
Entertainment 0.60 1.02 0.42 1.05
Finance 0.71 0.90 0.51 0.82
Real Estate 0.78 0.98 0.63 0.97
Holding Companies 0.73 0.98 0.47 0.86
Services 0.59 0.87 0.38 0.77

Average 0.61 0.90 0.45 0.80

beta, shows that betas are very much persistent, far more as would be suggested by the biased OLS

estimates. The downward bias is not surprising, as typically measurement errors tend to reduce

persistence measures.

There is discussion in the econometric literature about the small sample properties of the IV

estimators. We address this issue with a simulation experiment. This will allow us to assess the

behavior of the IV estimator for the relevant sample sizes. Consider that the quarterly β̂ estimates

the true β with an error εt.12 That is:

β̂t = βt + εt, εt ∼ (0, σz).

12 As noted in section 3.1.2, the asymptotic distribution of the measurement error is a mixture of Gaussian random
variables. We use a normal error for simplicity in this Monte Carlo experiment.
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We then specify alternate processes for the quarterly true β. In the first specification:

βt = 0.05+0.95βt−1 + vt.

This models a strong autocorrelation and an unconditional mean of 0.05/(1− 0.95) = 1. We only

need to calibrate reasonable magnitudes for σv and σε. For σ2
ε , we use the average variance of β̂OLS

for a regression with a quarter of daily returns, about 0.011. One can argue that this may be a

lower bound on the variance of the estimation error, so our results a conservative with respect to

the effect of errors in the variables. On the other hand, the realized variance of β̂q,d,q is on average

0.048 for the sorted portfolios. So, we use 0.048−0.011 = 0.037 as the variance of the true βt, which

in turn implies σv = 0.06.

We simulate 3000 dynamic regressions estimating α, 0.95 here, by OLS and IV, with sample size

170. The results are in Panel a of Table 4. The IV and the OLS estimates are on average very close

to what we reported for the actual data in Table 3. The IV shows nearly no bias with a sampling

mean of 0.93 while the OLS is severely biased downward with a mean of 0.65. The IV RMSE

is also drastically lower than the OLS. To get an idea of the amount of the correction needed,

consider testing at the 5% level of significance, the null hypothesis that α = 0.95. The OLS-based

test incorrectly rejects the null 99% of the time! The IV-based test rejects the null about 3% of

the time. Some of the time the IV-estimator may produce an estimate of α larger than 1. So, we

also show results on the truncated IV estimator, α̂IV 2 = Min(α̂IV ,0.99).

We also consider the case where the quarterly βt is driven by a persistent macro-onomic variable

xt. In addition to documenting the effectiveness of the the IV estimator, we want to make sure that,

in small sample, the coefficient of the economic variable is correctly estimated. Namely, consider:

βt = 0.05+0.95βt−1 +xt + vt (7)

xt = 0.95δxt−1 + at.

β̂t = βt + εt

Again, we set the mean of β equal to 1, as well as a strong autocorrelation for the economic

variable. The true β is observed with error, σ2
ε = 0.011 as above. vt can be seen to reflect the fact
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Table 4 Sampling Properties of OLS and IV Estimators of β Dynamics

The table reports the sampling behavior of OLS and IV estimators of the regressions:

β̂t = α0 + α1β̂t−1 + γxt + υt, t = 1, . . . ,170,

where, α0 = 0.05 and α1 = 0.95. β̂t = βt + εt, where σ2(β̂) = 0.048, and the variance of the estimation error is

σ2
ε = 0.011. Panels a and b show results for γ = 0 and γ = 1. When present, the economic variable xt follows a

zero-mean AR(1) with autocorrelation 0.95, and σx, σv set so that half of the variance of βt comes from xt and half

from the AR(1) process. We simulate 3000 draws from the small sample distribution of α̂ and γ̂, OLS and IV. IV2 is

the truncated IV estimator: α̂1,IV 2 = Min(0.99, α̂1,IV ). RMSE is the root mean squared error of estimation of the

true parameter 0.95. t(α1) is the t-statistic under the null α1 = 0.95. The test size is based on the 5th percentile of

the distribution of a student-t with 169 degrees of freedom, a cut-off point of -1.65. The t-statistic in column IV2 is

based solely on the draws that are not truncated.

Panel a: True βt = 0.05+ 0.95βt−1 + υt

OLS IV IV2

α̂1 Mean 0.65 0.93 0.92
5% 0.47 0.79 0.79
95% 0.81 1.03 0.99
RMSE 0.32 0.08 0.08

t(α1) Mean -5.01 -0.22 -0.36
Size 0.99 0.027 0.031

Panel b: True βt = 0.05+ 0.95βt−1 + xt + υt

No xt in regression xt in regression
α̂1,OLS α̂1,IV α̂1,OLS γ̂OLS α̂1,IV γ̂1,IV

Mean 0.65 0.93 0.44 0.59 0.80 0.27
5% 0.45 0.79 0.24 0.25 0.52 0.04
50% 0.66 0.94 0.45 0.57 0.81 0.25
95% 0.81 1.04 0.65 0.96 1.01 0.59
RMSE 0.32 0.08 0.52 0.47 0.22 0.75

that 1) a linear process for (β|xt) is only an approximation of a typically more complex structural

relationship, and 2) xt is only a proxy for the relevant economic variable. Note that these errors

can not be identified separately, so we are only concerned with the variance of their sum for the

purpose of simulation.13. The variance of βt in (7) is still 0.037, but it now comes the AR(1)

and the variable xt. We attribute 50% of the variance to each component. Therefore, we set σ2
x =

σ2
v = 0.0185(1− 0.952).

For simulated data from (7), we estimate the model on β̂, first without, then with, the variable

13 All these models imply non-identifiable ARMA representations for β̂T
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xt on the right-hand-side of the regression. The results are in Panel b of Table 4. The first two

columns show the sampling properties of the OLS and IV estimators when the economic variable

is not include in the regression. The purpose is to show that our calibration leads to results nearly

identical to the experiment with no underlying driving variable. The last four columns show the

estimation of α1 and γ. The results are clear. First the IV estimator still dominates the OLS if

the purpose is to estimate properly the dynamics of the true βt in excess of the economic variable.

However, this comes at a cost, namely the estimator, for this sample size underestimates the impact

of the driving variable, more than the OLS estimator. Neither estimator can estimate α and γ

jointly without downward bias.

The IV regression without the economic variable yields the best estimator of the intrinsic dynam-

ics of the true β conditional on the economic variable. The OLS estimator without lagged betas

yields the best estimator of the coefficients of the economic variables. When both economic vari-

ables and lagged betas are included, the IV estimator is best for the lagged beta coefficient but

not for the economic variables. For our data, we recall that the OLS estimates for the economic

and firm-specific variables were similar to the IV estimators. So, we can conclude that the lack of

significance of the economic variable is not due to the use of the IV estimator. On the other hand,

the simulation results show that the slight decrease in α̂1,IV from the estimation of model 1 and

model 1+2+3, may be due to a slight downward bias of α̂1,IV in the presence of xt.

5. Optimal portfolios

The empirical analysis so far showed that only pure time series models adequately describe beta

dynamics. For the purpose of estimating the quarterly dynamics of βt, we were restricted to block-

samplers with quarterly windows. We now turn to a slightly different question: Given that pure

time series models for quarterly beta dynamics appear to dominate those driven by economic

variables, what is the best filter to forecast market betas. Here, we are no longer constrained to

block-sampling filters, we can also use overlapping filters introduced above, for example β̂5y,m, the

classic estimator based on 5 years of monthly returns or β̂5y,d, based on 5 years of daily returns.
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Hence, we turn to the question of the best filtering scheme for betas. If betas were observable, one

could rely on the usual regression diagnostics, such as out-of-sample predictability etc. As they

are not observable, we will rely on economic criteria directly related to the characterization of

conditional betas.

To assess the economic value of various filters of β, we use their forecasts of βt to optimize

portfolios. Recall that a market model regression of returns on market returns serves as a decompo-

sition of the fraction of variance associated to the market return and to the residuals. We construct

portfolios with ex-ante minimal residual variance subject to β = 0. Success will be measured by the

realized betas of these portfolios. They should also have very low variance as setting β = 0 removes

the systematic risk. Finally their systematic risk should be a very small fraction of their total risk.

This will allow us to assess the economic relevance of any differences between these estimators. We

use a residual covariance matrix consistent with β̂, i.e., the covariance matrix of R−Rmβ̂.14

We compare the purely data-driven rolling estimators, β̂q,d,t−1, β̂13m,d,t−1, β̂5y,m,t−1, and β̂5y,d,t−1,

where t− 1, indicates that the value available at the end of quarter t− 1 is used to optimize and

invest in quarter t. Portfolios are re-optimized quarterly. We then summarize the performance of

the optimized portfolios. We also consider, as benchmarks, some strategies which are not feasible.

First, β̂q,d,t, of course not available at t− 1, represents a perfect foresight of the future estimate of

β in quarter t. Second, we report the results of a strategy based on the constant β to assess the

economic relevance of the time variation in β modeled by the competing filters.

To gauge the effectiveness of the β = 0 constraint, we also include the global minimization of the

total covariance matrix. We use Ωt, the perfect knowledge of the future estimate of Ω for the quarter

of investment, and Ωt−1, the previous quarter estimate. Ωt−1 is computed from daily returns for

quarter t− 1, the same data as used to compute β̂q,d,t−1. The portfolios are re-balanced quarterly.

Results are computed from 1971 to 2004, the period for which all estimators are available.

14 We also used two alternative, constrained residual covariance matrices. First, we used a diagonal residual covariance
matrix. Second, we estimated the residual covariance matrix, constraining the correlations to be equal. The results
were about the same as shown here. Also, to concentrate on the comparison of the alternative filters, we did not use
potentially beneficial cross-sectional techniques, such as shrinkage.
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5.1. Empirical results portfolio efficiency

The results are in Table 5. We conduct two separate experiments, optimizing on the universe of

the 25 industries. Panel A includes the portfolios optimized with target betas of zero. The first five

columns document the realized β of the optimized portfolios. We first consider the bias, how close

to the target were we on average? The bias resulting from β̂q,d,t−1 is 0.21, twice that for β̂13m,d,

three times as large as for β̂5y,d, which is the best simple estimator on that criterion, with a bias

of 0.07. The most popular estimator in Finance, β̂5y,m does worse than its daily counterpart β5y,d

with a bias of 0.2.

Portfolio managers are also affected by the variability of realized quarterly betas. How closely

can one track the target from quarter to quarter? The second column in Table 5 shows the standard

deviations of quarterly realized portfolio betas over the 151 quarters of the experiment. These

standard deviations are about 20% smaller for the shorter windows (1 quarter and 13 months) than

for the 5-year windows. The third column shows the Root Mean Squared error around the desired

β = 0, combining bias and variance. The quarterly window and the 5-year window of monthly

returns do markedly worse than the 13-month and the 5 year window of daily returns. The best

overall estimator is β̂13m,d. In the next two columns showing the 10th and 90th percentiles of the

151 realized portfolio betas, the upward bias is apparent. The last column document the fraction

of total risk which was systematic for these portfolios. Consistent with their better tracking ability,

β̂5y,d and β̂13m,d produced the lowest amount of systematic risk. Finally, according to asymptotic

MSE filtering theory, β̂13m,d should be about as efficient as β̂5y,m, it does in fact better.15

The following row shows that the realized β of the strategy Ωt−1 is 0.34, and the RMSE is 0.40.

So, while an unconstrained variance minimization does result in a somewhat low beta, it does not

reduce factor exposure as effectively as an explicit zero-beta target combined with strategy.

It is interesting to compare the above strategies with a constant β, which Ghysels (1998) found

to dominate parametric beta estimates. Its full-sample look-ahead advantage insures a nearly zero

15 The technical supplement reports similar results for the 27 portfolios sorted three-ways on the basis of Size, Debt
equity, and Market to book ratios.
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Table 5 Out-of-sample performance of competing estimators of β: Optimizing on 25 industry sectors

The first column shows the optimization strategy, following the nomenclature in the paper. Strategies with a β

minimize residual variance subject to a zero beta. Strategies, Ωt, Ωt−1, simply minimize variance. βcst uses a

constant beta and covariance matrix computed from the entire sample. The first three columns report the mean,

standard deviation and RMSE relative to the target, of the realized beta. The next two columns show the top and

bottom 10% of the realized β’s over the 151 quarters from 1971Q1 to 2004Q1. These are the quarters for which all

the strategies can be implemented. The last three columns document the realized portfolio variability. σ is the total

standard deviations, σε the unsystematic standard deviation from the market model, and Frac. is the systematic

variance as a fraction of total variance, all expressed in percentage terms.

β variability
Strategy Mean Stdev. RMSE 10% 90% σ σε Frac.

Panel a: Target β is 0.

β̂q,d,t−1 0.21 0.21 0.30 -0.04 0.50 11.7 10.9 13

β̂13m,d,t−1 0.10 0.22 0.24 -0.15 0.38 12.4 11.9 8

β̂5y,d,t−1 0.07 0.26 0.27 -0.28 0.39 13.4 12.8 9

β̂5y,m,t−1 0.20 0.25 0.32 -0.08 0.52 12.8 12.1 11
Ωt−1 0.34 0.20 0.40 0.10 0.61 10.5 8.9 28

β̂q,d,t 0.00 0.00 0.00 0.00 0.00 6.2 6.2 0
ˆβcst -0.01 0.32 0.32 -0.39 0.42 15.1 14.4 9

Ωt 0.18 0.08 0.20 0.08 0.29 5.6 5.1 18

Panel b: Target β is 1.

β̂q,d,t−1 1.00 0.017 0.978 1.021 13.0 0.9 99

β̂13m,d,t−1 1.00 0.017 0.977 1.021 13.0 0.9 99

β̂5y,d,t−1 1.00 0.018 0.979 1.025 13.0 0.9 99

β̂5y,m,t−1 1.01 0.032 0.979 1.043 13.2 0.9 99

β̂q,d,t 1.00 0.000 1.000 1.000 13.0 0.5 100
ˆβcst 1.00 0.037 0.967 1.044 13.1 1.2 99

bias. But its variability (0.32 standard deviation) results in a performance comparable to that of

the two worst estimators. The constant beta is dominated by the top two time-varying estimators.

One can conclude that the data-driven beta estimators outperform the constant beta specification.

We now verify whether constraining β to zero effectively helped reduce the variance of the port-

folios. The column σ reports the annualized realized portfolio standard deviations. The perfect β

foresight portfolio has a standard deviation of 6.2%, approached by none of the feasible β strategies

which can lower standard deviations to 11.7% at best. For comparison, the index standard deviation
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for the period is 15% per year. The perfect variance foresight strategy Ωt yields a 5.6% standard

deviation. The naive variance strategy reaches a 10.5% standard deviation. The constrained β = 0

strategies approach but do not beat the naive variance strategy.

The β = 0 strategies may not beat the simple variance minimization simply because the global

minimum variance portfolio has a positive, albeit low, beta. Yet, there may be, for very large

covariance matrices, benefits from constraining the portfolio to have zero beta, together with a

reduction in the number of free parameters in the residual covariance matrix. We simply do not

observe this effect for these relatively small portfolios.

The salient fact in table Panel A of Table 5 is that all the estimators systematically “overshoot”

the target beta. This result is very important especially for many hedge fund managers. It may be

surprising that unbiased estimates lead to systematic realized biases. The reason may be as follows.

To set a zero beta, the optimization gives large weights to the lowest betas and small weights to the

highest betas. This is because the target of zero lies far below the average beta in the investment

universe, one. Now, the smaller (larger) estimated betas are likely to contain negative (positive)

estimation errors. As in Fama Macbeth, the smallest (largest) sorted betas likely have negative

(positive) estimation error. The optimization then loads up on these underestimated betas and this

produces a positive realized beta the next period.

We can verify this by repeating the optimization with a target β = 1. Here there should be no

realize bias. Panel B in Table 5 shows the results. The first column shows that indeed all there is

no realized bias anymore. Further the realized standard deviation of the portfolio beta is small,

in the order of 0.02 for all the strategies. These optimized portfolios are far more diversified than

those in Panel A, therefore more effectively reducing the variability of the portfolio beta. 80% of

the time, realized quarterly betas are between 0.98 and 1.03. With a target beta of 1, this good

tracking is confirmed by the realized fraction in systematic risk: it approaches 100% for all. The

most mediocre performance comes from β̂5y,m. But the filters all result in very satisfactory tracking

of beta. Of course, the variance reduction is limited if one imposes a beta of 1, only 13% standard

deviation compared to the 15% for the index.
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To summarize hedge funds that neutralize risk, very much like our zero beta portfolios, are very

sensitive to estimation error in betas. For them the estimation error in beta turns into systematic

positive exposure to risk factors, and it is crucial to choose the best possible estimator of beta. On

the other hand, thaditional funds that set target betas in the vicinity of the market beta effectively

diversify away estimation error.

5.2. Sensitivity of β̂5y,m to predictability in returns

With predictable returns, for example via the firm-specific and global information set variables, the

regression of total returns on factors (here the market return) may yield biased estimates of betas.

Ideally, one should regress shocks on returns to shocks on factor. A large literature claims some

returns predictability even at the monthly horizon, e.g., Ferson and Harvey (1991). Estimators of

beta based on daily returns are not affected as predictability is a minute fraction of variance at

the daily horizon. For example, the daily standard deviation of the S&P 500 is 17 times its mean

over the past 70 years.

The poor performance of the estimator based on monthly returns β̂5y,m could possibly be due

to a sensitivity to predictability in returns. So we perform a robustness check. We regress the

monthly market return on the monthly information variables. The R-square is 8%, the t-statistics

of Tbill, TP, DP, DY, Rm,t−1, are -3.1, 1.5, 4.1, 1.7, -0.2. The residual of this regression estimates

the shock to the index return. We run the same regression for the 25 portfolio monthly returns,

with R-squares between 5% and 12%. These residuals are the shocks to the portfolio returns. We

compute new β̂5y,ms using these shocks in returns. They are nearly identical to the original. The

25 correlations between their first differences range between 0.96 and 0.98.

6. Conclusions and directions for future research

Modern asset pricing models often imply that the dynamics of betas is linked to global and firm

specific state variables. These structural links are in general too complex for direct estimation. The

extent empirical literature either uses robust but possibly imprecise pure data-driven filters, or strict

parameterizations not always directly related to a structural model and sensitive to misspecifations.
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We introduce a linear dynamic model that complements the robustness of filtered betas with

the implications on betas of most intertemporal models, without incurring the sensitivity to mis-

specification of strict parameterizations. We show how to estimate the model without bias by

instrumental variables, and that it can be done if the first step β filter is a block sampler, that is,

with non-overlapping windows. As the IV estimator is justified asymptotally, we confirm its good

properties with small sample simulations. We find that quarterly betas have strong autocorrelation

on the order of 0.95. In contrast, the use of standard methods results in much lower autocorrelation

around 0.6. Also, the typical proxies for aggregate and firm-specific state variables do not explain

much of the time series variation of portfolio quarterly betas.

One can not use overlapping long-window filters to estimate the dynamics of β, but they could

still effectively predict future βs. Conversely, a short-window block-sampler, while a required first-

step for the estimation of the beta dynamics, may not predict beta precisely. We compare the

out-of-sample predictive performance of a number of block-sampling and rolling sample beta filters,

ranking them along an economic criterion. Namely, we optimize portfolios subject to target beta

constraints, and track the realized performance and betas of these portfolios.

We find that daily returns produce uniformly better beta filters than monthly returns. Namely,

the resulting portfolios track the beta target more closely. Also, long windows of 13 months, even

five years, do better than the short quarterly window. We use two beta targets; β = 1 represents

a fund with average systematic risk, β = 0 is akin to a hedge fund neutralizing factor risk.16 For

a target of 1, the realized betas track the target very well for all filters. These portfolio diversify

estimation error well. In contrast, zero-beta portfolios systematically overshoot the target β = 0.

This is because they load up on underestimated betas and go short on overestimated betas.

Our results raise questions and suggest possible directions for future research. The inability of

most proxies to explain the dynamics of beta seems to contradict the implications of some asset

pricing models. But most models are not horizon specific. In contrast, Jacquier et al. (2004) find a

16 Although the portfolios in our experiment are still fully invested.
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cross-sectional link between betas and some growth proxies. Their cross-sectional analysis, which

precludes the use of global proxies, relates to long-term links, while our current time series analysis

addresses short-run changes. Our method applied on longer horizons could yield differing evidence

on the impact of state variables on the dynamics of betas. We included, for parsimony, only a subset

of the variables often used as proxies for growth opportunities. Possibly, without degenerating into

data mining, alternate proxies might be tested.

A possible search for a better functional form, again without degenerating into data mining,

could be of interest. For example, both negative book value following successive negative earnings,

and high book-to-market ratio resulting from fallen share prices, can point at few growth prospects

in the firm. This could result in a a non-linear relationship between betas and book-to-market.

Non-linear conditional beta models have been considered, see e.g., Bansal et al.(1993). The IV

procedure introduced here is not restricted to a linear regression setting. One could consider more

general models such as βt−βt−1 = g1(βt−1)+ g2(Xt−1)+υt, for some functions g. See, for example

Hausman et al. (1995) on the treatment of measurement errors in nonlinear models.

For comparability with the literature, our optimal portfolios are built from, already large, sector

portfolios. So our results may overstate the precision of estimation of beta in a stock-based portfolio.

The systematic overshoot of beta targets, due to estimation error in individual betas, could be far

more dramatic with stock-based portfolios. Finally, we concentrate here on equal-weighted filters for

betas. We also studied non-equal weighted filters with no obviously clear advantage over the filters

shown here. While these preliminary results were not very optimistic on the ability of alternative

filters to improve upon them, it is possible that some declining-weight filters with long windows

should also produce good performance.

Finally, the IV estimator that we proposed in this paper may be used for estimation of beta

dynamics in a variety of other contexts. For example, Ang et al. (2006) study downside risk via

’negative’ beta portfolios and study the time series dynamics of such betas. Our IV estimator

applies to Ang et al. (2006) and can correct the bias in the estimated autocorrelations.
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Figure 1 Competing estimators of βt for selected industries

The left plots quarterly estimates of β̂q,d,q, β̂13m,d,q, and β̂5y,d,q, with windows of 1 quarter (q), 13 months (13m),

and 5 years (5y) of daily returns (d).The right plots show β̂5y,d,t, its Scholes-Williams version, and β̂5y,m,t, that uses

5 years of monthly returns. See Table1 for SIC codes.
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