MCMC Maximum Likelihood For Latent State Models

Eric Jacquier
Finance Department, HEC MONTREAL

Michael Johannes
Graduate School of Business, Columbia University

Nicholas Polson
Graduate School of Business, University of Chicago


This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation.