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Abstract

This paper discusses a simulation-based approach to optimal portfolio selection. We take
a Bayesian approach as it naturally accounts for estimation risk (a.k.a. parameter uncer-
tainty), learning of state variables and models, and can incorporate prior beliefs about
future return distributions. We highlight two areas of application with great potential
in portfolio selection. First, for competing models of predictable returns, we show how
filtering techniques can be used to compute time varying model probabilities. Second,
we show how simulation methods can maximize expected utility, bypassing computa-
tionally awkward gradient methods. We illustrate these methods in the classic risky
stock allocation framework.
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1 Introduction

In this paper we provide a simulation-based approach to optimal portfolio selection. The basic

principles of portfolio selection have been known for a long time (de Finetti, 1942, Markowitz,

1956). The modern-day challenge is to apply the theory flexible return distributions with

varying degrees of conditioning information in large-scale problems. Modeling the returns

distribution has a long history. Samuelson (1969) consider the i.i.d. case and showed that in-

vestors’ allocation should be horizon invariant. Merton (1973) describes the dynamic portfolio

allocation with time varying conditioning information and Barberis (2002) provides a Bayesian

perspective on the problem. From a statistical perspective, the big issue is accounting for es-

timation risk (a.k.a. parameter uncertainty) and how this affects the optimal portfolio rule,

see Brandt (2009) for a recent survey.

In this paper, we demonstrate how simulation-based approaches can be used to select

optimal portfolios. The Bayesian approach provides a natural perspective on the problem

and entails a decision-theoretic formulation (Berger, 1985) with different levels of computa-

tional tractability depending on the nature of the investor’s return distribution beliefs and the

horizon of the optimal allocation problem. Bayesian methods incorporate estimation risk and

flexible return distributions ranging from the independent identically distributed returns, to

predictability driven by exogenous latent state variables, stochastic volatility, or even multi-

ple models. Our approach, therefore, will be flexible enough to handle complex and realistic

returns distributions together with differing levels of conditioning information.

The investors’ objective is to maximize expected utility. In its simplest form, we need

to calculate maxω Et(U(ω,R)) where the expectation Et is taken with respect to our current

conditioning set Zt of the investors’ beliefs up to time t. The decision variable ω is a vector

of asset weights and R a vector of future returns. There is often no analytical solution to

the problem. A conceptually simple Monte Carlo approach for finding the optimal decision

is as follows: first simulate a set of returns R(i) ∼ p(R|Zt) for i = 1, . . . , N Then, given these

draws, estimate the expected utility for a decision ω with an ergodic average of the form

Et (U(ω,R)) =
1

N

N∑
i=1

U(ω,R(i)) .

Then, optimize this MC average of utility over the decision ω. This can be problematic, how-

ever, when the utility places weights on the tails of the future return distribution and will lead

to a poor estimate. Later we provide an alternative MCMC approach that can simultaneously

perform the averaging (over Et) incorporating parameter uncertainty, and the optimizing (over
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ω) to find the optimal weights. Other statistical issues that arise in formulating the future

distribution of returns include analyzing assets of different history lengths, see, for example,

Stambaugh (1997), Polson and Tew (2000) and Gramacy and Pantaleo (2009).

A more challenging problem arises when the investor wishes to solve a multi-period

problem. Again the investor will have a set of conditioning variables Zt at his disposal will

typically include exogenous predictors such as dividend yield, term premium and current

volatility state. To proceed, consider the value function is defined by

UT (Wt, Zt) = max
ωs;t≤s≤T

Et [U(WT (ω))|Zt]

where Wt is current wealth. The evolution of terminal wealth now depends on the sequential

portfolio allocation ω = {ωs; t ≤ s ≤ T} with horizon T . The solution clearly differs from a

sequence of myopic portfolio rules – the difference being the hedging demand.

The rest of the paper is outlined as follows. Section 2 describes the optimal portfolio

selection problem as an expected utility optimization problem. We consider a number of cases

including the possibility of Bayesian learning for the investor. Section 3 provides a simulation-

based MCMC approach to simultaneously account for estimation risk and to find the optimal

rule. Finally, Section 4 concludes.

2 Basic Asset Allocation

Since the foundational work of Samuelson (1969) and Merton (1971), the optimal port-

folio problem has been well studied. First, we review the optimal portfolio rule in this simple

setting of complete information about the parameters of the return distribution. Then we

consider a number of extensions; multivariate, exchangeable and predictable returns. In the

next section we discuss in detail simulation-based approaches for finding optimal portfolios in

the presence of parameter uncertainty.

The original work of Samuelson and Merton shows that if asset returns are i.i.d., an

investor with power utility who rebalanced optimally should choose the same asset allocation

regardless of the time horizon. If returns are predictable there will be an advantage to exploit

it. In many cases, investors with a longer horizon will allocate more aggressively to stocks.

Jacquier, Kane and Marcus (2005) show that parameter uncertainty produces the exact oppo-

site, but much stronger, results. Namely, on account of parameter uncertainty, the long-term

investor will invest much less in stocks.

The investor who optimally re-balances his portfolio at regular intervals faces a dynamic
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programming problem. The use of power utility for sequential investment problems with

Bayesian learning goes back to Bellman and Kalaba (1958). Ferguson and Gilvich (1985) and

Bruss and Ferguson (2002) provide extensions. In this case the utility function is given by

U(W ) = W 1−γ/(1 − γ) with utility defined over current wealth. The special case of γ = 1

corresponds to log-utility and the Kelly criterion. Browne and Whitt (1986) discuss Bayesian

learning in this context. Barberis (2000) extends this analysis and shows that this leads to

horizon effects where, in particular, people with large time horizons are willing to hold more

stocks.

2.1 Single Period

We start in a univariate one-period setting. This can be generalized in a number of

ways, to a cross-section of returns or to a multivariate set of returns.

The optimal portfolio weight ω can be determined as follows: the investors’ wealth is

W = (1− ω)rf + ωR with risky free rate rf and risky return R. The problem is to choose ω

to maximize the expected utility, maxω E(U(ω)). If U is twice differentiable, increasing and

strictly concave in ω, the optimal allocation is characterized by the first order condition:

E [U ′(W )(R− rf )] = 0.

which yields Cov [U ′(W ), R− rf ] + E [U ′(W )]E [R− rf ] = 0. Stein’s lemma (Berger, 1985)

equates the covariance of a function of normal random variables to the underlying covariance

times a proportionality constant. If X denotes a normal random variable, X ∼ N (µ, σ2)

with mean µ and variance σ2 and g(X) is differentiable such that E|g′(X)| < ∞ then

Cov [g(X), X] = E [g′(X)]σ2. In the bivariate case for normal random variables (X, Y ),

Stein’s lemma becomes Cov [g(X), Y ] = E [g′(X)]Cov [X, Y ]. Applying this identity to the

first order condition yields:

ωE [U ′′(W )]V ar[R] + E [U ′(W )] (E[R]− rf ) = 0.

Hence, the optimal allocation ω? has a simple closed form

ω? =
1

γ

(
µ− rf
σ2

)
(1)

where µ = E[R] and σ2 = V ar[R]. The parameter γ is the agent’s global absolute risk aver-

sion: γ = −E [U ′′(W )] /E [U ′(W )]. This approach can be extended to the case of stochastic
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volatility, see Gron, Jorgensen and Polson (2004).

To illustrate this basic result the average real return for quarterly US data over the

period 1947.2 to 1998.4 shows a return of 8.1%. The average riskless real interest rate is 0.9%

per year. Stocks are volatile with an annualized standard deviation of 15.6% for this period.

A reasonable risk-aversion of γ = 4 would then lead to an allocation of 71% stocks.

The combination of a risk-free asset with any risky asset occur on a straight line,

denoted capital allocation line, in this (mean, standard deviation) space. So the introduction

of a risk-free asset to the investment opportunity set, brings in the tangency portfolio T , with

the highest slope, aka Sharpe ratio, the ratio of its expected premium over the risk-free rate

µT − Rf by its standard deviation σT . All investors allocate their wealth along that line

according to their attitude to risk.

In an i.i.d. log-normal risky asset Rt ∼ N(µ, σ2) has T -period log-return given by $1

is log(1 + RT ) ∼ N(µT, σ2T ). A common choice is power utility of final wealth, namely

U(WT ) = 1
1−γ exp[(1 − γ) log(1 + RT )]. This can be greatly affected by estimation risk as

illustrated in Jacquier, Kane and Marcus (2005).

We now consider a number of extensions: the multivariate mean-variance case; ex-

changeability in the cross-section and time series dimensions and finally how allocation rules

are affect by return predictability.

2.2 Mean-Variance

Mean-variance portfolio theory was pioneered by de Finetti (1942) and Markowitz (1952,

2006). The basic mean-variance problem for the investor reduces to finding portfolio weights

that solve the quadratic programming problem:

min
ω
ωTΣω subject to

ωT ι = 1

ωTµ = µP

where ι is a vector of ones. If asset returns are jointly normal N(µ,Σ), for computational

convenience our expected utility depends only on its moments. The efficient frontier, with no

short sales constraint, has a long history and is well understood.

We can then identify the mean/variance efficient portfolio,

ωEV =
1

ιTΣ−1µ
Σ−1µ
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with expected return µEV = µTΣ−1µ/ιTΣ−1µ. We can also define the minimum variance

portfolio ωMV (Σ) by ωMV (Σ) = 1
ιT Σ−1ι

Σ−1ι which has expected return µMV = ιTΣ−1µ/ιTΣ−1ι.

The global minimum variance portfolio just depends on the variance-covariance matrix Σ and

so, from a statistical viewpoint, becomes a good portfolio to study as we change the input Σ.

As discussed in Perold (1988) and Chopra and Ziemba (1993) implementation of portfo-

lio choice in higher dimensions tends to result in extreme weights on securities. One strategy

to approach this issue is to introduce constraints in the optimization problem. We introduce

upper and lower constraints in the optimization problem by letting ci(xi) = −∞ if xi < li or

xi > ui and consider the problem of minω
1
2
ωTΣω − ωTµ − λc(ω) where c(ω) =

∑k
i=1 ci(xi).

In the indexing problem we will typically choose ci(xi) = c on li < xi < ui and li = 0 ∀i (re-

flecting a no short-sales constraint) and ui = u0 a predetermined constant upper bound. The

higher the level of u0 the more aggressive the portfolio in the sense of the few numbers of se-

curities held and the higher tracking error of the portfolio. Other choices could depend on the

benchmark index weights or the individual volatilities of the securities. For the implications

of higher-order moments on optimal portfolio rules see Harvey et al (2004).

It has long been known that “plug-in” estimates of variance-covariance matrices can

be very noisy estimates of the underlying parameters. Moreover, the optimizer tends to fo-

cus on these estimation errors and can lead to extreme weights. Specifically, using µEV =

µ̂T Σ̂−1µ̂/ιT Σ̂−1µ̂ where (µ̂, Σ̂) are the MLEs can lead to poor performance. Jobson and Ko-

rkie (1990) provide a simulation study and illustrate these effects. There are a number of

ways of dealing with this, the most popular being shrinkage based estimation (Black and

Litterman, 1991). One approach is to use Bayesian estimators derived from prior information

(for example, shrinking towards market equilibrium) use the posterior distribution p(µ,Σ|Zt).
Polson and Tew (2000) argue instead for the use of posterior predictive moments instead of

plug-in estimates of means and variance-covariances which naturally accounts for parameter

uncertainty.

In the cross-section, we can extend the independence assumption by assuming that the

multivariate return distribution is exchangeability. Then its joint distribution is invariant

to permutation. The order of the variables leads to the same joint. There are two case,

either exchangeable in the cross-section or in the time series. In a one period setting, if the

conditional distribution of the returns R is exchangeable, then the optimal portfolio rule is

ω = 1/N . Hence the diversified equally-weighted rule is optimal.

One can see this as follows: suppose you invest ωi in ith asset, with
∑
ωi = 1. Then
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your expected utility of wealth tomorrow of the portfolio ω ·R is

EU(ω ·R) = EU(π(ω) ·X)

for any permutation π, where π(ω)i = ωπ(i) due to exchangeability. Hence

EU(ω ·X) =
1

N !

∑
π

EU(π(ω) ·X) ≤ EU

(
1

N !

∑
π

π(ω) ·X

)
(concavity of U)

= EU
(
N−11 ·X

)
.

So whatever the concave utility, under this exchangeability hypothesis you’re best to use the

1/N -rule. Demiguel, Garlappi and Uppal (2009) provide empirical out-of-sample performance

for this rule and document its surprisingly good performance against other strategies.

2.3 Estimation Risk without Predictability

Incorporating parameter uncertainty or estimation risk is important for a number of

reasons. First, it can dramatically affect the optimal holds when the investors’ time horizon is

taken into account. Second, it more realistically models historical returns data. Maximizing

expected utility can be computationally intractable. A strain of literature concentrates on

a function of the first (four at most) moments. Discuss Harvey et al (2004) for a Bayesian

implementation.

Classical mean variance optimization requires estimates of the mean and variance-

covariance matrix of all assets in the investment universe. Maximum likelihood estimates

suffer from having poor sampling properties such as mean squared error in high dimensional

problems. An advantage of the Bayesian approach is that it naturally allows for regularisation

through the choice of prior. Estimation risk is then seamlessly taken into account and one

can also combine market equilibrium information with an investors investment views as in the

popular Black-Litterman (1991) model.

To illustrate what happens when you take into account the estimation risk consider the

time series exchangeable case. Here the predictive distribution of returns is given by

p(Rt+1|Y t) =

∫
p(Rt+1|µ,Σ)p(µ,Σ|Y t)dµdΣ .

Estimation risk is taken account of by marginalizing (integrating) out the uncertainty in the

parameter posterior distribution. The mean-variance approach leads to a further simplification
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and under elliptical distributions such as the multivariate normal with the posterior mean

being the predictive mean.

The Bayesian investor learns the mean and variance via the updating formulas

µt+1 = E
(
Rt+1|Y t

)
= E

(
µ|Y t

)
Σt+1 = E

(
Σ|Y t

)
+ V ar

(
µ|Y t

)
A portfolios excess return is defined as the rate of return on the portfolio minus the Treasury

bill rate. Polson and Tew (2000) show that with full information and a longer time series than

assets that a standard non-informative prior p(µ,Σ) ≡ |Σ|
(m+1)

2 that the predictive variance-

covariance is proportional to the maximum likelihood estimate Σ̂ and so there is no effect of

estimation risk.

The differences appear with large assets and with the common situations of missing

data. Gramacy et al (2009) develops predictive distributions with missing data and extends

the pricing errors to fat-tailed t-errors and regularization penalties tailored to high dimen-

sional problems. The myopic rule obtained by plug-in these predictive means and covariances

ignores the inter-temporal hedging demands that exist as the investor re-balances his posterior

distributions. Campbell and Viceira (1999) provide a discussion of this and show that in many

cases the hedging demand is negligible.

A popular practitioners’ approach is Black and Litterman (1991) who note that modi-

fying one element of the vector of means, for which one has better information, can have an

enormous and unwanted impact on all the portfolio weights. They combine investor views and

market equilibrium, in the spirit of shrinkage, by shrinking to equilibrium expected returns.

One nice feature of the Bayesian approach is that one can incorporate individual views

via shrinkage (Black and Litterman, 2003). Specifically, suppose that excess log-returns have

a multivariate normal distribution

(Rt+1|µ,Σ) ∼ N(µ,Σ) and (µ|µ̄, λ) ∼ N(µ,Λ)

with a corresponding multivariate normal prior. We can use this to place restrictions on a

linear combination (or portfolio) of returns which yields

(Pµ|µ̄, λ) ∼ N (Pµ, PΛP ′)

for a K ×N -matrix P . We can choose Pµ to be equilibrium market weights. Let Ω = PΛP ′.
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Then Bayes rule gives the updated weights

E (µ|y) =
(
Λ−1 + P ′ΩP

)−1 (
Λ−1µ̄+ P ′Ω−1PR

)
V ar(µ|y) =

(
Λ−1 + P ′ΩP

)−1
.

The Ω matrix can be found, for example, by exploiting the use of a factor model.

2.4 Estimation Risk with Predictability

When predictability is present, it is common to model excess returns using a vector

auto-regression (VAR) of the form

Yt = Bxt + Σ
1
2 εt (2)

where Yt contains both the stock return information as its first component and the remaining

components are variables that are thought to be useful for predicting returns. Let β = vec (B),

a T × k by 1 vector. We need to be able to simulate from the joint posterior distribution

p(β,Σ|y). The likelihood function is given by

p(Y |β,Σ) = (2π)−
Tk
2 |Σ|−

T
2 exp

(
−1

2

T∑
t=1

(Yt −Bxt)′Σ−1(Yt −Bxt)

)
.

The prior distribution can either be diffuse or the usual conjugate matrix normal-inverse

Wishart.

Barberis (2000) quantifies the magnitude of estimation risk, parameter learning and

optimal decisions. Various predictability regression models have been proposed to predict

future excess market returns. The basic model is

rt+1 = α + βxt + σεrt+1 (3)

xt+1 = αx + βxxt + σxε
x
t+1, (4)

where rt+1 are monthly returns on the CRSP value-weighted portfolio in excess of the risk-

free rate, and the predictor variable xt is the payout yield, defined as the time t payouts

over the past year divided by the current price. The errors are jointly standard normal, with

corr (εrt , ε
x
t ) = ρ < 0. Typical estimates are in the range of −0.7 depending on the sample

period. The effect of a negative correlation is that it is more likely that a drop in the regressor

(dividend yield) is associated with a positive shock to stock returns. This in turn has the
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effect, since dividend yields are lower, of inducing a stock return forecast that is lower in the

future.

The intuition of the effect of estimation risk is then as follows. Time variation in ex-

pected returns induces mean reversion into returns slowing the growth of cumulative variances

of long-horizon returns. This makes equities look less risky. Portfolio decision makers, there-

fore, allocate more to stocks even though they face substantial parameter uncertainty. Similar

statements can be said about model risk – except clearly these effects can be greater. Jo-

hannes, Korteweg and Polson (2009) provide a sequential Bayesian analysis of this portfolio

problem including investors updating beliefs about model probabilities of a variety of models

that also incorporate stochastic volatility.

Models with multiple predictors have been analyzed in a Bayesian setting by Avramov

(2002), Cremers (2002) and Boudoukh, et al (2007). We also do not impose economic restric-

tions on the regressions as in Campbell and Thompson (2008). There is also a large literature

has tackled the issue of testing the efficiency of portfolios. Kandel, McCulloch and Stam-

baugh(1995) find the posterior distribution of the maximum correlation between the tested

portfolio tested and any portfolio on the efficient frontier.

Brandt (2009) provides the following example. The underlying dynamics are given by

a VAR model of the form (
ln(1 +Rt+1)

ln dpt+1

)
= β0 + β1 ln dpt + εt+1 (5)

where dpt+1 is the dividend-to-price ratio and the errors are assumed to be homoscedastic

normals. Brandt finds that solving the optimal portfolio problem at the median dividend

yield leads to the following weights. The optimal allocation to stocks is 58% for a one-quarter

horizon, 66% for a one-year horizon and 96% for a five-year horizon. At a single-period

horizon the allocation to stocks at the (25, 50, 75)th quantiles of the dividend-to-price ratio

are 23, 58, 87% respectively.

2.5 Assessing Model Risk

Model selection can be performed as follows. Let {Mj}Jj=1 be a collection of models

and X t = (X1, . . . , Xt) a vector of state variables. Consider a factorization of the posterior

distribution of states and models as

p
(
X t, θ,Mj|yt

)
= p

(
X t, θ|Mj, y

t
)
p
(
Mj|yt

)
, (6)
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which dissects the inference problems into two components. First, p (X t, θ|Mj, y
t) solves the

parameter and state “estimation” problem conditional on a model. Bayes theorem implies

that the posterior given a model is

p
(
X t, θ|Mj, y

t
)

=
p (yt|X t, θ,Mj) p (X t|θ,Mj) p (θ|Mj)

p (yt|Mj)
, (7)

where p (yt|θ,X t,Mj) is the full-information likelihood (conditional on the latent states),

p (X t|θ,Mj) is the stochastic specification for the dynamics of the latent variables (e.g., the

specifications for the dynamics of V r
t , V

x
t , and βt), and p (θ|Mj) is the prior distribution of

the parameters in model j. It is important to note that all of these components are subjective

modeling assumptions. Bayesian statistical inference involves summarizing p (X t, θ|Mj, y
t) in

useful ways.

The second component of (6) consists of p (Mj|yt), or more aptly, comparing p (Mj|yt)
to p (Mk|yt). This portion of the inference problem is called model choice or model discrim-

ination. Jeffrey’s (1939) introduced Bayesian model comparison, which weighs the relative

strength of one model to another via the posterior odds ratio of model j to model k :

odds
(
Mj vs. Mk|yt

)
= oddsj,kt =

p (Mj|yt)
p (Mk|yt)

=
p (yt|Mj)

p (yt|Mk)

p (Mj)

p (Mk)
. (8)

The priors odds ratio is p (Mj) /p (Mk) and the Bayes factor is the marginal likelihood ratio.

Johannes, Korteweg and Polson (JKP, 2009) consider an extension of the basic dividend-

yield regression to five model specifications incorporating stochastic volatility and drifting

coefficients:

rt+1 = α + βtxt + σ
√
V r
t ε

r
t+1 (9)

xt+1 = αx + βxxt + σx
√
V x
t ε

x
t+1, (10)

where V r
t , V

x
t are stochastic volatility factors each with their respective dynamics. Hence we

have a list of models Mi including the benchmark model as well as

1. ‘DC’ (for drifting coefficients) denotes the extension of the standard model with volatility

still constant.

2. ‘SV’ denotes the extension which assumes that volatility is stochastic.

3. ‘SVDC’ denotes the most general specification.
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JKP provides an illustration of the evolution of sequential posterior model probabilities

as marginal distributions from the full joint distribution p(Xt,Mi, θi|yt) where θi are model

specify parameters over time.

3 Optimum Portfolios by MCMC

We now describe an algorithm introduced by Jacquier, Johannes, Polson (JJP, 2005),

which produces the optimum of expected utility, and d∗, without using gradient methods.

Consider again the generic problem of an agent solving

max
d
EX [U(X, d)] ,

where U(X, d) represents the agent’s utility given a decision d, and X is the random variable

directly relevant for computing utility. The expectation EX is taken with respect to the

distribution p(X), which is the predictive density of the X after marginalizing the other

parameters and state variables. Draws of p(X) can be made, either directly or via any of

the many MCMC algorithms that appear in the recent literature. For example in a portfolio

problem, X is the vector of future returns on the vector of investment opportunities, and the

marginalized parameters and state variables can be means and variances of portfolio returns

or an unobserved time varying covariance matrix. One may want to characterize the optimal

decision as a function of conditioning variables Y . Then one needs to consider p(X|Y ) and

the associated optimal decision rule d∗(Y ). This is the functional optimization framework.

For the portfolio problem, Y , could be a latent variable such as the future volatilities or any

other estimated parameter.

The simulation-based algorithm used exploits desirable properties of MCMC simulation

of p(X), so that the algorithm also produces the optimal decision rule. Specifically, the method

produces the optimal decision d∗ without having to compute a simulated expected utility and

its derivatives or implement a gradient method on that simulated function.

One simply randomizes the decision rule and makes draws that concentrate on the

optimal decision. It is crucial to note that this is consistent with decision theory within which

decision variables are not random, as in Berger (1985), Chamberlain (2000), and Zellner

(2002). The variability in the draws of d in the algorithm is purely of a computational nature,

it represents in no way an econometric or economic uncertainty about the decision variable

for the agent. In fact JJP show that the algorithm collapses on the optimal decision as some

choice variable increases.
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The algorithm proposed can serve to find the global optimal decision d∗, the optimal

functional decision rule d∗(Y ), or the optimal sequential decision (d∗1, d
∗
2). The algorithm

constructs draws from a joint distribution on d and J replications of X, denoted πJ(X̃J , d).

Specifically, the joint density of the parameters and the decision is defined by

πJ(X̃J , d) ∝
J∏
j=1

U(Xj, d)p(Xj)µ(X, d), (11)

where µ(X, d) is a measure, typically uniform, that will be used to enforce the needed regularity

conditions in the standard utility framework. Typical restrictions on the portfolio weights d

and the predictive density of returns X can be imposed.

JJP first show that the marginal density on the decision variable πJ(d), obtained

by integrating out X̃J from the joint density in (11) is πJ(d) = C(d)eJ lnE(U(θ,d)) for an

appropriate normalising constant C(d). Then, πJ(d) collapses on the optimum decision

d∗ = arg maxEX [U(X, d)] as J becomes large. This happens for practical, i.e., low enough,

values of J . An asymptotically normal limiting result in J under extra suitable regularity

conditions provides a diagnostic for selecting J .

Well known Markov Chain Monte Carlo (MCMC) methods can be used to make draws

{X̃J,(g), d(g)}Gg=1 from πJ(X̃J , d). Therefore, we draw from the J + 1 conditionals, Xj|d and

d|X̃J , which can be shown to be

Xj|d ∼ U
(
Xj, d

)
p
(
Xj
)

for j = 1, . . . , J (12)

d|X1, . . . , XJ ∼
J∏
j=1

U
(
Xj, d

)
p
(
Xj
)
. (13)

Note that the draws from Xj are tilted away from the predictive density p(Xj) toward

p(Xj)U(Xj, d), while, as we will see, the algorithm has d converging to d∗. So the draws

of Xj concentrate on the regions of the domain of Xj with a higher utility. So, in the spirit

of importance sampling, the algorithm concentrates on “smart” values of Xj. Here the im-

portance function is the utility, which itself tightens around d∗ as the algorithm converges.

Sampling the Xj’s in a utility-tilted way helps converge quicker to the relevant region of the

decision space using d|X̃J .

This differs from standard expectation-optimization algorithms for two reasons. First

we draw efficiently from p(X|d) as just discussed. In contrast, expectation-optimization al-

gorithms, at every step of d, draw G samples from X(g) ∼ p (X), the predictive density of

X. Second, they approximate the expected utility EX [U(X, d)] by 1
G

∑G
g=1 U

(
X(g), d

)
, as
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well as all required derivatives similarly, and an optimization step over d is performed typi-

cally via a gradient-based method. The process is repeated until convergence. For functional

optimization and sequential problems this can be computationally intractable.

3.1 MCMC algorithm for maximizing Expected Utility

An agent wants to find the global optimal decision d∗ or study the optimal functional

decision d∗(Y ) for a wide range of values of Y , where Y is a parameter or state variable of

interest. For example, the agent may want to understand the sensitivity of the portfolio to

potential variations in volatility or revisions of expected returns.

The uncertainty of state variable X is described by the conditional predictive distri-

bution p(X|Y ). This distribution follows from the integration of the other state variables

and parameters not directly relevant to the agent. However, as the agent wants to study the

optimal decision as a function of the state variable or parameter of interest Y , we do not

integrate it out. Specifically, the agent wants to solve

max
d(Y )

EX|Y [U (X, d)] .

Define the augmented joint distribution

πJ(X̃J , d, Y ) ∝
J∏
j=1

U(Xj, d)p(Xj|Y )µ(d,X, Y ) (14)

for some measure µ(d,X, Y ), typically a uniform to ensure that the regularity conditions hold

true. We drop µ from the rest of the paper to lighten the notation. 1

We now consider the following MCMC algorithm that simulates from πJ(X̃J , d, Y ):

Xj|d, Y ∝ U
(
Xj, d

)
p
(
Xj|Y

)
for j = 1, ..., J (15)

d|X̃J , Y ∝
J∏
j=1

U
(
Xj, d

)
p
(
Xj|Y

)
(16)

Y |X̃J , d ∝ p(X̃J |Y ) =
J∏
j=1

p(Xj|Y ) (17)

1The families of utilities most always used in financial economics are the power and the exponential. Both
are negative. one remedies this problem by shifting the utility. We proceed in this section under the assumption
that U ≥ 0.
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Clearly, upon integrating out Y , the above MCMC set of conditionals reduces to the

conditionals given in (12), (13). Hence, the results presented below specialize to the simple

global maximum expected utility problem, using (12), (13), instead of (15)-(17). The slice

sampler can also be used to draw efficiently from (15)-(17).

For the purpose of functional optimization, one could conceivably use an algorithm

based upon (15) and (16), for a selected value of Y , repeating the procedure for a a discrete

grid of values of Y . This brute force procedure, while correct, is not efficient as possibly

uninteresting values of Y may be selected. Indeed, the complete algorithm in (15), (16) and

(17) has two advantages. First, it gives the global optimum d∗ as a by-product. Second, it

draws Y more frequently where it has higher expected utility, as per the conditional in (17).

This is an efficiency gain in the spirit of importance sampling. Note however that if J gets

extremely large, the algorithm collapses around d∗, as per (16), hence around some Y ∗ as can

be seen from (17). It becomes then impractical as a means to describe the function d∗(Y ).

This is however not likely in practice. Take for example, an already high J = 200, and Y

being an unknown variance. Then (17) is akin to a draw from the variance of X given 200

observations. Clearly, it would take a much higher value of J to collapse Y |X̃J , d on one value.

Practically, the algorithm produces joint draws d, Y that can be plotted. The optimal

function d∗(Y ) can then found with one the many known kernel-smoothing techniques. The

optimal value d∗ is found by averaging the draws of d as in any MCMC algorithm.

We now show that the marginal of πJ(d|Y ) collapses on the functional relationship

d∗(Y ) as J gets large. First, it follows from (14) that:

πJ (d|Y ) = C(d)eJ log(EX|y [U(X,d)]).

In turn, as J →∞, we have that

πJ (d|Y ) −→ d∗ (y) = arg max
d(y)

EX|y [U (X, d)] (18)

The problem then is to find an efficient MCMC algorithm to sample this joint distribution

over the space (d,X, Y ). The Markov Chain produces draws
{
X̃(j,g), d(g), Y (g)

}G
g=1

.

In the global optimization problem, we know that maximizing U (d) is equivalent to

simulating from the sequence of densities πJ (d) ∝ exp (J logU (d)), as J becomes large, see

Pincus (1968). Simulated annealing uses this result to construct a Markov Chain over d to

sample from πJ , see Aarts and Korst (1989) for example. Unfortunately, a key assumption

of simulated annealing is that U (d) can be exactly evaluated. This is not the case here as
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U (d) =
∫
U (d,X) p (X) dX is not analytic. In contrast, our approach relies on the following

key result from evolutionary Monte Carlo: πJ (d) can be viewed as the marginal distribution

of πJ

(
d, X̃J

)
∝
∏J

j=1 U(d,Xj)p(Xj). This suggests that the Markov Chain should operate in

the higher dimensional space of
(
d, X̃J

)
. MCMC is then the natural methodology to sample

these variables. This is why we draw iteratively from p
(
d|X̃J

)
and p

(
X̃J |d

)
and eventually

the simulated d(G) −→ d∗.

Recall that standard simulation draws X from p(X). In contrast, this approach samples

the J random variables, Xj|d ∝ U(d,Xj)p(Xj). This is why the approach it will work well for

large dimensions, complicated distribution and potentially non-smooth utility. For example,

in the case where the maximizing decision depends critically on the tail behavior, it will

generate more samples from the high-utility portions of the state space.

A key advantage of this joint optimization and integration approach is that it delivers

Monte Carlo error bounds in high dimensions. This is due to the fact that using MCMC

sampling can result in fast convergence such as geometric convergence λG in nearly all cases

and polynomial time in some cases. Contrast this approach with even sophisticated Monte

Carlo strategies such as importance sampling that generates the standard central limit theorem

type
√
G convergence. Aldous (1987) and Polson (1996) discuss why this is insufficient for

high dimensional problems and consider random polynomial time convergence bounds.

Figure 1 illustrates our approach in a one-period allocation problem. It shows the

expected utility maximisation weight for the portfolio problem in two scenarios: (γ, d) =

(2, 0.2) and (2, 0.9).

4 Discussion

This paper provides a discussion of Bayesian methods in portfolio selection. Simulation-

based methods are particularly suited to solving the integration problem for estimation risk

and the optimization problem to find the portfolio weights. A major problem for future

research are dynamic asset allocation setting in many dimensions, see, for example, Brandt

et al (2005). Extending these methods to higher dimensions is challenging. One alternative

avenue for future research is to apply Q-Learning techniques to solving the dynamic multi-

period problem under uncertainty, see Polson and Sorensen (2009).
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Figure 1: MCMC EU portfolio weight.
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