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12.1 Introduction 
 
 
Regional economic projections are often made at the level of spatial aggregation that is 
most convenient from political, data and computational perspectives.  For example, in 
the US projections are often made at the level of 50 states.  From a policy perspective 
this makes some sense since disbursements of federal funds for infrastructure are 
generally made to state governments and sub-state governments have little political 
representation at the federal level.  Economic data is much richer at the state level than 
at any sub-state level.  Also, for many models a larger number of regions than the 50 
implies excessive computational burden. 

There are, however, a number of economic issues that cannot be adequately 
addressed at the state level.  A few examples include: 
Economically depressed regions which seldom coincide with state borders.  Even a 
state as small as New Hampshire has significant differences in economic well being 
from north to south and large states like Texas may simultaneously contain some of 
the most affluent and some of the most depressed regions in the country. 
Land use change such as the transformation of agricultural land and the general 
phenomenon of urban sprawl cannot be realistically addressed at the state level. 
Environmental pollution studies benefit greatly from spatial disaggregation.  It may be 
possible to estimate aggregate emissions at the state level but not to estimate exposed 
populations or to provide input to atmospheric models. 
In transportation studies , origins and destinations of trips are points rather than areas, 
so greater spatial detail generates more useful results.  Furthermore, the spatial impacts 
of transportation infrastructure do not necessarily respect state borders. 

Our purpose in this paper is to specify a comprehensive and rigorous framework 
for sub-state economic analysis.  In order to do this we must first define a set of sub-
state spatial units.  There have been attempts in the past to develop models from 
economically functional regions rather than political jurisdictions.  These include the 
BEA regions and National Transportation Analysis Regions.  From the perspective of 
data availability it is easier to work with regional definitions that have long histories 
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and that are used consistently by different agencies that collect and publish data. In the 
US this means either counties or Census Metropolitan Areas (CMAs).  CMAs are 
preferable for many types of analysis because they constitute functional regions with 
high levels of internal spatial interaction.  They are not, however, exhaustive (they 
exclude all rural areas) and only useful for analyzing urban and interurban phenomena. 
For the model described in this paper we have chosen the 3000 plus US counties as 
our spatial units.  This is an exhaustive regionalization that provides sufficient spatial 
detail to address some, if not all, of the issues mentioned above.  Also, counties can be 
aggregated up to CMAs and BEA regions. 

While a great deal of regional economic analysis has been based on Leontief type 
Input-Output (IO) models, we have chosen instead to develop a spatially disaggregate  
Computable General Equilibrium (CGE) model. IO models have the advantages of 
relatively modest data requirements, a high degree of industrial specificity and a good 
ability to capture multiplier effects.  They are limited, however, to modeling 
exogenous shocks that can be represented as changes in final demand and they fail to 
capture supply side effects.  As an example of the latter, in the presence of labor 
supply limitations, large infrastructure investments may result in a combination of 
increased employment and increased wages.  IO models can only capture, and may 
exaggerate, the employment effect. 

How does one develop a CGE model that can make projections at the county level? 
Is it just a question of applying a state level specification to county level data?  The 
answer is no, for three reasons. First, many types of economic data are not available at 
the county level.  Data for population and employment are available, but data for 
economic categories like value added and investment are not. Second, models that 
may be computationally manageable for 50 states may become infeasible for 3000 
counties.  Finally, there are number issues that become more important for smaller 
geographical units and must therefore be addressed in a county level model.  For 
example, the issue of available space, which can be neglected at the national or state 
level, becomes an important constraint on the spatial evolution of activities.  
Population growth in a county depends not only on its ability to yield utility to new 
residents but also to the extent to which it is “built out.”  

The approach we have adopted is to develop a county level model in conjunction 
with a state level CGE model.  Endogenous variables in the state model serve as 
boundary conditions for the county level.  The county level model is not simply an 
allocation mechanism. It determines a spatial equilibrium distribution of economic 
activities and population at the county level within each state. 

Our emphasis is to develop a model that has a rigorous specification of the supply 
side – an emphasis that is often lacking in regional models.  At this point the demand 
side of the model is rather aggregate and simple.  In later versions of the model, we 
plan to develop a more comprehensive and explicitly spatial demand side. 

The remainder of the chapter is organized as follows.  The next two sections 
describe the state-level and county-level models respectively.  While the model is not 
yet fully operational, we have solved a proof-of-concept model at the state level and 
conducted empirical estimation of population distribution mechanisms at the state and 
county levels.  These are described in a subsequent section.  Finally in the conclusion 
we speculate about policy analyses that conducted with the model. 
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12.2 A State-Level Computable General Equilibrium Economic 
Model 
 
 
Our first step is to construct a state-level economic simulation model to project the 
trajectories of output, employment, prices and wages by industry in each of the 50 
states over the time horizon 2000-2050 on a series of five-year time-steps.1  Our 
approach is deliberately simple, and, in keeping with the long-run nature of our 
projections, focuses on the supply side of the economy.  We treat the individual 
industries within each state as representative firms and simulate the dynamics of each 
according to a Solow-Swan growth model that captures the decision to invest in 
accumulating a stock of capital in a recursive-dynamic fashion (i.e., based myopically 
on the values of exogenous and endogenous variables in the current period, rather than 
looking forward over the entire simulation horizon).2  These decisions determine how 
industry capital stocks in each state evolve from one time-period to the next.  Each 
industry produces output according to a production function that specifies how capital, 
intermediate goods, and labor—which is assumed to be mobile among states – are 
combined.  In each period, the decisions of the population to migrate among and 
within states determines the intra-state supply of labor.  Industries’ competition for 
workers then simultaneously determines their wages, the prices and quantities of their 
output, and also the resources available for capital investment in the next period. 
 
 
12.2.1 The Within-Period Spatial General Equilibrium Model 
 
Our first task is to build and calibrate the within-period component of the model, 
which is a static spatial price equilibrium simulation of the U.S. economy.3  In each of 
the s states in the U.S., assume that there are j industries, each of which produces a 
single homogeneous commodity indexed by i.  For each industry in a given state, gross 
output (y) is produced using capital (k), labor (l) and a composite of intermediate 

                                                
1 The sectoral disaggregation in Table 1 captures the major sources of air pollutant emissions 
without being overly detailed. Although simulation modeling is a well established technique for 
projecting future emissions, there are comparatively few examples of its use to generate long-
run forecasts for regions of the U.S. The best example is the REMI economic-demographic 
model and its antecedents (Stevens and Treyz 1986; Treyz et al 1992; Treyz 1993), which are 
demand-driven simulations of the spatial economy. 
2 This may be contrasted with an intertemporal optimization framework used in multi-regional 
climate policy simulations (e.g., Manne and Richels 1992; Nordhaus and Boyer 1999) and 
dynamic rural-urban computable general equilibrium (CGE) models (e.g., Kelly and Williamson 
1984; Becker et al 1992), in which representative agents choose trajectories of investment to 
maximize their present value of discounted utility from consumption, looking forward over the 
entire simulation horizons. This approach, although theoretically appealing, is too expensive 
computationally to work here. 
3 Throughout, we stick to the following notational convention: lower-case letters for industry-
level variables (e.g., prices), upper-case letters for state- and aggregate-level variables (e.g., 
value added), and tildes (~) for county-level variables (e.g., housing units). We suppress time 
subscripts when describing the static equilibrium simulation but include them in our explication 
of the model’s dynamics. 
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inputs (x), according to a constant-returns-to-scale Cobb-Douglas production 
function:4 

( , ) ( , ) ( , )( , ) ( , ) ( , ) ( , ) ( , )j s j s j sy j s j s l j s k j s x j sα β γξ= . (12.1) 

Here, ξ is a Hicks-neutral shift parameter, and the parameters α, β and γ are the value 
shares of l, k and m in output.  α and β are derived from the components of value added 
by state recorded in BEA’s Gross State Product (GSP) accounts.  γ is derived using the 
coefficients on intermediate input from the latest U.S. social accounting matrix 
(SAM), constructed from the make and use tables in BEA’s Input-Output (I-O) 
accounts. 

We do not observe gross output at the state level—industries’ gross state product is 
synonymous with their value added (v).  However, y can be easily inferred from v if 
we assume that the economy has the same structure of inter-industry demand at both 
aggregate and the state levels.  In the SAM, the coefficient on the use of intermediate 
input i by industry j ( X ) is the average value share of i in j’s gross output.  It follows 
that over all i intermediate inputs: 

( ) ( , ) ( ) ( , ) ( ) ( , )X
i

p j x j s p i X i j p j y j s=∑ , (12.2) 

where p and pX are the price indices of output and the composite of intermediate 
materials.  Constant returns to scale in production implies that: 

( ) ( , ) ( , ) ( ) ( , )Xp j y j s v j s p j x j s= + , (12.3) 

which enables the value of gross output to be easily imputed as: 

( ) ( , ) ( , ) 1 ( ) ( , )
i

p j y j s v j s p i X i j
 = −  ∑ . (12.4) 

To keep things simple, we propose to model the supply of capital to each industry 
as being fixed within a period.  Competitive equilibrium in output markets results in a 
zero-profit condition that equates the price of output and the short-run unit cost 
function that is dual to (12.1): 

( )
1

( , )
( ) 1 ( , ) ( , ) ( ) ( ) ( , ) ( , )

( , )Y X

k j s
p j j s j s w j p j k j s y j s R

y j s

α γ β α γ
α γ α γ α γ α γτ ψ

− − −
+ + + +

 
= + +      (12.5) 

Here, p is the aggregate price of output in industry j, R  is the economy-wide average 
capital rental rate, which we treat as exogenous for simplicity, w is the wage in that 
industry, τY is the state’s tax rate on j’s output in the base year,5 and ψ is a Hicks-

                                                
4 Scale externalities in production are central to economic models of urbanization and 
agglomeration (Duranton and Puga 2004). However, including them directly in the production 
function would result in a non-convex optimization problem which is very difficult to solve (see, 
e.g, Fan et al 2000). We therefore opt to introduce the effect of external economies 
parametrically, imposing a neutral decline in the unit cost of production by scaling the value of 
ψ downward as a concave function of j’s output in state s (i.e., learning-by-doing) or input-
output based indices of within-state supply or demand linkages (e.g., Bartelsman et al 1994; 
Paul and Siegel 1999). 
5 For simplicity, we simplify the actual structure of industry taxation, treating taxes as if they 
were levied on output. 
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neutral shift parameter whose initial value is calibrated to set the prices of all 
commodities to unity in the base year.6  Simplifying (12.2) to (12.4) enables output in 
the base year to be calibrated, and permits the quantity and price of intermediate input 
to be modeled according to a Leontief specification, as follows: 

( , ) ( , ) ( , )
i

x j s X i j y j s=∑ , (12.6) 

and 

( ) ( ) ( , ) ( )X
i

p j p i X i j p j=∑ . (12.7) 

The initial condition for w is derived from statistics on employment and 
compensation by industry tabulated in BEA’s Annual State Personal Income (ASPI) 
accounts.  The capital rental rate is based on the average value of corporate bond 
yields. τ is easily derived from output and tax revenue tabulated in the GSP accounts. 
It is less straightforward to determine the initial stocks of capital.  Following Garofalo 
and Yamarik (2002), we plan to use the historical data series on aggregate-level 
investment and depreciation by industry from the BEA’s Fixed Assets (FA) accounts, 
allocate these values among the states in proportion to their shares in value added, and 
then cumulate the resulting state-level investment and depreciation schedules into 
stocks of capital using the perpetual inventory method. 

We assume that industries face an aggregate demand for their output (YD) that is 
the sum of own- and other-industry intermediate uses, and final uses by consumers. 
Intermediate use is determined by the economy’s input-output structure and industrial 
composition.  Final use is modeled according to a downward-sloping demand curve 
that shifts outward with rising aggregate income (GDP):7 

( ) ( , ) ( , ) ( ) / ( )D
j s

Y i X i j y j s i GDP p iϖ= +∑ ∑ , (12.8) 

where the parameter ϖ denotes good i’s share of total expenditure on final uses, 
derived from the SAM. Income balance is achieved by specifying two components to 
GDP, the sum across states of state-level value added (V) and aggregate tax revenue 
(TAXREV): 

( )
s

GDP V s TAXREV= +∑  (12.9) 

where 

( )( ) ( , ) ( , ) ( , ) ( , )
j j

V s v j s w j s l j s Rk j s= = +∑ ∑ , (12.10) 

and8 

                                                
6 This calibration trick is widely employed in CGE models (Ginsburgh and Keyzer 2000); 
Dawkins et al 2001). 
7 This formulation models final consumers as an aggregate representative agent with Cobb-
Douglas preferences. 
8 This assumes that tax revenue is recycled as income in a lump sum, a standard practice in CGE 
modeling. 
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( , ) ( ) ( , )Y
j s

TAXREV j s P j y j sτ=∑∑ . (12.11) 

Finally, market clearance for the i th good implies that aggregate demand equal 
aggregate supply: 

( ) ( , )D
s

Y j y j s=∑ .  (12.12) 

The within-period equilibrium is closed by defining the labor market at the state level. 
The demand for labor by industry and state is: 

( , ) ( ) ( , ) / ( )l j s p j y j s w jα
α γ+= . (12.13) 

Employment in each state is the sum of the labor demands by that state’ industries: 

( ) ( , )
j

L s l j s=∑ .  (12.14) 

This expression allows us to specify the average wage at the state level: 

( ) ( ) ( , ) / ( )
j

W s w j l j s L s=∑ , (12.15) 

whose value is determined by the distribution of activity levels among industries 
therein.  We propose to employ the simple model of state labor supply developed by 
Gallin (in press), which models the employment rate (H) in each state as a function of 
the average wage using a simple labor supply curve: 

( ) ( ) ( )H s s W sηχ= ,  (12.16) 

where the parameters η and χ denote the average elasticity of labor supply and the 
base-year employment rate, respectively.  The former is usually taken to be around 0.3 
in macroeconomic studies, while latter is tabulated in the BLS Local Area 
Unemployment Statistics.  All that is left is to pin down state-level labor supplies, 
which we model as the product of the employment rate and the population (N), which 
we assume to be fixed in each period: 

( ) ( ) ( )L s H s N s= .  (12.17) 

Equations (12.5) to (12.17) specify the core within-period sub-model.  They may 
be collapsed into a square system of nonlinear simultaneous equations in six 
unknowns (primal variables l, x and y, and corresponding dual variables w, PX and P) 
which can be solved for the allocations of labor, intermediate input and output, and the 
supporting vectors of wages, composite intermediate input prices, and commodity 
prices that constitute a spatial price equilibrium.

9
 

 
 

                                                
9 It is a straightforward task to specify and solve the model as a mixed complementarity problem 
(MCP—see Ferris and Pang 1997) in GAMS (Brooke et al 1998) with the MPSGE sub-system 
(Rutherford 1999). The only potential difficulty is the computational cost of finding a solution to 
a problem of this size (50 states × 20 industries × 6 equations). The authors will provide an 
operational proof-of-concept model upon request. 
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12.2.2 The Dynamic Process of the Economy 
 
We now describe the model’s dynamic process, which consists of the equations of 
motion of state-level industry capital stocks and population from one time-step to the 
next.  By specifying the boundary conditions that close the within-period equilibrium 
problem outlined above, the dynamic problem determines the temporal evolution of 
the spatial pattern of production. 

Our first challenge is to determine the geographic distributions of growth and 
decline in industries’ capital stocks.10  We employ a recursive-dynamic approach, 
which is simple, easily implemented, and allows us to bring to bear on the model’s 
regional forecasts the vast empirical literature on industrial location (e.g., Coughlin et 
al. 1991; Friedman et al. 1992; Woodward 1992). 

Letting the index t denote time periods, we propose to model capital accumulation 
in each industry within a state using the standard perpetual inventory equation: 

( , , 1) ( , , ) ( ) ( , , )k j s t inv j s t j k j s tκ+ = + , (12.18) 

where inv is the quantity of investment and the parameter κ is the average per-period 
capital survival share in each industry, derived from BEA’s Fixed Assets (FA) 
accounts.  As a first cut, we plan to model investment simply as a fixed share (ι) of 
output of the corresponding industry in each state: 

( , , ) ( ) ( , , )inv j s t j y j s tι= . (12.19) 

With (12.19) as a start, our second major task is to develop, numerically calibrate, 
and test the performance of a more realistic, empirically-based specification for the 
investment equation.  Our preferred approach is the econometrically-calibrated 
investment accelerator model of Treyz et al. (1992) and Rickman et al. (1993).  We 
propose to adapt this specification to work at the level of individual industries, 
focusing on two sets of influences on investment: 

Those affecting its level—from the macroeconomic literature on capital age 
structure and turnover (e.g., Caballero et al. 1995; Doms and Dunne 1998; 
Cooper et al. 1999), and 
Those affecting its spatial distribution—from the regional science literature on 
the effects of state taxes (e.g., Bartik 1985; Holmes 1998), location externalities 
(e.g., Head et al. 1995).11 
The second challenge in characterizing the spatio-temporal evolution of economic 

activity is to specify the determinants of state-level population and labor supply, which 
depends upon both the growth and migration behavior of the population. Accordingly, 
we propose to model the evolution of the population in each state as a function of the 
net growth rate of state populations (G), and economic immigration (MI) and 
emigration (ME): 

                                                
10 These are driven by the industry-state pattern of investment in each period, which is the 
equilibrium outcome of industries that seek to maximize their returns to capital. Due to the 
difficulty of computing a solution to the true inter-temporal spatial investment allocation 
problem, which is highly dimensional, we adopt a simpler approach. 
11 Note that if the technology parameter ψ in the unit cost function (12.5) declines with 
increasing output, the simple formulation of investment demand in eq. (12.19) will lead to 
progressive spatial agglomeration. 
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( )( , 1) ( , ) 1 ( , ) ( , ) ( , )I EN s t N s t G s t M s t M s t+ = + + + . (12.20) 

Our third major research task is to estimate the terms on the right-hand side of 
(12.20).  To keep things simple, we avoid explicit characterization of the demographic 
structure of either state populations or migrants.  Instead, we propose to model state 
population growth using crude birth and death rates by state (b and d, respectively), 
which are assumed to follow exogenous trends: 

1 1( ) ( )
0 0( , ) ( , ) ( , ) ( ) ( )b s t d s tG s t B s t D s t b s e d s e= + = − . (12.21) 

Here, the parameters b0, b1, d0 and d1 are estimated on time series data from the 
National Center for Health Statistics.  We also plan to estimate migration flows 
empirically, in the spirit of Greenwood et al. (1991) and Treyz et al. (1992).  We 
specify gross immigration and emigration at the state level, as well as population 
redistribution within-state migration (MR), as functions of states’ populations, average 
population densities (ρN), and their wage and employment rates: 

31 2 4
0( , ) ( ) ( , ) ( , ) ( , ) ( , )NM s t s s t N s t H s t W s t

ωω ω ωµµ µ µω ωµ ρ= ,    ω = {I, E, R}, (12.22) 

in which ( , ) ( , ) / ( )N s t N s t A sρ = , where A is the land area of state s, and µ0-µ4 are 

parameters estimated on data from the IRS migration database and BEA’s Regional 
Economic Information System (REIS). 

In developing equations for both investment and migration it is natural for tensions 
to arise between the theoretical correctness of candidate specifications and the 
consistency of the simulated spatial economy’s behavior with our priors when these 
specifications are included in the model.  A key test of the workability of 
specifications as we implement them is therefore whether the simulated evolution of 
the geography of production and population is consistent with historical trends (e.g., 
Kim 1995; Black and Henderson 1999; Holmes and Stevens 2004) or official forecasts 
(e.g., the Census Bureau’s state population projections—Campbell 1996). 
 
 
12.2.3 Disaggregating Economic Activity and Population to the County Level 
 
Our next step is to project the spatial pattern of industry output, population and the 
demand for transportation at this county scale.  This is a process of down-scaling the 
spatio-temporal evolution of the economic and demographic variables solved for 
above from the state level to individual counties.  We propose to do this via a simple 
two-step procedure.  First, estimating empirical relationships that govern the 
geographic distribution of output, growth of population and housing stocks, and land 
use change, and then simulating the resulting set of behavioral equations as a system to 
solve for the equilibrium spatial distribution of economic activity, population and land 
use in future periods. 

This procedure is the lynchpin of our framework, as it nests fifty county-level 
spatial allocation problems within the state-level spatial allocation problem outlined 
above using the solution for the latter problem as the boundary condition for each of 
the former ones.  
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12.2.4 Spatially Disaggregating Output 
 
Our first challenge is to distribute output by industry down to the level of individual 
counties. Employment and compensation are the only variables for which there is 
comprehensive industry-by-industry coverage at this scale.  Accordingly, we begin 

with labor input.  For industry j in state s, labor demand (l% ) and total employment 

( L% ) in each of that state’s constituent counties c{ s} are given by the analogues of 
equations (12.13) and (12.14): 

( , { }) ( ) ( , { }) / ( )l j c s p j y j c s w jα
α γ+=% %  (12.23) 

and 

( { }) ( , { })
j

L c s l j c s=∑ %% ,  (12.24) 

where y%  denotes j’s level of activity in county c.  Similarly, the average wage at the 

county level (W% ) is given by the analogue of equation (12.15): 

( { }) ( ) ( , { }) / ( { })
j

W c s w j l j c s L c s=∑ %% % . (12.25) 

In the base year, l%  is easily calculated from the Census Bureau’s County Business 

Patterns (CBP) and the ASPI accounts, enabling the initial conditions for y%  and W%  to 

be computed directly from equations (12.23) to (12.25).  At subsequent time-steps, y%  

is determined by distributing the equilibrium level of production of industry j in state s 
found by the state model among counties, enabling (12.23) to (12.25) to be used to 

calculate l%  and W% .  Following the Figueiredo et al. (2002) empirical model of 
manufacturing plant births at the county level, we propose an apportionment procedure 
that utilizes a logistic sharing rule: 

( , { }, ) ( , { }, )

{ }

( , { }, ) ( , , ) j c s t j c s t

c s

y j c s t y j s t e eσ σ= ∑% %% . (12.26) 

which represents industry j’s propensity to locate its production in a given county, 
depends on several county-level variables: average population density ( Nρ% ), total 

population (N% ), the average wage, and lagged output (a proxy for local agglomeration 
externalities): 

( , { }, ) ( { }, ), ( { }, ), ( { }, ), ( , { }, 1)Nj c s t c s t N c s t W c s t y j c s tσ σ ρ= −% %%% % . (12.27) 

Our fourth major research task is to specify a functional form for σ and 
econometrically estimate (12.26) and (12.27) using data from the REIS.12 
 

                                                
12 Recent studies (Henderson 1996; Becker and Henderson 2000; Greenstone 2002) have 
identified non-attainment of the NAAQS as a large significant influence on industrial location at 
the county level. While we do not propose to include this feedback in our simulation, we note 
that it can easily be introduced once a baseline projection of the spatial pattern of emissions is 
run though an air quality model to give county-level air pollutant concentrations. 
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12.2.5 Spatially Distributing Population 
 
The second challenge is to distribute migration flows calculated in the state model. 
This enables industrial location in future periods to be simulated by pinning down the 
level and density of population that affect the right-hand side of (12.27).  Census 

Bureau data give an initial condition for population at the county level (N% ) in the base 

year.  We propose to model the evolution of N%  in a manner analogous to equation 
(12.21), where at subsequent time-steps it depends on both population growth 
(determined by the parent state’s birth and death rates in (12.21), and gross 

immigration ( IM% ) and emigration ( EM% ) for that county in the preceding period: 

( )( { }, ) ( { }, 1) 1 ( , 1) ( { }, 1) ( { }, 1)I EN c s t N c s t G s t M c s t M c s t= − + − + − − −% % % % . (12.28) 

County-level migration must sum to the state-level total calculated in (12.22), 
which is ensured by modeling migration flows according to the logistic sharing rule: 

( ) ( { }, ) ( { }, )

{ }

( { }, ) ( , ) ( , )R c s t c s t

c s

M c s t M s t M s t e e
ω ωω ω µ µ= + ∑% %% , ω = {I, E},         (12.29) 

where the propensity to immigrate or emigrate (µ% ) at the county level mimics 
equation (12.22): 

3 51 2 4
0( { }, ) ( { }) ( { }, ) ( { }, ) ( { }, ) ( { }, ) ( { }, )Nc s t c s c s t N c s t H c s t W c s t O c s t

ω ωω ω ωµ µµ µ µω ωµ µ ρ= % %% % % %% % %%% % . (12.30) 

In this expression, the county employment rate is given by the analogue of (12.17): 

( { }) ( { }) ( { })L c s H c s N c s=% % % , (12.31) 

Nρ%  is the population density for a county with land area 

A% : ( { }, ) ( { }, ) / ( { })N c s t N c s t A c sρ = %%% , 

and O%  is the occupancy rate of housing units (U% ) in 

c: ( { }, ) ( { }, ) / ( { })O c s t N c s t U c s=% % % .  Our fifth major research task is to estimate (12.29) 

and (12.30) using data from the IRS migration database and the REIS to recover 
values for the parameters 0µ% - 5µ% . 
 
 
12.2.6 The Spatial Pattern of Housing and Land Use 
 
Our third challenge is to model the process by which growth of population and income 
generates demand for both new housing and the conversion of land from agricultural 
to residential, commercial and industrial uses.  Specifying this process enables us to 

simulate future population growth by determining the effect of U%  on occupancy in 

(12.30).  U%  is given initially by CBP data for the base year.  Over time it responds to 
the demand-side forces of population, occupancy and income (proxied for by the 
average wage), and to the supply-side forces of spatial constraints on new builds 

(proxied for by the average unit density, Uρ% : ( { }, ) ( { }, ) / ( { })U c s t U c s t A c sρ = %%% ),  and 
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the availability of land that is “potentially convertible” to residential use (PCA% , proxied 
for by the acreage under agriculture), according to a function υ: 

( { }, ) ( { }, 1)

( { }, 1), ( { }, 1), ( { }, 1), ( { }, 1), ( { }, 1) .U PC

U c s t U c s t

c s t A c s t N c s t W c s t O c s tυ ρ

= −

+ − − − − −

% % % %% %% (12.32) 

Our sixth major research task is to specify and estimate a reduced-form empirical 
model for υ. 

To simulate future values of U%  we need to determine PCA%  in (12.32), which 

requires us to model land use change.  We do this simply by treating each county’s 
total land area as comprising areas that are under residential, industrial and 

commercial uses (ICRA% ), areas that are potentially convertible (PCA% ) and areas that are 

“non-convertible” ( NCA% , e.g. unusable, wilderness or otherwise protected areas, which 

we assume to be constant): 

( { }) ( { }, ) ( { }, ) ( { })ICR PC NCA c s A c s t A c s t A c s= + +% % % % . (12.33) 

Urban sprawl is the progressive conversion of agricultural land to industrial, 

commercial and residential land at the county level (i.e., growth of ICRA%  at the expense 

of PCA% ). The initial conditions for ICRA%  and PCA%  are calculated from CBP and Census 

of Agriculture data.13  As in (12.32), ICRA%  responds to the demand-side forces of 

population, income and housing unit density, and to availability of potentially-
convertible land on the supply side, according to a function ζ: 

( { }, ) ( { }, 1)

( { }, 1), ( { }, 1), ( { }, 1), ( { }, 1), ( { }, 1) .

ICR ICR

U PC

A c s t A c s t

c s t N c s t W c s t O c s t A c s tζ ρ

= −

+ − − − − −

% % % %% %% (12.34) 

Our seventh major research task is to specify and estimate a reduced-form 
empirical model for ζ.  This will enable urban growth management policies to be 

simulated via mandated reductions in PCA%  that attenuate the growth of ICRA% .  The 

variables U%  and O%  then act as channels through which such policies exert feedback 
effects on migration and, ultimately, industrial location. 
 
 
12.2.7 Spatial Equilibrium at the County Level 
 
Estimation of equations (12.27), (12.30), (12.32) and (12.34) yields numerical 
expressions which can be used to simulate the county-level distribution of economic 
activity, population and land use.  The variables that determine the levels of these 
indicators within each county are for the most part endogenous to the sub-state spatial 

                                                
13 The Census of Agriculture is the only data source we could find on land use by area at the 
county level. 
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pattern of growth.14  We must therefore solve the system of equations (12.23) through 
(12.34) for the equilibrium allocation of industries and population.15 

  ← j →  ← d →  
  1 ... N  1 ... D  ↑ 1        1y  

i ≈  X     G   ≈ ↓ N        Ny  

          ↑ 1        1V  

f ≈  V       ≈ ↓ F        FV  
          ↑ 1        1Z  τ ≈  Z       ≈ ↓ T        TZ  
          
  1y  ... Ny   1G  ... DG   

  
Fig. 12.1 Schematic of the Social Accounting Matrix 
 
 
 
12.3 Preliminary Calibration Efforts 
 
 
We calibrate the model on a set of social accounting matrices (SAM) for the U.S. 
states.  The SAM that we use, shown schematically in figure 12.1, comprises an N × N 
matrix X  of inter-industry transactions, an F × N matrix V  of value-added activities, 
an N × D matrix G  of final demands, and a T × N matrix Z  of revenue flows due to 
tax and subsidy distortions.  The indices i, j = {1, ..., N} denote the set of industry 
sectors, f = {1, ..., F} denotes the set of primary factors (labor and capital), d = {1, ..., 

                                                
14 In particular, at each future time-step y%  depends on W%  by (12.26), but W%  depends on l% , 

and, ultimately, y%  by (12.23)-(12.25), implying that y%  is a function of its own level. 

Furthermore, y%  also depends on N% , which by (12.28)-(12.30) is in turn a function of both its 

own level in addition to W% —and therefore y% , as well. 
15 It is a straightforward task to specify and solve such an equilibrium problem in GAMS as a 
nonlinear program (NLP) with a dummy objective. The only potential difficulty may be solution 
problems caused by the global properties of the logistic functions in eqs. (12.26) and (12.29) 
(Perroni and Rutherford 1998), but this seems unlikely. 
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D} denotes the set of final demands (e.g. consumption, investment, government, and 
net exports), and τ = {1, ..., T} denotes the set of distortions. 

Official data on state-level SAMs are not published.  Traditionally, a SAM must be 
created for each individual state or region using regional multiplier techniques. 
However, since our goal is to develop a regional economic model that both explicitly 
represents state-level detail on the supply side and is consistent with macroeconomic 
linkages at the aggregate level, we employ a different approach to data development. 

The procedure that we use starts by creating a national SAM for the U.S. in the 
format of figure 12.1, and then disaggregating it into s state-level SAMs.  Each of 
these replicates the structure of the national table (the sub-matrices X , V , G  and Z ) 
through corresponding state-level sub-matrices SX , SV , SG  and SZ .  We use two 
datasets to perform the disaggregation.  The first is 1999 input-output data published 
by the Bureau of Economic Analysis (BEA), which is used to develop a year 2000 
national social accounting matrix (SAM) for the U.S.16  The second is year 2000 data 
on gross state product by industry (GSP) and its constituent components, and annual 
state personal income (SPI), also from BEA.  These data are used to derive each state’s 
share of national value-added and final use according to its fractions of the total across 
all states of GSP and SPI, respectively. 

The components of GSP that are tabulated in the data are labor, property-type 
income (i.e., a proxy for capital input) and indirect business taxes.  Thus, letting the 
index comp denote these components and GSPC denote their individual contributions 
to GSP, we have for state s: 

( ) ( , )
comp

GSP s GSPC comp s= ∑ , (12.35) 

where comp = {f, τ}.  This notation proves useful in formally describing our 
disaggregation procedure, to which we now turn. 

In keeping with our assumption of a Leontief structure of inter-industry demands, 
we assume that the relationship between the intermediate inputs to a given industry 
and its value-added is the one given in the national SAM, and does not depend on state 

location.  Therefore, the values of the column elements of the input-output matrix 
SX  

at the state level are determined by the GSP of the corresponding industries, which 
implies that the national input-output table can be disaggregated according the shares 
of each state in each industry column: 

( , )
( , , ) ( , )

( , )
S

s

GSP j s
x i j s x i j

GSP j s
= ∑ . (12.36) 

Although the structure of intermediate demand is fixed, the substitutability of labor 
for capital implies that the relative intensities of use of these inputs in a given industry 

                                                
16 The SAM is constructed from the BEA’s 92-sector “Make of Commodities by Industries” and 
“Use of Commodities by Industries” tables for 1999 using the industry technology assumption. 
Its components of value added are disaggregated using data on industries' shares of labor, 
capital, taxes and subsidies in GDP published by BEA. The resulting benchmark flow table is 
aggregated up to three sectoral groupings (primary industries, manufacturing and services), 
scaled to approximate the U.S. economy in the year 2000 using the growth rate of real GDP 
from 1999-2000 (3.75 percent), and deflated to year 2000 dollars using the GDP deflator from 
the NIPAs. 
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may differ across states, a fact which is borne out by actual data on the components of 

GSP.  The values of elements of 
SV  are thus imputed by separately apportioning 

among states each individual component of value added in each industry, according to 
the fraction of each state’s contribution to that component of GSP in that industry: 

( , , )
( , , ) ( , )

( , , )
S

s

GSPC f j s
v f j s v f j

GSPC f j s
= ∑ . (12.37) 

Since taxes and subsidies also differ by state, we use the same procedure to impute 
values for the elements of SZ : 

( , , )
( , , ) ( , )

( , , )
S

s

GSPC j s
z j s z j

GSPC j s

ττ τ
τ

= ∑ . (12.38) 

Finally, we make the simplifying assumption that the structure of state-level final 
demands reflects the pattern in the national SAM, and that the elements of SG  depend 
not on location but on states’ incomes.  We therefore used the simple procedure of 
disaggregating the aggregate final use matrix based on states’ shares of total income: 

( )
( , , ) ( , )

( )
S

s

SPI s
g i d s g i d

SPI s
= ∑ . (12.39) 

The results of this procedure are shown in figure 12.2, which illustrates the 
disaggregation of a three-sector U.S. national SAM into four SAMs that correspond to 
the Census regions.  It is interesting to note that using the assumptions of (12.39), the 
row and column totals for each industry do not balance at the state level, but do at the 
national level.  Given that the key assumption of our spatial equilibrium framework is 
that the law of one price holds for each commodity across all states, the difference 
between the row and column totals in a state’s SAM indicates the magnitude of its net 
commodity trade flows.  This information, along with interstate distances and data 
from the Department of Transportation’s commodity flow survey, may be used to 
develop detailed state-to-state trade matrices, which can be used to elaborate the 
simple final demand system in (12.13). (See Appendix, equations A3 and A4.) 

With these disaggregate data in hand, it is a simple matter to calibrate the spatial 
equilibrium model.  We use the standard CGE calibration technique of setting all 
prices to unity and solving for the values of the technical coefficients that replicate the 
benchmark dataset.17 The computational model is formulated and solved using the 
MPSGE subsystem (Rutherford, 1995, 1999) for GAMS numerical simulation 
language (Brooke et al., 1999), reproducing the benchmark equilibrium with a residual 
of 10-6 (i.e., 10,000 dollars).18 

                                                
17 Sue Wing (in preparation) provides the details. Also see the illustrations of CGE calibration in 
Mansur and Whalley (1983) and Kehoe (1988). Dawkins et al (2001) provides an 
comprehensive comparison of different approaches. 
18 The software automatically calibrates the technical coefficients of the excess demand 
functions, formulates the general equilibrium problem as square system of nonlinear equations, 
and solves this system as a mixed complementarity problem using the PATH solver (Dirkse and 
Ferris, 1995). 
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Northeast  South 
 P M S  U     P M S  U   
P 1.09 7.46 4.61  19.14  32.30  P 5.69 14.70 6.56  28.24  55.19 

M 6.67 29.00 15.17  43.00  93.83  M 14.95 47.35 21.92  63.44  147.67 
S 5.28 15.79 64.65  154.80  240.53  S 14.59 26.00 93.03  228.42  362.05 
                 

L 6.52 21.22 103.19    130.93  L 13.59 30.42 148.15    192.15 
K 4.01 11.36 58.95    74.32  K 10.79 22.26 80.16    113.21 
T 0.09 1.90 6.79    8.79  T 0.40 4.35 10.48    15.22 

 23.66 86.73 253.37  216.93  580.69   60.02 145.07 360.29  320.10  885.49 
Midwest  West 

 P M S  U     P M S  U   
P 2.09 8.86 4.11  19.39  34.44  P 3.67 7.93 4.82  19.90  36.33 

M 8.98 47.00 13.65  43.57  113.20  M 10.73 34.40 16.04  44.71  105.88 
S 7.28 24.04 58.21  156.85  246.39  S 9.48 17.31 68.20  160.96  255.94 
L 8.87 33.10 93.65    135.62  L 10.41 22.11 104.98    137.50 
K 5.88 16.90 49.38    72.16  K 7.07 13.47 64.61    85.16 
T -0.20 2.12 6.56    8.48  T 0.31 1.52 7.04    8.87 

 32.90 132.03 225.56  219.81  610.30   41.67 96.74 265.69  225.56  629.67 

 
U.S. National SAM 

 P M S  U   
P 12.53 38.96 20.09  86.68  158.26 

M 41.33 157.74 66.78  194.71  460.57 
S 36.63 83.15 284.10  701.03  1104.90 
        

L 39.39 106.85 449.97    596.21 
K 27.77 63.99 253.10    344.85 

        
T 0.60 9.89 30.87    41.36 

        
 158.26 460.57 1104.90  982.42  2706.15 

Key:  
P Primary industries L Labor input 
M Manufacturing industries K Capital input 
S Service industries T Net tax revenue 
U Final uses  
Row and column totals in italics 
All table entries in $10 billion 2000 U.S. 

Fig. 12.2  Year 2000 Aggregate Social Accounting Matrices for U.S. Census Regions 
 
 
12.4  Population Dynamics 
 
 
Equations of population movement (12.30), which are used to update the state 
population from one time step to the next, must be estimated econometrically using 
Census data on migration and data on socioeconomic characteristics that are 
endogenous to or can be calculated based on variables that are endogenous to, the 
within period equilibrium model.   Equations (40a-c) were estimated for population 
movements over the 1995-2000 interval. (All variables as defined in table 12.1).  Since 
decisions to move into, out of, or from one location to another within a particular state 
are all governed by the same set of forces, we employ seemingly unrelated regression 
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specification for the state-level migration equations, which are estimated using three-
stage least squares: 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

        (a)

     (b)

      (c)

inm pop unemp wage popden occu unitden

outm pop unemp wage popden occu unitden

intm pop unemp wage popden occu unitden

α β γ δ φ θ λ
α β γ δ φ θ λ
α β γ δ φ θ λ

= + + + + + +
= + + + + + +
= + + + + + +

 (12.40) 

 
 
Table 12.1 List of Variables and Sources 

Variable Description UNITs Source 

inm 
State in-migration, 
1995-2000 

1000 persons Census Bureau data files 

outm State out-migration, 
1995-2000 

1000 persons Census Bureau data files 

intm 
State internal 
migration, 1995-
2000 

1000 persons Census Bureau data files 

pop 
State population, 
1995 

1000 persons BEA State Economic Profiles 

unemp 
State average 
unemployment rate, 
1995 

Percent 
BLS Local Area 
Unemployment Statistics 

wage Av. wage per job, 
1995 

current dollars BEA State Economic Profiles 

popden 
State population 
density, 1995 

1000 persons per sq. mi. 
BEA REIS and Census 
Gazetteer data files 

unitden 
State av. density of 
housing units, 1995 

Units per sq. mi. Census Gazetteer data files 

occu 
State av. occupancy 
rates of housing 
units, 1995 

Persons per unit 
BEA REIS and Census 
Gazetteer data files 

 
 

The results are shown in table 12.2.  Since popden = occu × unitden, two variants 
of equation (12.28) are estimated, one with popden (specification I) and the other with 
occu and unitden (specification II).  Specifications (III) and (IV) in the table control 
for the influence of population size in the dependent variables, which express the 
numbers of in- out- and internal migration for each state as fractions of the respective 
state populations. We attempt to capture the effects of spatial autocorrelation by 
including spatial lags of the covariates.  For each state, the spatial lag of a variable is 
computed as the average of the values of that variable over all contiguous states.  In 
this calculation AK and WA, and CA and HI are treated as contiguous.  These results 
are shown in table 12.3. 

The fit of the regressions is generally good, and is improved by the addition of the 
spatial lags of the explanatory variables. The size of a state’s population is the 
strongest predictor of all three types of migration, with positive effects on absolute 
levels of migration and the rate of internal migration, and negative effects on the rates 
of in- and out-migration. 

The effect of average population density—or, equivalently, the combination of unit 
density and occupancy rates—is negative and significant throughout. While the effects 
on in-migration and internal migration are of the expected sign (reflecting the 
congestion costs incurred by migrants in obtaining new lodging), the impact on out-
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migration defies simple explanation. One might be tempted to conclude that high 
population density may be picking up the influence of access to urban amenities, 
whose attractiveness attenuates individuals’ propensity to move out-of-state, but 
specification II shows that occupancy rates exert a much stronger negative influence.19 
This result, which means that the rate of out-migration is declining in the average 
number of persons per unit, is suggestive of a “life-cycle” effect, whereby small 
households, comprising singles or couples without children, have a higher propensity 
to make out-of-state moves. Controlling for spatial autocorrelation, popden’s effect on 
out-migration becomes insignificant, but the negative direct effects of occupancy and 
unit density remain. The weaker negative effect of lagged population density (and, in 
specification II, unit density) is consistent with the attenuating influence of congestion 
costs in neighboring states’ housing markets to emigration there. 

We find that unemployment has a negative and significant influence on internal 
migration, but an insignificant effect on in- or out-migration. It is well known that 
unemployment exerts two countervailing influences on migration—on one hand it 
reduces households’ labor income, and with it the resources necessary to undertake the 
pecuniary costs of relocation, while on the other hand it acts as a psychic “push” 
factor, simultaneously inhibiting in-migration and inducing residents to emigrate in 
search of employment. The results indicate that the former pecuniary effect seems to 
be the dominant factor. The spatial lag of unemployment has positive and significant 
effects on both immigration and, to a lesser degree, emigration. The former reflects the 
influence of relative economic conditions in neighboring states on the propensity of 
residents of other states to undertake cross-border moves, while the second indicates a 
regional phenomenon, namely economically-induced migration away from groups of 
contiguous states which are economically depressed. The estimates of the effect of the 
average wage, while generally not significant, tend to corroborate this story: they have 
a positive and significant impact on the propensity to move out-of-state, which 
presumably involves larger expenditures than internal migration.20 

 
 

Table 12.2  Seemingly Unrelated Regressions for State-Level In-, Out- and Internal 
Migration 

 (I)   (II)   (III)   (IV)   
 inm outm intm inm outm intm inmfrac outmfrac intmfrac inmfrac outmfrac intmfra
pop 0.834 0.806 1.330 0.826 0.803 1.331 -0.166 -0.194 0.330 -0.174 -0.197 0.331 
 (0.055)*** (0.027)*** (0.048)*** (0.053)*** (0.027)*** (0.048)*** (0.055)*** (0.027)*** (0.048)*** (0.053)*** (0.027)*** (0.048)*
unemp -0.086 0.007 -0.404 -0.128 -0.010 -0.398 -0.086 0.007 -0.404 -0.128 -0.010 -0.398 
 (0.198) (0.099) (0.174)** (0.194) (0.098) (0.176)** (0.198) (0.099) (0.174)** (0.194) (0.098) (0.176)*
wage 0.327 1.022 -0.851 0.257 0.994 -0.840 0.327 1.022 -0.851 0.257 0.994 -0.840 
 (0.402) (0.201)*** (0.354)** (0.393) (0.198)*** (0.355)** (0.402) (0.201)*** (0.354)** (0.393) (0.198)*** (0.355)*
popden -0.089 -0.096 -0.135    -0.089 -0.096 -0.135    
 (0.041)** (0.020)*** (0.036)***    (0.041)** (0.020)*** (0.036)***    
occu    -0.166 -0.127 -0.123    -0.166 -0.127 -0.123 
    (0.060)*** (0.030)*** (0.054)**    (0.060)*** (0.030)*** (0.054)*
unitden    -0.073 -0.090 -0.137    -0.073 -0.090 -0.137 
    (0.041)* (0.020)*** (0.037)***    (0.041)* (0.020)*** (0.037)*

                                                
19 However, the effect of occupancy rates on out-migration is weaker than on both in-migration 
and internal migration, and the effect of unit density on out-migration understates that on 
internal migration, as one might expect based on intuition. 
20 Absent controls for spatial autocorrelation, wages have a counterintuitively strong negative 
impact on internal migration, but this effect disappears with the inclusion of the spatial lag. 
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Constant -1.937 -4.146 -1.761 -1.491 -3.968 -1.827 -1.937 -4.146 -1.761 -1.491 -3.968 -1.827 
 (1.297) (0.647)*** (1.140) (1.287) (0.649)*** (1.163) (1.297) (0.647)*** (1.140) (1.287) (0.649)*** (1.163)
Obs. 50 50 50 50 50 50 50 50 50 50 50 50 
R-sq. 0.87 0.97 0.95 0.88 0.97 0.95 0.40 0.73 0.53 0.43 0.74 0.54 

All variables in logarithms. Standard errors in parentheses, * significant at 10%; ** significant at 5%; *** 
significant at 1% 
[This table will be re-oriented to fit on the page] 
 
 
Table 12.3  SUR Results for State-Level In-, Out- and Internal Migration: Effect of Spatial 

Lags 

 (I)   (II)   (III)   (IV)   
 Inm outm intm inm outm intm inmfrac outmfrac intmfrac inmfrac outmfrac intm
pop 0.779 0.773 1.309 0.779 0.780 1.288 -0.221 -0.227 0.309 -0.221 -0.220 0.28
 (0.068)*** (0.031)*** (0.061)*** (0.067)*** (0.032)*** (0.060)*** (0.068)*** (0.031)*** (0.061)*** (0.067)*** (0.032)*** (0.0
unemp -0.296 -0.104 -0.300 -0.321 -0.111 -0.293 -0.296 -0.104 -0.300 -0.321 -0.111 -0.2
 (0.211) (0.097) (0.187) (0.209) (0.100) (0.185) (0.211) (0.097) (0.187) (0.209) (0.100) (0.1
wage 0.501 1.100 -0.644 0.455 1.064 -0.585 0.501 1.100 -0.644 0.455 1.064 -0.5
 (0.441) (0.204)*** (0.393) (0.437) (0.209)*** (0.387) (0.441) (0.204)*** (0.393) (0.437) (0.209)*** (0.3
popden -0.012 -0.039 -0.136    -0.012 -0.039 -0.136    
 (0.059) (0.027) (0.053)***    (0.059) (0.027) (0.053)***    
occu    -0.115 -0.089 -0.111    -0.115 -0.089 -0.1
    (0.064)* (0.031)*** (0.057)*    (0.064)* (0.031)*** (0.0
unitden    -0.029 -0.058 -0.105    -0.029 -0.058 -0.1
    (0.054) (0.026)** (0.048)**    (0.054) (0.026)** (0.0
lag(pop) -0.017 0.015 -0.166 -0.028 -0.003 -0.104 -0.017 0.015 -0.166 -0.028 -0.003 -0.1
 (0.093) (0.043) (0.083)** (0.102) (0.049) (0.090) (0.093) (0.043) (0.083)** (0.102) (0.049) (0.0
lag(unemp) 0.982 0.491 -0.085 0.943 0.541 -0.271 0.982 0.491 -0.085 0.943 0.541 -0.2
 (0.390)** (0.180)*** (0.347) (0.395)** (0.188)*** (0.349) (0.390)** (0.180)*** (0.347) (0.395)** (0.188)*** (0.3
lag(wage) -0.454 0.047 -0.916 -0.879 -0.369 -0.386 -0.454 0.047 -0.916 -0.879 -0.369 -0.3
 (0.790) (0.365) (0.703) (0.738) (0.352) (0.652) (0.790) (0.365) (0.703) (0.738) (0.352) (0.6
lag(popden) -0.125 -0.118 0.126    -0.125 -0.118 0.126    
 (0.085) (0.039)*** (0.075)*    (0.085) (0.039)*** (0.075)*    
lag(occu)    -0.532 -0.120 -0.599    -0.532 -0.120 -0.5
    (0.676) (0.322) (0.598)    (0.676) (0.322) (0.5
lag(unitden)    -0.036 -0.048 0.038    -0.036 -0.048 0.03
    (0.051) (0.024)** (0.045)    (0.051) (0.024)** (0.0
Constant -1.819 -5.169 2.342 0.408 -3.496 0.614 -1.819 -5.169 2.342 0.408 -3.496 0.61
 (2.495) (1.153)*** (2.222) (2.191) (1.045)*** (1.937) (2.495) (1.153)*** (2.222) (2.191) (1.045)*** (1.9
Obs. 50 50 50 50 50 50 50 50 50 50 50 50 
R-sq. 0.89 0.98 0.96 0.89 0.98 0.96 0.51 0.81 0.61 0.51 0.80 0.62

All variables in logarithms. Standard errors in parentheses, * significant at 10%; ** significant at 5%; *** 
significant at 1% 
 
[This table will be re-oriented to fit on the page] 
 
 
12.5 Concluding Remarks 
 
 
The signal benefit of this research is the creation of a simple, transparent, theoretically 
and methodologically rigorous simulation model that is suitable for a potentially broad 
range of applications.  Our approach has a number of advantages in this regard, 
including the following.  First, the Hicks-neutral shift parameter ψ may be specified to 
decline from its calibrated value in the base period one period to the next according to 
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projections of productivity growth by industry, facilitating inquiry into the effect of 
technological progress within industries on the spatial patterns of economic growth.  
Secondly, because the distribution of industry tax rates in different states affects the 
spatial pattern of production, the modeler, by changing τY as a policy variable, can 
explore the impact of future state tax policy scenarios on output and employment.  
Thirdly, since the consumption of land in the creation of new housing is explicitly 
modeled, it will be possible to simulate the effect of policies such as limitations on the 
conversion of non-urban land on county level population growth and economic 
growth. 

The modeling framework is particularly beneficial for conducting environmental 
analysis for a number of reasons.  Because of the relatively detailed distributions of 
economic activities it will be possible to apply emissions factors to generate spatial 
patterns of criteria pollutant emissions.  This will be useful in identifying areas of high 
exposures and as input to atmospheric models for ozone and acid deposition.  Further, 
the model may be extended to produce estimates of transportation activity levels and 
emissions from mobile sources, as described in the Appendix.  In addition, the model, 
by explicitly representing industries’ use of intermediate inputs, sheds light on the 
potential for macro-level climate change policy to affect both regional growth and the 
spatial distribution of secondary air pollution benefits from reduced combustion 
activity.  A carbon tax (τC) can be simply represented as the additional term τCεC(jC) in 
the unit cost function of the model’s fossil fuel sectors ( jC) differentiated according to 
the average carbon emission coefficients (εC) on these sectors’ outputs.  Moreover, the 
income effects of this tax are easily represented by including the revenue that it 
generates ( ( ) ( )

Cj C C C Cj Y jτ ε∑ ) as an additional term in equation (12.11).  This 

feedback facilitates investigation of the spatial impacts of double dividend policies use 
the revenue from τC to lower τY. 
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Appendix: Estimating Transportation Activity Levels and Mobile 

Source Emissions 
 
Personal Transportation Emissions 
We focus on road transportation, and propose a two-track empirical approach that 
relates vehicle emissions to VMT and driving behavior, both of which are influenced 
by congestion. Using cross-section data from the National Household Transportation 
Survey (NHTS), we first estimate a trip generation model of average annual VMT (T% ) 
as a function of income and size of urban area, and then employ the ordered logit 

model of Aygemang-Duah et al (1995) to apportion T%  among a number of average 
speed categories ϑ according to geographic attributes. In county c, the probability of 



22 Sue Wing and Anderson 

 

being in speed class ϑ thus depends on a function π of income, population density and 
size of urban area (both of which proxy for congestion): 

( )( , { }) 1 1 exp ( { }), ( { }), ( { })Nc s c s N c s W c s ϑπ ϑ π ρ λ = + − % %%% , (A1) 

where λϑ is an estimated vector of probability cutoffs. The result is a vector of county-
level speed distributions projected at each time-step as a function of the variables 
solved for at the county level, which serve as a proxy for driving cycle characteristics 
that affect emissions per mile. This allows us to use the distribution of emissions per 
VMT in each velocity category from the emission factors in the MOBILE6 model (εM) 
to estimate mobile emissions (Me% ) by pollutant, speed class and county: 

( , , { }, ) ( { }, ) ( { }, ) ( , { }, ) ( , )M Me z c s t N c s t T c s t c s t zϑ π ϑ ε ϑ= % %% % . (A2) 

Interstate Freight Transportation Emissions 
An important advantage of the proposed simulation framework is that the model’s 
demand structure facilitates investigation of the impact of regional growth on interstate 
freight transportation and associated air pollutant emissions. The state-level 
counterpart of equation (12.8) gives the demand in each state (yD) for subset of 
commodities that are transported, iF:

21 

( )( , , ) ( , ) ( , , ) ( ) ( , ) / ( , ) ( , )D F F F
j

y i s t X i j y j s t i V s t TAXREV N s t P i tϖ= + +∑ . (A3) 

This expression allows us to use a production-constrained gravity model to 
approximate inter-state flows of goods f from production in state s to uses in state r 
along transportation mode q: 

( )( . )( . )( , , , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) Fi qi q
F F D F D F

r

f i s r q t y i s t y i r t s r q y i r t s r q φφ −−= ∆ ∆∑ . (A4) 

Here, ∆ is the distance from s to r, calculated from the BTS North American 
Transportation Atlas Database, and φ is a measure of the friction of distance, which 
our tenth research task is to estimate using cross-sectional data from the 1997 
Commodity Flow Survey. We propose to assign the estimated proportions of freight 
flows by mode to the appropriate transportation network based on shortest path routes, 
and to focus once again on road transport emissions, which can be easily estimated by 
multiplying the number of truck miles assigned to each highway link by average 
highway emissions factors from MOBILE6.22 

                                                
21 Here we assume a simple lump-sum recycling rule that divides aggregate tax revenue equally 
among members of the population. More realistic assumptions can be made, although at the cost 
of increasing the model’s complexity. 
22 Additional off-interstate emissions are likely to be significant due to local congestion at origin 
and designation counties. To estimate them it is necessary to account for demand by county as a 
proportion of each interstate flow. 


