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12.1 Introduction

Regional economic projections are often made aliethed of spatial aggregation that is
most convenient from political, data and computal@erspectives. For example, in
the US projections are often made at the levelOo$tates. From a policy perspective
this makes some sense since disbursements of ffddeds for infrastructure are
generally made to state governments and sub-statergments have little political
representation at the federal level. Economic atauch richer at the state level than
at any sub-state level. Also, for many modelsrgdianumber of regions than the 50
implies excessive computational burden.

There are, however, a number of economic issues ddmanot be adequately
addressed at the state level. A few examplesdeclu
Economically depressed regiomsich seldom coincide with state borders. Even a
state as small as New Hampshire has significaférdiices in economic well being
from north to south and large states like Texas simpltaneously contain some of
the most affluent and some of the most depresggdnsein the country.

Land use changsuch as the transformation of agricultural landl d&ne general
phenomenon of urban sprawl cannot be realisticaltyressed at the state level.
Environmental pollutiorstudies benefit greatly from spatial disaggregatié may be
possible to estimate aggregate emissions at thelstael but not to estimate exposed
populations or to provide input to atmospheric ni&de

In transportation studiesorigins and destinations of trips are pointbeathan areas,
SO greater spatial detail generates more usefultsesFurthermore, the spatial impacts
of transportation infrastructure do not necessaebpect state borders.

Our purpose in this paper is to specify a comprsivenand rigorous framework
for sub-state economic analysis. In order to d®we must first define a set of sub-
state spatial units. There have been attemptfiénpast to develop models from
economically functional regions rather than pdditijurisdictions. These include the
BEA regions and National Transportation Analysigiiges. From the perspective of
data availability it is easier to work with regidrdefinitions that have long histories
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and that are used consistently by different agsritiat collect and publish data. In the
US this means either counties or Census Metropolkteeas (CMAs). CMAs are
preferable for many types of analysis because toagtitute functional regions with
high levels of internal spatial interaction. Thane not, however, exhaustive (they
exclude all rural areas) and only useful for analyzirban and interurban phenomena.
For the model described in this paper we have chidse 3000 plus US counties as
our spatial units. This is an exhaustive regi@adion that provides sufficient spatial
detail to address some, if not all, of the issueationed above. Also, counties can be
aggregated up to CMAs and BEA regions.

While a great deal of regional economic analysks lieen based on Leontief type
Input-Output (I0) models, we have chosen insteadetelop a spatially disaggregate
Computable General Equilibrium (CGE) model. 10 niedeave the advantages of
relatively modest data requirements, a high degfaedustrial specificity and a good
ability to capture multiplier effects. They aremited, however, to modeling
exogenous shocks that can be represented as charfged demand and they fail to
capture supply side effects. As an example ofl#ter, in the presence of labor
supply limitations, large infrastructure investngembay result in a combination of
increased employment and increased wages. 10 madel only capture, and may
exaggerate, the employment effect.

How does one develop a CGE model that can makegtiaps at the county level?
Is it just a question of applying a state levelc#ipeation to county level data? The
answer is no, for three reasons. First, many tgpesonomic data are not available at
the county level. Data for population and emplogimare available, but data for
economic categories like value added and investraemtnot. Second, models that
may be computationally manageable for 50 states Inempme infeasible for 3000
counties. Finally, there are number issues thabripe more important for smaller
geographical units and must therefore be addressedcounty level model. For
example, the issue of available space, which canegéected at the national or state
level, becomes an important constraint on the apatiolution of activities.
Population growth in a county depends not only tsrability to yield utility to new
residents but also to the extent to which it isiftbaut.”

The approach we have adopted is to develop a cdewty model in conjunction
with a state level CGE model. Endogenous variabilethe state model serve as
boundary conditions for the county level. The dguevel model is not simply an
allocation mechanism. It determines a spatial émjiuim distribution of economic
activities and population at the county level witkach state.

Our emphasis is to develop a model that has aaugospecification of the supply
side — an emphasis that is often lacking in rediomadels. At this point the demand
side of the model is rather aggregate and simpielater versions of the model, we
plan to develop a more comprehensive and explisjibtial demand side.

The remainder of the chapter is organized as fallowfhe next two sections
describe the state-level and county-level modelpeetively. While the model is not
yet fully operational, we have solved a proof-oficept model at the state level and
conducted empirical estimation of population disition mechanisms at the state and
county levels. These are described in a subsegeetibn. Finally in the conclusion
we speculate about policy analyses that conduciidtie model.
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122 A State-Level Computable General Equilibrium Economic
Mode

Our first step is to construct a state-level ecaeosimulation model to project the
trajectories of output, employment, prices and wagg industry in each of the 50
states over the time horizon 2000-2050 on a seriefive-year time-steps. Our
approach is deliberately simple, and, in keepin¢ghwhe long-run nature of our
projections, focuses on the supply side of the eecgn We treat the individual
industries within each state as representativesfimd simulate the dynamics of each
according to a Solow-Swan growth model that cagtutee decision to invest in
accumulating a stock of capital in a recursive-agitafashion (i.e., based myopically
on the values of exogenous and endogenous variabiles current period, rather than
looking forward over the entire simulation horizdn)These decisions determine how
industry capital stocks in each state evolve from time-period to the next. Each
industry produces output according to a produchimetion that specifies how capital,
intermediate goods, and labor—which is assumedetanbbile among states — are
combined. In each period, the decisions of theufaipn to migrate among and
within states determines the intra-state supplyabér. Industries’ competition for
workers then simultaneously determines their watiesprices and quantities of their
output, and also the resources available for dapiastment in the next period.

12.21 TheWithin-Period Spatial General Equilibrium Model

Our first task is to build and calibrate the witlieriod component of the model,
which is a static spatial price equilibrium simigatof the U.S. economy.In each of
the s states in the U.S., assume that therej anelustries, each of which produces a
single homogeneous commodity indexed.b¥or each industry in a given state, gross
output §) is produced using capitak)( labor () and a composite of intermediate

! The sectoral disaggregation in Table 1 capturesrthjor sources of air pollutant emissions
without being overly detailed. Although simulatioiodeling is a well established technique for
projecting future emissions, there are comparatif@k examples of its use to generate long-
run forecasts for regions of the U.S. The best @tais the REMI economic-demographic
model and its antecedents (Stevens and Treyz T98¢z et al 1992; Treyz 1993), which are
demand-driven simulations of the spatial economy.

2 This may be contrasted with an intertemporal ofgétion framework used in multi-regional
climate policy simulations (e.g., Manne and RicH&l82; Nordhaus and Boyer 1999) and
dynamic rural-urban computable general equilibr{(@®E) models (e.g., Kelly and Williamson
1984; Becker et al 1992), in which representatiyents choose trajectories of investment to
maximize their present value of discounted utfitym consumption, looking forward over the
entire simulation horizons. This approach, althotigioretically appealing, is too expensive
computationally to work here.

% Throughout, we stick to the following notationalnwention: lower-case letters for industry-
level variables (e.g., prices), upper-case leftarstate- and aggregate-level variables (e.g.,
value added), and tildes (~) for county-level Vialiga (e.g., housing units). We suppress time
subscripts when describing the static equilibriimugation but include them in our explication
of the model's dynamics.
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inputs (), according to a constant-returns-to-scale Cobbglas production
function?

y(J,9) =&, 9)I() sy k(] P9 (| 909 (12.1)

Here, ¢ is a Hicks-neutral shift parameter, and the pararset g andy are the value
shares of, kandmin output. « andp are derived from the components of value added
by state recorded in BEA's Gross State Product j@8Pounts.y is derived using the
coefficients on intermediate input from the latésiS. social accounting matrix
(SAM), constructed from the make and use tableBEA’'s Input-Output (I-O)
accounts.

We do not observe gross output at the state levedusitries’ gross state product is
synonymous with their value addeg).( However,y can be easily inferred fromif
we assume that the economy has the same strudturemindustry demand at both
aggregate and the state levels. In the SAM, tedficent on the use of intermediate
inputi by industryj (X ) is the average value sharei @f j's gross output. It follows
that over alli intermediate inputs:

P (Dx(J.9) =2, p() X(i. )P(1)Y(i.s), (12.2)

wherep andpx are the price indices of output and the composfténtermediate
materials. Constant returns to scale in produdtigplies that:

P(DY(,9) =V i 9+ B (DN} 9, (12.3)
which enables the value of gross output to beeasjputed as:
p()y(i.s) =V, S)/(l-z () X(i, i)}- (12.4)

To keep things simple, we propose to model the Igupipcapital to each industry
as being fixed within a period. Competitive edarilim in output markets results in a
zero-profit condition that equates the price ofpotitand the short-run unit cost
function that is dual to (12.1):

1-a-y

_a A -5 ay
p(J):(1+rY(J.s))[w(j.s)w(j)‘”y B ) KG9 (97 + R%J (12.5)

Here,p is the aggregate price of output in indugirR is the economy-wide average
capital rental rate, which we treat as exogenousifaplicity, w is the wage in that
industry, 7y is the state’s tax rate gfs output in the base yeamnd ¢ is a Hicks-

4 Scale externalities in production are centraldmnemic models of urbanization and
agglomeration (Duranton and Puga 2004). Howevelyding them directly in the production
function would result in a non-convex optimizatigmoblem which is very difficult to solve (see,
e.g, Fan et al 2000). We therefore opt to introdheeeffect of external economies
parametrically, imposing a neutral decline in tié oost of production by scaling the value of
¢ downward as a concave functionjsfoutput in state (i.e., learning-by-doing) or input-
output based indices of within-state supply or dedriamkages (e.g., Bartelsman et al 1994;
Paul and Siegel 1999).

® For simplicity, we simplify the actual structurkindustry taxation, treating taxes as if they
were levied on output.
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neutral shift parameter whose initial value is lm@ied to set the prices of all
commodities to unity in the base y&aSimplifying (12.2) to (12.4) enables output in
the base year to be calibrated, and permits thetiqgand price of intermediate input
to be modeled according to a Leontief specificatamfollows:

X(J',S)=Z X(i, j)y(j.s), (12.6)
and
px(j)=Zp(i)>_<(i,J)p(j)- (12.7)

The initial condition forw is derived from statistics on employment and
compensation by industry tabulated in BEA's Ann8gdte Personal Income (ASPI)
accounts. The capital rental rate is based onatleeage value of corporate bond
yields.t is easily derived from output and tax revenue litled in the GSP accounts.
It is less straightforward to determine the inisébcks of capital. Following Garofalo
and Yamarik (2002), we plan to use the historicaladseries on aggregate-level
investment and depreciation by industry from theABH-ixed Assets (FA) accounts,
allocate these values among the states in propdditheir shares in value added, and
then cumulate the resulting state-level investremd depreciation schedules into
stocks of capital using the perpetual inventoryhoet

We assume that industries face an aggregate defoatiteir output (YD) that is
the sum of own- and other-industry intermediatesused final uses by consumers.
Intermediate use is determined by the economy’stioptput structure and industrial
composition. Final use is modeled according toowrdvard-sloping demand curve

that shifts outward with rising aggregate incom®gg7
YD(i):Z>_<(i, j)Zy(j,s)HU(i)GDP/ p(i), (12.8)
j s

where the parametew denotes good’s share of total expenditure on final uses,
derived from the SAM. Income balance is achievedigcifying two components to

GDP, the sum across states of state-level valueda@i and aggregate tax revenue
(TAXREV:

GDP =) V(9+ TAXRE\ (12.9)
where s

V(S)=;\(LS)=JZ(WJ'S)US)+_RKHS), (12.10)
and

® This calibration trick is widely employed in CGEodels (Ginsburgh and Keyzer 2000);
Dawkins et al 2001).
7 . . . . .

This formulation models final consumers as an eggfe representative agent with Cobb-
Douglas preferences.
8 This assumes that tax revenue is recycled as iméom lump sum, a standard practice in CGE
modeling.
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TAXREV:ZZTY( isSRYYIS (12.11)

Finally, market clearance for thid' good implies that aggregate demand equal
aggregate supply:
Yo (D=2 ¥(59). (12.12)

The within-period equilibrium is closed by definitte labor market at the state level.
The demand for labor by industry and state is:

1(5,8) =25 p(D)y(i.s)/ W( ). (12.13)

Employment in each state is the sum of the laboratels by that state’ industries:

L(s) =2 1(j.9). (12.14)
j

This expression allows us to specify the averaggeved the state level:

W(9=> v DI(i9/ s, (12.15)

whose value is determined by the distribution ofivity levels among industries
therein. We propose to employ the simple modedtafie labor supply developed by
Gallin (in press), which models the employment (&tgin each state as a function of
the average wage using a simple labor supply curve:

H(S) = x(IWM ¥, (12.16)

where the parametersand y denote the average elasticity of labor supply tred
base-year employment rate, respectively. The forsnesually taken to be around 0.3
in macroeconomic studies, while latter is tabulaied the BLS Local Area
Unemployment Statistics. All that is left is tonpilown state-level labor supplies,
which we model as the product of the employmerd aaid the populatiorNj, which
we assume to be fixed in each period:

L(s)= H(9 N($. (12.17)

Equations (12.5) to (12.17) specify the core withémiod sub-model. They may
be collapsed into a square system of nonlinear I&meous equations in Six
unknowns (primal variablds x andy, and corresponding dual variablesPX andP)
which can be solved for the allocations of laboteimediate input and output, and the
supporting vectors of wages, composite intermediapeit prices, and commodity

prices that constitute a spatial price equilibri%m.

° It is a straightforward task to specify and sdlve model as a mixed complementarity problem
(MCP—see Ferris and Pang 1997) in GAMS (Brookd £988) with the MPSGE sub-system
(Rutherford 1999). The only potential difficultytise computational cost of finding a solution to
a problem of this size (50 states x 20 industriéseguations). The authors will provide an
operational proof-of-concept model upon request.
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12.22 TheDynamic Process of the Economy

We now describe the model's dynamic process, whifsists of the equations of
motion of state-level industry capital stocks amgylation from one time-step to the
next. By specifying the boundary conditions tHase the within-period equilibrium
problem outlined above, the dynamic problem deteesiithe temporal evolution of
the spatial pattern of production.

Our first challenge is to determine the geographatributions of growth and
decline in industries’ capital stocks. We employ a recursive-dynamic approach,
which is simple, easily implemented, and allowsta$ring to bear on the model's
regional forecasts the vast empirical literaturdratustrial location (e.g., Coughliet
al. 1991; Friedmaset al. 1992; Woodward 1992).

Letting the index denote time periods, we propose to model capitahmulation
in each industry within a state using the stangargetual inventory equation:

k(j,s,t+1)=inv(j,s t)+x (j)k(],s,t), (12.18)

whereinv is the quantity of investment and the parametesrthe average per-period
capital survival share in each industry, derivednfr BEA's Fixed Assets (FA)
accounts. As a first cut, we plan to model investirsimply as a fixed share ©f
output of the corresponding industry in each state:

inv(j,s,t)=7(j)y(j,s,1). (12.19)

With (12.19) as a start, our second major task idetvelop, numerically calibrate,
and test the performance of a more realistic, eéoghiy-based specification for the
investment equation. Our preferred approach is eéhenometrically-calibrated
investment accelerator model of Trestzal (1992) and Rickmaet al (1993). We
propose to adapt this specification to work at téeel of individual industries,
focusing on two sets of influences on investment:

Those affecting itdevel—from the macroeconomic literature on capital age

structure and turnover (e.g., Caballabal 1995; Doms and Dunne 1998;

Cooperet al. 1999), and

Those affecting itspatial distributior—from the regional science literature on

the effects of state taxes (e.g., Bartik 1985; Halrh998), location externalities

(e.g., Heackt al 1995)*

The second challenge in characterizing the spatiggoral evolution of economic
activity is to specify the determinants of stateelepopulation and labor supply, which
depends upon both the growth and migration behafitne population. Accordingly,
we propose to model the evolution of the populatiorach state as a function of the
net growth rate of state population&)( and economic immigrationM]) and
emigration ME):

19 These are driven by the industry-state patteinvafstment in each period, which is the
equilibrium outcome of industries that seek to nézé their returns to capital. Due to the
difficulty of computing a solution to the true inteemporal spatial investment allocation
problem, which is highly dimensional, we adoptrager approach.

11 Note that if the technology parameifein the unit cost function (12.5) declines with
increasing output, the simple formulation of investit demand in ed12.19)will lead to
progressive spatial agglomeration.
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N(s t+1)= N(s §(1+ G(s )+ M (s} M(s). (12.20)

Our third major research task is to estimate thmgeon the right-hand side of
(12.20). To keep things simple, we avoid explitiaracterization of the demographic
structure of either state populations or migraritsstead, we propose to model state
population growth using crude birth and death réatestate If andd, respectively),
which are assumed to follow exogenous trends:

G(s=B(s)+ Ds)= p(p¥— )%, (12.21)

Here, the parametets, b;, dy andd; are estimated on time series data from the
National Center for Health Statistics. We alsonpta estimate migration flows
empirically, in the spirit of Greenwooelt al (1991) and Treyzt al (1992). We
specify gross immigration and emigration at thdestavel, as well as population
redistribution within-state migratiorM®), as functions of states’ populations, average
population densitiep(), and their wage and employment rates:

Me(s, )= 42(9p, (s V4 Ns¥? HsY¥ wst, w={,ER} (12.22)

in which p (s,t)= N(s 9/ A 9, whereA is the land area of stas2 and t6-L4 are
parameters estimated on data from the IRS migrataiabase and BEA’'s Regional
Economic Information System (REIS).

In developing equations for both investment andratign it is natural for tensions
to arise between the theoretical correctness ofdidate specifications and the
consistency of the simulated spatial economy’s Wehavith our priors when these
specifications are included in the model. A kewttef the workability of
specifications as we implement them is thereforetihwr the simulated evolution of
the geography of production and population is iasat with historical trends (e.g.,
Kim 1995; Black and Henderson 1999; Holmes andeite\2004) or official forecasts
(e.g., the Census Bureau’s state population piojeet—Campbell 1996).

12.2.3 Disaggregating Economic Activity and Population tothe County Leve

Our next step is to project the spatial patterrindistry output, population and the
demand for transportation at this county scaleis Tha process of down-scaling the
spatio-temporal evolution of the economic and dewmmolyic variables solved for
above from the state level to individual counti&e propose to do this via a simple
two-step procedure.  First, estimating empiricalatienships that govern the
geographic distribution of output, growth of pogida and housing stocks, and land
use change, and then simulating the resultingfdetlmavioral equations as a system to
solve for the equilibrium spatial distribution af@omic activity, population and land
use in future periods.

This procedure is the lynchpin of our framework, iasests fifty county-level
spatial allocation problems within the state-lesphtial allocation problem outlined
above using the solution for the latter problenthesboundary condition for each of
the former ones.
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12.2.4 Spatially Disaggregating Output

Our first challenge is to distribute output by istly down to the level of individual
counties. Employment and compensation are the wafiables for which there is
comprehensive industry-by-industry coverage at Huale. Accordingly, we begin
with labor input. For industry in states, labor demandi() and total employment
(L) in each of that state’s constituent countigs} are given by the analogues of
equations (12.13) and (12.14):

G =258 ) X i €B/ W)j (12.23)
and
Lief9) =2 Ti€p . (12.24)

where § denoteg’s level of activity in countyc. Similarly, the average wage at the
county level (V) is given by the analogue of equation (12.15):

W(dy =2 @ilitl UYs. (12.25)

In the base yeat, is easily calculated from the Census Bureau’s GoBosiness
Patterns (CBP) and the ASPI accounts, enablingnttial conditions for§ andW to
be computed directly from equations (12.23) toZ52. At subsequent time-stepg,
is determined by distributing the equilibrium lewélproduction of industryin states
found by the state model among counties, enabll2g28) to (12.25) to be used to
calculate | and W. Following the Figueired@t al. (2002) empirical model of
manufacturing plant births at the county level,pmepose an apportionment procedure
that utilizes a logistic sharing rule:

(i3, y=yisy é“”‘“/Z giern, (12.26)

o9

which represents industiys propensity to locate its production in a giveouwcty,
depends on several county-level variables: averagmilation density p, ), total

population (N ), the average wage, and lagged output (a proxiotal agglomeration
externalities):

a(j.c{$. ) =o(p( €6 )t N{g9. t Wik €y{hest ). (12.27)

Our fourth major research task is to specify a fiomal form for o and
econometrically estimate (12.26) and (12.27) usiaig from the REIS:

12 Recent studies (Henderson 1996; Becker and Heoml2600; Greenstone 2002) have
identified non-attainment of the NAAQS as a largmiicant influence on industrial location at
the county level. While we do not propose to ineldidis feedback in our simulation, we note
that it can easily be introduced once a baseliogption of the spatial pattern of emissions is
run though an air quality model to give county-lesie pollutant concentrations.
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12.25 Spatially Distributing Population

The second challenge is to distribute migratiomvficcalculated in the state model.
This enables industrial location in future peridd$e simulated by pinning down the
level and density of population that affect thehtiband side of (12.27). Census

Bureau data give an initial condition for populatiat the county level ) in the base

year. We propose to model the evolution dfin a manner analogous to equation
(12.21), where at subsequent time-steps it dep@mdsoth population growth
(determined by the parent state’s birth and deatesrin (12.21), and gross

immigration (M') and emigration §1 ) for that county in the preceding period:

N3 x=NEgls &) { + Gst) )+ M{3s D - R{lesht . (1228

County-level migration must sum to the state-letthl calculated in (12.22),
which is ensured by modeling migration flows acdmgdo the logistic sharing rule:

M(c{$, } =(M{sx+ MY s)t) &> ’/Z g o={1 B,  (12.29)

{3

where the propensity to immigrate or emigratg)(at the county level mimics
equation (12.22):

BOA$ Y =AU EB A {39 (e t(H.9s H{Wks{t{}0cs” . (12.30)
In this expression, the county employment rateévisrgby the analogue of (12.17):

L(c{3) = HEB NPs, (12.31)
py is the population density for a county with land rea

A:py(cf3 Y = NEIs)t (APs,

and O is the occupancy rate of housing units U)X in
c:O(d$ X = NEls)t (f$)s . Ourfifth major research task is to estimate 29
and (12.30) using data from the IRS migration dageband the REIS to recover
values for the parameteys, - [z .

12.2.6 The Spatial Pattern of Housing and Land Use

Our third challenge is to model the process by Wigiowth of population and income
generates demand for both new housing and the rsioneof land from agricultural
to residential, commercial and industrial uses.ec8ping this process enables us to
simulate future population growth by determining ®ffect of U on occupancy in
(12.30). U is given initially by CBP data for the base ye@ver time it responds to
the demand-side forces of population, occupancy iandme (proxied for by the
average wage), and to the supply-side forces dfiaspeonstraints on new builds

(proxied for by the average unit densitg, : 2, (c{$, } = q £)s)t (Ad)s), and
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the availability of land that is “potentially cormtible” to residential use,i\:c, proxied
for by the acreage under agriculture), according finction:

U 1= gk ) ,
+0(2,(d9 D). Ad € B, Wgs B Wiksy (Oewt)

Our sixth major research task is to specify andmege a reduced-form empirical
model foro.

To simulate future values of we need to determing\,. in (12.32), which

requires us to model land use change. We do il by treating each county’s
total land area as comprising areas that are umdsidential, industrial and

commercial uses;QCR), areas that are potentially convertiblé,g) and areas that are

12.32)

“non-convertible” (Aqu e.g. unusable, wilderness or otherwise proteateds, which
we assume to be constant):

AP = AL L) t+ A{ps + s (12.33)
Urban sprawl is the progressive conversion of agfucal land to industrial,

commercial and residential land at the county I¢ivel, growth of A, at the expense

of A..). The initial conditions forA_, and A,. are calculated from CBP and Census

of Agriculture datd® As in (12.32), Ao, responds to the demand-side forces of

population, income and housing unit density, andatailability of potentially-
convertible land on the supply side, according tonationZ:

Ag(d3 Y= AL s B) a
+7(p(d tD), NEs ), Wds 9, (Qksy A)csht)

Our seventh major research task is to specify astimate a reduced-form
empirical model forl. This will enable urban growth management pdtidie be

simulated via mandated reductions A&y that attenuate the growth of.,. The

2.34)

variablesU and O then act as channels through which such policiest deedback
effects on migration and, ultimately, industriatation.

12.2.7 Spatial Equilibrium at the County Leve

Estimation of equations (12.27), (12.30), (12.32)d &12.34) yields numerical
expressions which can be used to simulate the gdemel distribution of economic
activity, population and land use. The variablest tdetermine the levels of these
indicators within each county are for the most padogenous to the sub-state spatial

13 The Census of Agriculture is the only data soweeould find on land use by area at the
county level.

11
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pattern of growth? We must therefore solve the system of equatid®<8) through
(12.34) for the equilibrium allocation of indussiand populatiort.

1 .. N 1 . D
T 1 Y1
i = X G =
I N Yn
1 V,
f = V =
| F Ve
T 1 Zl
T = 7 =
T z,

A Y G, Go

Fig. 12.1 Schematic of the Social Accounting Matrix

12.3 Prdiminary Calibration Efforts

We calibrate the model on a set of social accogntiratrices (SAM) for the U.S.
states. The SAM that we use, shown schematicafigure 12.1, comprises &hx N
matrix X of inter-industry transactions, &~ N matrix V of value-added activities,
anN x D matrix G of final demands, andx N matrix Z of revenue flows due to
tax and subsidy distortions. The indide$ = {1, ..., N} denote the set of industry
sectorsf = {1, ..., F} denotes the set of primary factors (labor andtefjpd = {1, ...,

% |n particular, at each future time-st§pdepends ohW by (12.26), but/ depends on ,
and, ultimately,§ by (12.23)-(12.25), implying tha§ is a function of its own level.

Furthermore,y also depends ofl , which by (12.28)-(12.30) is in turn a functionlmdth its

own level in addition td/V —and thereforey , as well.

151t is a straightforward task to specify and salueh an equilibrium problem in GAMS as a
nonlinear program (NLP) with a dummy objective. Ty potential difficulty may be solution
problems caused by the global properties of thistiogfunctions in egs. (12.26) and (12.29)
(Perroni and Rutherford 1998), but this seems ekylik
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D} denotes the set of final demands (e.g. consumpfiovestment, government, and
net exports), and= {1, ..., T} denotes the set of distortions.

Official data on state-level SAMs are not publishddaditionally, a SAM must be
created for each individual state or region usiegiaonal multiplier techniques.
However, since our goal is to develop a regionahemic model that both explicitly
represents state-level detail on the supply sideisitonsistent with macroeconomic
linkages at the aggregate level, we employ a @iffeapproach to data development.

The procedure that we use starts by creating amatSAM for the U.S. in the
format of figure 12.1, and then disaggregatingnibis state-level SAMs. Each of
these replicates the structure of the nationaétéhke sub-matrice¥, V, G andZ)

through corresponding state-level sub-matriées VS, G° and Z°. We use two
datasets to perform the disaggregation. TheiBrd999 input-output data published
by the Bureau of Economic Analysis (BEA), whichuised to develop a year 2000
national social accounting matrix (SAM) for the U®SThe second is year 2000 data
on gross state product by industry (GSP) and itstiiment components, and annual
state personal income (SPI), also from BEA. Tiuzda are used to derive each state’s
share of national value-added and final use acegrii its fractions of the total across
all states of GSP and SPI, respectively.

The components of GSP that are tabulated in the da labor, property-type
income (i.e., a proxy for capital input) and indiréusiness taxes. Thus, letting the
index comp denote these components and GSPC dieaténdividual contributions
to GSP, we have for state s:

GSR 3= GSPC comp), (12.35)

comp

where comp = {f, 7}. This notation proves useful in formally desénidp our
disaggregation procedure, to which we now turn.

In keeping with our assumption of a Leontief stauetof inter-industry demands,
we assume that the relationship between the intiateeinputs to a given industry
and its value-added is the one given in the nati8Ad, and does not depend on state

location. Therefore, the values of the column eets of the input-output matriX®

at the state level are determined by the GSP ottiheesponding industries, which
implies that the national input-output table candisaggregated according the shares
of each state in each industry column:

Ys(i.J,S)=Y(i.J)%- (12.36)

Although the structure of intermediate demandxsdi the substitutability of labor
for capital implies that the relative intensitiduse of these inputs in a given industry

6 The SAM is constructed from the BEA's 92-sectoraié of Commodities by Industries” and
“Use of Commodities by Industries” tables for 1989ng the industry technology assumption.
Its components of value added are disaggregated dsita on industries' shares of labor,
capital, taxes and subsidies in GDP published b#.BllBe resulting benchmark flow table is
aggregated up to three sectoral groupings (prinmaiystries, manufacturing and services),
scaled to approximate the U.S. economy in the $8@0 using the growth rate of real GDP
from 1999-2000 (3.75 percent), and deflated to 2680 dollars using the GDP deflator from
the NIPAs.

13
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may differ across states, a fact which is bornebguactual data on the components of

GSP. The values of elements ¥ are thus imputed by separately apportioning
among states each individual component of valueddid each industry, according to
the fraction of each state’s contribution to thamponent of GSP in that industry:

GSPQ f j9

Vs(f.j,S):T/(f,j)zGSqu iy

(12.37)

Since taxes and subsidies also differ by stateuseethe same procedure to impute
values for the elements &°:

GSPAr, | 9
Y GsPar, j 9

Z°(1, j,9) =21, ) (12.38)

Finally, we make the simplifying assumption tha¢ gtructure of state-level final
demands reflects the pattern in the national SAM, that the elements & ° depend
not on location but on states’ incomes. We thesefesed the simple procedure of
disaggregating the aggregate final use matrix basextates’ shares of total income:

SPI(9

g°(i,d,s) = 9(i, d)m-

(12.39)

The results of this procedure are shown in figuBe21 which illustrates the
disaggregation of a three-sector U.S. national 3Afd four SAMs that correspond to
the Census regions. It is interesting to note tisatg the assumptions of (12.39), the
row and column totals for each industry do not iedaat the state level, but do at the
national level. Given that the key assumption wf spatial equilibrium framework is
that the law of one price holds for each commodityoss all states, the difference
between the row and column totals in a state’s SAdiicates the magnitude of its net
commodity trade flows. This information, along iinterstate distances and data
from the Department of Transportation’s commodigwf survey, may be used to
develop detailed state-to-state trade matricesclwican be used to elaborate the
simple final demand system in (12.13). (See Apperefjuations A3 and A4.)

With these disaggregate data in hand, it is a Empdtter to calibrate the spatial
equilibrium model. We use the standard CGE cdiiiatechnique of setting all
prices to unity and solving for the values of teehnical coefficients that replicate the
benchmark datasét.The computational model is formulated and solveihai the
MPSGE subsystem (Rutherford, 1995, 1999) for GAM@&merical simulation
language (Brooke et al., 1999), reproducing thecherark equilibrium with a residual
of 10° (i.e., 10,000 dollars}

17 Sue Wing (in preparation) provides the detailsafee the illustrations of CGE calibration in
Mansur and Whalley (1983) and Kehoe (1988). Daw&irsl (2001) provides an
comprehensive comparison of different approaches.

18 The software automatically calibrates the techmioafficients of the excess demand
functions, formulates the general equilibrium pesblas square system of nonlinear equations,
and solves this system as a mixed complementautylgm using the PATH solver (Dirkse and
Ferris, 1995).
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Northeast South
P M S U P M S U
P| 1.09 7.46 4.61 19.14 3230 P| 5.69 14.7¢Q 6.56) 28.24 55.19
M| 6.67 29.00 15.17 43.07 93.83 M| 14.95 47.35 21.92 63.44 147.67
S| 5.28 15.79 64.65| 154.8Q 240.53 S| 1459 26.00 93.03| 228.42 362.05
L| 6.52 21.22 103.19 130.93 L| 13.59 30.42 148.1Y§ 192.15
K| 4.01] 11.36 58.959 7432 K| 10.79 22.24 80.14 113.21
T| 0.09 1.90 6.79 8.79 T| 0.40Q 4.35 10.4§ 15.22
23.66 86.73 253.37 216.93 580.69 60.02 145.07 360.29 320.10 885.49
Midwest West
P M S U P M S U
P| 2.09 8.86 4.11 19.39 3444 P| 3.67 7.93 4.82 19.90 36.33
M| 8.98 47.00 13.65 43.57 113.20 M| 10.73 34.40 16.04 44.71] 105.88
S| 7.28 24.04 58.21| 156.8 246.39 S| 9.48 17.31] 68.20 | 160.9§ 255.94
L| 8.87 33.10 93.65 135.62 L| 10.41 22.11 104.94 137.50
K| 5.8 16.90 49.3§ 7216 K| 7.0 13.47 64.61 85.16
T -0.20 2.12 6.56 8.48 T| 0.3] 1.52 7.04 8.87
32.90 132.03 225.56 219.81 610.30 41.67 96.74 265.69 22556 629.67
U.S. National SAM
P M S U
P 12.53 38.96 20.09 86.68 158.26
M 41.33 157.74 66.78 194.71 460.57
S 36.63 83.15 284.10 701.03 1104.90
L 39.39 106.85 449.97 596.21
K 27.71 63.99 253.1(0 344.85
T 0.64 9.89 30.87 41.36
158.26 460.57 1104.90 982.42 2706.15
Key:
P Primary industries L Labor input
M Manufacturing industries K Capital input
S Service industries T Net tax revenue
U Final uses

Row and column totals in italics
All table entries in $10 billion 2000 U.S.

Fig. 12.2 Year 2000 Aggregate Social Accounting MatricesfcS. Census Regions

12.4  Population Dynamics

Equations of population movement (12.30), which ased to update the state
population from one time step to the next, muses@mated econometrically using
Census data on migration and data on socioeconafméracteristics that are
endogenous to or can be calculated based on \esiabht are endogenous to, the
within period equilibrium model. Equations (40awere estimated for population
movements over the 1995-2000 interval. (All vargstds defined in table 12.1). Since
decisions to move into, out of, or from one locatio another within a particular state
are all governed by the same set of forces, we @mgdemingly unrelated regression

15
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specification for the state-level migration equasiowhich are estimated using three-
stage least squares:

inm=a, + B, popt+ y,unemg- 5, wageg, popded, oecd, unitden (a)
outm=a, + 3, popt y, unempd, wagep, popded, oecl, unitdetb) (12.40)
intm=a;, + B, popt y,unemp o, wagegp, popded, oced, unitden(c)

Table 12.1 List of Variables and Sources

Variable Description UNITs Source
. State in-migration, )
inm 1995-2000 1000 persons Census Bureau data files
State out-migration, )
outm 1995-2000 1000 persons Census Bureau data files
State internal
intm migration, 1995- 1000 persons Census Bureau data files
2000
pop it;ztse population, 1000 persons BEA State Economic Profiles
State average BLS Local Area
unemp unemployment rate, Percent .
1995 Unemployment Statistics
wage Av. wage per job, current dollars BEA State Economic Profiles
onden State population 1000 persons per sa. mi BEA REIS and Census
pop density, 1995 P PErsq. M- Gazetteer data files
: State av. density of ) ) )
unitden housing units, 1995 Units per sg. mi. Census Gazetteer data files
State av. occupancy . BEA REIS and Census
occu rates of housing Persons per unit

units, 1995 Gazetteer data files

The results are shown in table 12.2. Sipopden= occux unitden two variants
of equation (12.28) are estimated, one witipden(specification 1) and the other with
occu and unitden(specification 11). Specifications (lll) and (IMh the table control
for the influence of population size in the depemdeariables, which express the
numbers of in- out- and internal migration for eatéite as fractions of the respective
state populations. We attempt to capture the eaffeftspatial autocorrelation by
including spatial lags of the covariates. For estelte, the spatial lag of a variable is
computed as the average of the values of thathlaraver all contiguous states. In
this calculation AK and WA, and CA and HI are tezhiis contiguous. These results
are shown in table 12.3.

The fit of the regressions is generally good, anginproved by the addition of the
spatial lags of the explanatory variables. The sifea state’s population is the
strongest predictor of all three types of migratianth positive effects on absolute
levels of migration and the rate of internal migmat and negative effects on the rates
of in- and out-migration.

The effect of average population density—or, edeividly, the combination of unit
density and occupancy rates—is negative and stgmifithroughout. While the effects
on in-migration and internal migration are of thepected sign (reflecting the
congestion costs incurred by migrants in obtaimew lodging), the impact on out-
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migration defies simple explanation. One might bmpted to conclude that high
population density may be picking up the influerafeaccess to urban amenities,
whose attractiveness attenuates individuals’ prsiperto move out-of-state, but
specification |l shows that occupancy rates exenuah stronger negative influente.
This result, which means that the rate of out-nigrais declining in the average
number of persons per unit, is suggestive of ge-tijcle” effect, whereby small
households, comprising singles or couples withdiiden, have a higher propensity
to make out-of-state moves. Controlling for spagialocorrelationpopders effect on
out-migration becomes insignificant, but the negatlirect effects of occupancy and
unit density remain. The weaker negative effediagfied population density (and, in
specification Il, unit density) is consistent witie attenuating influence of congestion
costs in neighboring states’ housing markets t@gation there.

We find that unemployment has a negative and sigmif influence on internal
migration, but an insignificant effect on in- orteuigration. It is well known that
unemployment exerts two countervailing influences roigration—on one hand it
reduces households’ labor income, and with it @s®urces necessary to undertake the
pecuniary costs of relocation, while on the othandhit acts as a psychic “push”
factor, simultaneously inhibiting in-migration amaducing residents to emigrate in
search of employment. The results indicate thatfahmer pecuniary effect seems to
be the dominant factor. The spatial lag of unempleyt has positive and significant
effects on both immigration and, to a lesser degeeegration. The former reflects the
influence of relative economic conditions in neighbg states on the propensity of
residents of other states to undertake cross-bondees, while the second indicates a
regional phenomenon, namely economically-inducegration away from groups of
contiguous states which are economically depresdeslestimates of the effect of the
average wage, while generally not significant, temdorroborate this story: they have
a positive and significant impact on the propensdgymove out-of-state, which
presumably involves larger expenditures than imtemigration°

Table12.2 Seemingly Unrelated Regressions for State-LevelQut- and Internal

Migration
0] ()] (1) (V)
inm outm intm inm outm intm inmfrac  outmfrac in@efr inmfrac outmfrac intmfre
pop 0.834 0.806 1.330 0.826 0.803 1.331 -0.166 -0.194 .33® -0.174 -0.197 0.331
(0.055)*** (0.027)*** (0.048)*** (0.053)*** (0.027)*** (0.048)*** (0.055)*** (0.027)*** (0.048)*** (0.053)*** (0.027)*** (0.048
unemp -0.086 0.007 -0.404 -0.128 -0.010 -0.398 -0.086 0D.0 -0.404 -0.128 -0.010 -0.398
(0.198) (0.099) (0.174)** (0.194) (0.098) (0.176)*0.198) (0.099) (0.174)* (0.194) (0.098) (0.176
wage 0.327 1.022 -0.851 0.257 0.994 -0.840 0.327 1.022 0.851 0.257 0.994 -0.840
(0.402) (0.201)***(0.354)** (0.393) (0.198)***(0.355)* (0.402) (0.201)**(0.354)** (0.393) (0.198)***(0.355
popden -0.089 -0.096 -0.135 -0.089 -0.096 -0.135
(0.041)** (0.020)*** (0.036)*** (0.041)** (0.020)*** (0.036)***
occu -0.166 -0.127 -0.123 -0.166 -0.127 -0.123
(0.060)*** (0.030)*** (0.054)** (0.060)*** (0.030)*** (0.054
unitden -0.073 -0.090 -0.137 -0.073 -0.090 -0.137
(0.041)*  (0.020)*** (0.037)*** (0.041)*  (0.020)*** (0.037

19 However, the effect of occupancy rates on out-atign is weaker than on both in-migration
and internal migration, and the effect of unit dgnsn out-migration understates that on
internal migration, as one might expect based tuiition.

20 Absent controls for spatial autocorrelation, walgeee a counterintuitively strong negative
impact on internal migration, but this effect digaeprs with the inclusion of the spatial lag.
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Constant1.937  -4.146  -1.761  -1.491  -3.968  -1.827  -1.937 .148  -1.761  -1.491  -3.968  -1.827

(1.297)  (0.647)**(1.140)  (1.287)  (0.649)*+(1.163)  (1.297)  (0.647)*%1.140)  (1.287)  (0.649)*(1.163
Obs. 50 50 50 5 5 5 50 0 50 50
R-sq.  0.87 0.97 0.95 0.88 0.97 0.95 0.40 0.73 0.53 0.43 0.74 0.54

All variables in logarithms. Standard errors ingretheses, * significant at 10%; ** significant &b5**
significant at 1%

[This table will be re-oriented to fit on the page]

Table12.3  SUR Results for State-Level In-, Out- and InteMaration: Effect of Spatial

Lags
0} ) (i v
Inm outm intm inm outm intm inmfrac  outmfrac imamnf inmfrac  outmfrac intr
pop 0.779 0.773 1.309 0.779 0.780 1.288 -0.221 -0.227 .309D -0.221 -0.220 0.2
(0.068)*** (0.031)*** (0.061)*** (0.067)*** (0.032)*** (0.060)*** (0.068)*** (0.031)*** (0.061)*** (0.067)*** (0.032)*** (0.
unemp -0.296 -0.104 -0.300 -0.321 -0.111 -0.293 -0.296 .100 -0.300 -0.321 -0.111 04
(0.211) (0.097) (0.187) (0.209) (0.100) (0.185) .2(a) (0.097) (0.187) (0.209) (0.100) (0.:
wage 0.501 1.100 -0.644 0.455 1.064 -0.585 0.501 1.100 0.644 0.455 1.064 0:!
(0.441) (0.204)***(0.393) (0.437) (0.209)**%0.387) (0.441) (0.204)***%0.393) (0.437) (0.209)**%0..
popden -0.012 -0.039 -0.136 -0.012 -0.039 -0.136
(0.059) (0.027) (0.053)*** (0.059) (0.027) (0.053)***
occu -0.115 -0.089 -0.111 -0.115 -0.089 O0.:-
(0.064)*  (0.031)***(0.057)* (0.064)*  (0.031)***(0.(
unitden -0.029 -0.058 -0.105 -0.029 -0.058 0.:-
(0.054) (0.026)** (0.048)** (0.054) (0.026)* (0.
lag(pop) -0.017 0.015 -0.166 -0.028 -0.003 -0.104 -0.017 18.0 -0.166 -0.028 -0.003 0+
(0.093) (0.043) (0.083)** (0.102) (0.049) (0.090) (0.093) (0.043) (0.083)** (0.102) (0.049) (O.(
lag(unemp 0.982 0.491 -0.085 0.943 0.541 -0.271 0.982 0.491 0.085 0.943 0.541 0-:
(0.390)** (0.180)*** (0.347) (0.395)** (0.188)***(0.349) (0.390)** (0.180)***(0.347) (0.395)** (0.188)***(0..
lag(wage -0.454 0.047 -0.916 -0.879 -0.369 -0.386 -0.454 .040 -0.916 -0.879 -0.369 0+
(0.790) (0.365) (0.703) (0.738) (0.352) (0.652) .76m) (0.365) (0.703) (0.738) (0.352) (0.t
lag(popden -0.125 -0.118 0.126 -0.125 -0.118 0.126
(0.085) (0.039)***(0.075)* (0.085) (0.039)***0.075)*
lag(occy -0.532 -0.120 -0.599 -0.532 -0.120 0.!-
(0.676) (0.322) (0.598) (0.676) (0.322) (0.!
lag(unitden -0.036 -0.048 0.038 -0.036 -0.048 0.0
(0.051) (0.024)** (0.045) (0.051) (0.024)*(0.(
Constant  -1.819 -5.169 2.342 0.408 -3.496 0.614 814. -5.169 2.342 0.408 -3.496 0.6
(2.495) (1.153)***(2.222) (2.191) (1.045)**%1.937) (2.495) (1.153)**%2.222) (2.191) (1.045)*(1.¢
Obs. 50 50 50 50 50 50 50 50 50 50 50 50
R-sQ. 0.89 0.98 0.96 0.89 0.98 0.96 0.51 0.81 0.61 0.51 0.80 0.6

All variables in logarithms. Standard errors ingretheses, * significant at 10%; ** significant &b5***
significant at 1%

[This table will be re-oriented to fit on the page]

125 Concluding Remarks

The signal benefit of this research is the creatioa simple, transparent, theoretically
and methodologically rigorous simulation model tissguitable for a potentially broad
range of applications. Our approach has a numberdwantages in this regard,
including the following. First, the Hicks-neutishiift parametery may be specified to

decline from its calibrated value in the base gkooe period to the next according to
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projections of productivity growth by industry, fiating inquiry into the effect of
technological progress within industries on thetiapgatterns of economic growth.
Secondly, because the distribution of industryriaes in different states affects the
spatial pattern of production, the modeler, by da r, as a policy variable, can
explore the impact of future state tax policy scesaon output and employment.
Thirdly, since the consumption of land in the deratof new housing is explicitly
modeled, it will be possible to simulate the effetpolicies such as limitations on the
conversion of non-urban land on county level popota growth and economic
growth.

The modeling framework is particularly beneficial fconducting environmental
analysis for a number of reasons. Because ofdlatively detailed distributions of
economic activities it will be possible to apply isgmons factors to generate spatial
patterns of criteria pollutant emissions. Thislwé useful in identifying areas of high
exposures and as input to atmospheric models foveoand acid deposition. Further,
the model may be extended to produce estimatesmmgortation activity levels and
emissions from mobile sources, as described igpendix. In addition, the model,
by explicitly representing industries’ use of imediate inputs, sheds light on the
potential for macro-level climate change policyaftect both regional growth and the
spatial distribution of secondary air pollution bkéts from reduced combustion
activity. A carbon tax ) can be simply represented as the additional tegg{jc) in
the unit cost function of the model’s fossil fuet®rs (jc) differentiated according to
the average carbon emission coefficieat$ on these sectors’ outputs. Moreover, the
income effects of this tax are easily representgdnbluding the revenue that it
generates X, 7.&:.(jc)Y(jc)) as an additional term in equation (12.11). This

feedback facilitates investigation of the spatiapacts of double dividend policies use
the revenue fronxk to lower r.
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Appendix: Estimating Transportation Activity Levels and Mobile
Source Emissions

Personal Transportation Emissions

We focus on road transportation, and propose atiaak empirical approach that
relates vehicle emissions to VMT and driving bebgvboth of which are influenced
by congestion. Using cross-section data from theéoNal Household Transportation
Survey (NHTS), we first estimate a trip generatioodel of average annual VMT ()

as a function of income and size of urban area, thed employ the ordered logit
model of Aygemang-Duah et al (1995) to apportibnamong a number of average
speed categorie# according to geographic attributes. In cougtyhe probability of
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being in speed clas®thus depends on a functierof income, population density and
size of urban area (both of which proxy for conigegt

A9.o(9) =/ rexp[ (A (AP, Nids WHs)-4, ), (A1)

wherel is an estimated vector of probability cutoffs. The resudt vector of county-
level speed distributions projected at each time-step asciid of the variables
solved for at the county level, which serve as a pfoxylriving cycle characteristics
that affect emissions per mile. This allows us to usedisteibution of emissions per
VMT in each velocity category from the emission faciarthe MOBILE6 model 4y)
to estimate mobile emission§() by pollutant, speed class and county:

& (28, ¢35 )t= Nicts) (E$ @I{}o)s &4, )2 . (A2)

Interstate Freight Transportation Emissions

An important advantage of the proposed simulati@mgwork is that the model's
demand structure facilitates investigation of timpact of regional growth on interstate
freight transportation and associated air pollutarissions. The state-level
counterpart of equation (12.8) gives the demanckdnh stateyp) for subset of
commodities that are transportéd~*

Yolir 5.0=Y X(i, DY(i.s.0+@()(V(s )+ TAXREV N s)/ Bi)  (A3)

This expression allows us to use a production-camstd gravity model to
approximate inter-state flows of goofif'om production in state to uses in state
along transportation modg

f(ie,51,0,) = V(i SO (F ,r,t)A(s,r,qf“’“-‘*’/Z( ¥ (TR 6.ra) ). (A4)

Here, A is the distance frons to r, calculated from the BTS North American
Transportation Atlas Database, amds a measure of the friction of distance, which
our tenth research task is to estimate using @esSenal data from the 1997
Commodity Flow Survey. We propose to assign themaged proportions of freight
flows by mode to the appropriate transportatiomvoek based on shortest path routes,
and to focus once again on road transport emissvanish can be easily estimated by
multiplying the number of truck miles assigned tcke highway link by average
highway emissions factors from MOBILES.

2 Here we assume a simple lump-sum recycling raedivides aggregate tax revenue equally
among members of the population. More realistic@pgions can be made, although at the cost
of increasing the model's complexity.

22 Additional off-interstate emissions are likelytte significant due to local congestion at origin
and designation counties. To estimate them itées®ary to account for demand by county as a
proportion of each interstate flow.



