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1. Introduction 
 

In the few simulation models that explicitly capture innovation’s influence on the 

macroeconomic impacts of climate change mitigation policies, research and development (R&D) 

either augments the factors of production or reduces the cost of abating emissions of greenhouse 

gases (GHGs).1 By contrast, the modeling literature has paid scant attention to the important role 

that R&D is already playing in key industrializing countries such as China, where firms are 

making R&D investments not only to improve their productivity, but also to enhance the quality 

and variety of their products. In this paper we argue that quality-enhancing innovation can have 

profound effects on energy use and GHG emissions in developing countries. 

The conventional wisdom is that the diffusion of advanced technologies from developed 

countries to developing countries will raise the latter’s efficiency, reducing their intensity of 

energy use and GHG emissions.2 But while this outcome may well come to pass, it is also likely 

that increased efficiency will induce an acceleration in the growth of output which increases 

energy use and emissions in absolute terms (see, e.g., Fisher-Vanden, 2003). Although 

productivity improvements are an important target of R&D in most developing countries, an 

increasing share of innovatory activity is being devoted to enhancing product quality and variety. 

This trend is important because such improvements can affect energy use and emissions by 

shifting the composition of output and the distribution of value-added among industries, i.e., 

structural change. Those sectors which experience more rapid improvements in product quality 

and variety will likely grow faster relative than their less technologically dynamic counterparts, 

changing the composition of aggregate output. Depending on the energy-using characteristics of 

                                                           
1 For a review, see Sue Wing (2006). 
2 For an optimistic view, see Grubb, Hope and Fouquet (2002). 
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these leading industries, the energy and emissions intensities of the aggregate economy may rise 

or fall. 

The accumulation of technological capabilities has two main benefits in developing 

countries: a reduction in the marginal cost of production—which can be thought of as “process 

innovation”—and an expansion in the range of commodities to higher-value goods—which can 

be thought of as “product innovation”. The key implication, which we examine here, is that in 

order to project the future trajectory of GHG emissions from industrializing countries, it is 

necessary to capture the influence of both kinds of innovation on GDP growth and the aggregate 

demand for fossil fuels. 

We first develop a simple analytical model which illustrates that efficiency-improving 

and quality-enhancing R&D have opposing influences on energy- and emission intensities, with 

efficiency-improving R&D having an attenuating effect and quality-enhancing R&D having an 

amplifying effect. We show that the relative magnitude of these forces depends on three factors: 

(i) The elasticity of output with respect to efficiency-improving R&D, in industries whose 

products are consumed by other, “downstream,” sectors;  

(ii)  The elasticity of output with respect to quality-enhancing R&D occurring upstream, in 

the industries which primarily consume the outputs of the “upstream” sectors in (i); and 

(iii)  The relative shares of emissions-intensive inputs in the costs of production of upstream 

versus downstream industries. 

These results are subsequently incorporated into a CGE model of the Chinese economy 

which is calibrated using econometric estimates of the influence of R&D on the cost of 

manufacturing industries in China. We show that failure to account for the interindustry 

transmission of quality changes (effect (ii), above) leads to a startlingly counterintutive result: an 
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exogenous increase in the R&D-GDP ratio precipitates reductions in both real GDP and carbon 

dioxide (CO2) emissions! The root of the problem is that interindustry demands are not 

denominated in quality-adjusted units, consequently the model does not differentiate between the 

opposing effects of efficiency improvements and quality enhancements on the general 

equilibrium commodity price vector.  We offer a method for correcting this problem within the 

algebraic framework of a CGE model. With this adjustment, a rise in the intensity of R&D 

induces acceleration in the growth of real GDP, as well as structural changes which lead to a rise 

in the intensity of energy use and CO2 emissions per unit output. This result suggests that for 

China, the amplifying effect of quality-enhancing R&D on energy-intensity will outweigh the 

attenuating effect of efficiency-improving R&D, leading to higher aggregate emissions. 

The paper is organized as follows. Section 2 develops an analytical model of the impact 

of efficiency-improving and quality-enhancing R&D on structural change and energy intensity. 

Section 3 summarizes results of our modeling exercise, and develops a method for incorporating 

the effects of quality-enhancing R&D into CGE simulations. Section 4 provides a summary and 

concluding remarks. 

 

2. A simple analytical model 
 

Our first task is to develop an analytical framework to assess the implications of quality- 

and efficiency-enhancing R&D for a country’s energy and carbon intensities. We take a 

deliberately simple approach. We construct a theoretical model in which there are two industries, 

one upstream (U) and the other downstream (D), where the latter uses the output of the former as 

an input to production. The solution gives the elasticities with respect to each type of R&D of the 
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price and quantity of upstream output, the upstream demand for variable inputs, and the quantity 

of downstream output. 

To keep the model simple, we assume that each industry manufactures a homogenous 

good using Cobb-Douglas production technology. Output of the upstream industry, qU, is 

produced from a variable input, v (which we assume represents fossil fuels), and a generic input, 

x, while output of the downstream industry, qD, is produced using inputs qU, v, and the generic 

input, x. We use pU and pD to denote the prices of the upstream and downstream commodities, w 

to denote price of the variable input, and α and γ to denote the cost shares of v in upstream and 

downstream production, and β  to denote the cost share of qU in downstream production. We 

further assume that in each industry x is in perfectly inelastic supply, and normalize its price to 

one. Doing so guarantees upward sloping supply schedules, and makes the variable x a proxy for 

each industry’s “capacity”, which enables us to work directly with their profit functions to 

compute the output levels and unconditional input demands.  

We assume that industries engage in two types of R&D: efficiency-improving and 

quality-enhancing research, which we denote ER  and QR . The first of these corresponds to the 

way in which research is traditionally modeled—R&D increases the productivity (or, 

symmetrically, reduces the cost of output) in the industry where it is performed. We assume that 

both industries conduct efficiency-improving R&D, and therefore specify augmentation 

functions ( )E
URΕ  and ( )E

DRΩ  which act as neutral shift factors in the production functions for U 

and D. 

Research which enhances the quality of output acts in a more subtle way. It does not 

directly influence the production process in the sector where the R&D is performed, but rather 

increases the productivity of downstream industries that use the sector’s output commodity as an 
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input to production. Our key simplification is to assume that quality-enhancing R&D is 

conducted only in the upstream sector. Its effect is to reduce the component of D’s cost 

associated with the use of the upstream good and, in so doing, shifts the demand curve for qU. 

We therefore specify the function ( )Q
URΘ  as an augmentation factor which is appended to the 

input of qU to the production of D:3 

(1) 1( )E
U U U Uq R v xα α−= Ε  

(2) ( ) 1( ) ( )E Q
D D U U D Dq R R q v x

β γ β γ− −= Ω Θ  

The key implication is that the industries’ profits, πU and πD, are interdependent. Thus, in 

order to understand the impact of quality-enhancing R&D we must analyze both industries’ 

profit maximization problems jointly. The profit functions are: 

{ }
, ,

arg max
QE

U U U

E Q
U U U U U U U

v R R

p q wv x R Rπ = − − − −  s.t. (1), xU given, 

{ }
, ,

arg max
E

U D D

E
D D D U U D D D

q v R

p q p q wv x Rπ = − − − −  s.t. (2), xD given. 

To facilitate exposition, we parameterize the effects of R&D on productivity using simple iso-

elastic functions: ( )E
UR εΕ = , ( )Q

UR θΘ =  and ( )E
DR ωΩ = , where ε, θ and ω are positive 

parameters (ε, θ, ω ∈ (0, 1)). 

To calibrate the reader’s expectations, firm-level empirical estimates of the productivity 

elasticities of private R&D lie in the range 0-0.6, with the majority of estimates being below 0.3 

                                                           
3 Two points are worth highlighting here. First, quality improvements primarily affect energy use through changes in 
the structure of economic activity, which suggests that it suffices to examine the neutral effect of R&D. We 
therefore do not consider the effect of input biased technical change. Second, upstream and downstream R&D are 
treated in an asymmetric fashion, with both product and technological “spillovers” (in the form of quality 
enhancements to interindustry commodity streams) flowing unidirectionally from U to D. We choose this analytical 
setup for the sake of transparency and tractability rather than realism. Indeed, we note that in the simulation in the 
following section, every sector is potentially both a downstream and an upstream industry, simultaneously engaging 
in quality-enhancing R&D that reduces production costs in the “downstream” industries which purchase its product, 
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(see Congressional Budget Office, 2005, and references therein). As well, inputs of fossil fuels 

rarely make up more than one third of the total cost of production in energy-supply or energy-

intensive industries, so in the analysis below, intensive use of v corresponds to a value of no 

more than 0.3 for α or γ. In particular, to facilitate interpretation of the results, we impose the 

relatively mild restriction that 1 – 
β

 – γ > ω. 

We first consider the downstream industry, where we assume that the inputs for the 

variable factor and the upstream commodity, as well as the investment in efficiency-improving 

R&D are all chosen optimally. The resulting first-order conditions are: 

 ( ) 1 1( ) ( ) 0E QD
D D U U D D

D

p R q R v x w
v

β γ β γπ γ − − −∂ = Ω Θ − =
∂

, 

 1 1( ) ( ) 0E QD
D D U U D D U

U

p R q R v x p
q

β β γ β γπ β − − −∂ = Ω Θ − =
∂

, 

 ( ) 1( ) ( ) 1 0E QD
D D U U D DE

D

p R q R v x
R

β γ β γπ − −∂ ′= Ω Θ − =
∂

. 

The solution to this system of equations consists of D’s conditional demand for the variable 

input, inverse demand for the upstream commodity, and optimal investment in efficiency-

improving research: 

(3) 
1 1 1

1 1 1 1 1 1 1( )Q
D D U D Uv w p q x R

γ ω ω β β γ βθ
γ ω γ ω γ ω γ ω γ ω γ ω γ ωγ ω

− − −−
− − − − − − − − − − − − − −= , 

(4) 
1 1 1

1 1 1 1 1 1 1( )Q
U D U D Up w p q x R

γ ω γ β γ ω β γ βθ
γ ω γ ω γ ω γ ω γ ω γ ω γ ωβγ ω

− − − − − −−
− − − − − − − − − − − − − −= , 

(5) 
1 1 1

1 1 1 1 1 1 1( )E Q
D D U D UR w p q x R

γ γ γ β β γ βθ
γ ω γ ω γ ω γ ω γ ω γ ω γ ωγ ω

− − − −
− − − − − − − − − − − − − −= . 

                                                                                                                                                                                           
while benefiting from the availability of higher quality intermediate inputs sold to it by “upstream” sectors pursuing 
improvements in product quality. 
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We draw particular attention to the fact that sgn[ / ] sgn[ /(1 )]Q
U Up R βθ γ ω∂ ∂ = − −  > 0, 

which implies that quality-enhancing R&D has the effect of increasing the market price of the 

upstream commodity.4 As we shall see, this result figures prominently in the empirical and 

modeling results of the subsequent section. Blindly incorporating this effect into a CGE 

simulation leads to R&D having a counterintuitive adverse impact on economic growth. Such an 

outcome would only obtain in the real world if the units of qU remained unchanged—that is, if 

the upstream good was of similar quality. But quality improvements have the effect of increasing 

the quantity of output in “efficiency” units, which is captured by the increased productivity of 

downstream production due to augmentation of qU. 

We now turn to the upstream industry. As with the downstream industry the system of 

equations made up of the first-order conditions for the variable input and the levels of efficiency-

improving and quality-enhancing R&D may be jointly solved for the optimal values of vU, E
UR  

and Q
UR . Doing so makes it possible to express E

UR , Q
UR , E

DR , pU, qU, qD, vU and vD as functions 

of the elasticity parameters, the prices of the variable input and D’s output, and the levels of the 

quasi-fixed inputs. Our objective here is different, however: we seek to understand the impact of 

upstream research on structural change which requires us to elaborate the influence of E
UR  and 

Q
UR  on the other variables. Accordingly, we assume that U only optimizes its use of the variable 

factor, and treat the two types of upstream R&D parametrically. 

The first-order condition with respect to the upstream use of the variable input is: 

                                                           
4 Also, sgn[ / ] sgn[ /(1 )]E Q

D U
R R βθ γ ω∂ ∂ = − −  > 0, which suggests that if the quantity of efficiency-improving R&D 

in the downstream industry is chosen optimally, a larger quantity of quality-enhancing R&D in upstream sectors 
would tend to induce more downstream innovatory effort. We thank a referee for raising this interesting possibility. 
Nevertheless, we are quick to emphasize that it has little bearing on our subsequent simulation exercises, as R&D is 
treated as an exogenous forcing variable within our CGE model. 
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 1 1 ( ) 0EU
U U U U

U

p v x R w
v

α απ α − −∂ = Ε − =
∂

, 

which yields U’s optimal conditional demand for the variable input: 

(6) 
1 1 1

1 1 1 1( )E
U U U Uv p w R x

ε
α α α αα

−
− − − −= . 

We then use this expression to substitute for vU in (1) to derive the supply function for the 

upstream commodity  

(7) (1 ) / /( / )( / ) ( )E
U U U Up w q x Rα α ε αα − −= . 

By combining eqs. (4) and (7) we can derive the equilibrium quantity of the upstream 

commodity in terms of exogenous variables: 

(8) 
1/( 1) (1 )

1 ( ) ( )E Q
U D U Uq p w R R

ξα α ω ε γ ε αβθκ − − − =   , 

where ξ = 1 – α 
β

 – γ – ω, and κ1 is a constant. 

Along with (4), this result allows us to eliminate qU in eqs. (3)-(6): 

(9) 
1/1

2 ( ) ( )E Q
D Dv p w R R

ξω βε βθκ − =   . 

(10) 
1/(1 ) 1 (1 ) (1 )

3 ( ) ( )E Q
U D U Up w p R R

ξα β ω γ α ε β γ ω α βθκ − − − − − − − − − =   . 

(11) 
1/( )

4 ( ) ( )E E Q
D D U UR w p R R

ξαβ γ βε βθκ − + =   . 

(12) 
1/1

5 ( ) ( )E Q
U D U Uv p w R R

ξω βε βθκ − =   . 

Finally, by substituting (8), (9) and (11) into eq. (2) we obtain the effects on the quantity of 

downstream output: 

(13) 
1/( )

6 ( ) ( )E Q
D D U Uq w p R R

ξαβ γ αβ γ ω βε βθκ − + + + =   . 

The terms κ1-κ6 in these expressions are all complicated constants in α, 
β

, γ, ε, xD, and xU. 
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Our main findings are summarized in panels A.I and B.I of Table 1. The signs of the 

elasticities tabulated therein hinge on the sign of ξ, which is positive given the restrictions on the 

parameters discussed above.5 We therefore look to the numerators of these expressions to 

determine the direction of the relevant impacts. 

Our focus is on the implications of the two kinds of R&D for upstream production costs, 

structural change and aggregate energy intensity. We first examine the sensitivity of the price 

and quantity of upstream output and the quantity of downstream output to efficiency-improving 

and quality-enhancing R&D. Subject to our restrictions on the variable input’s cost shares, RE 

will tend to raise the quantity and lower the price of U’s output, whereas RQ will tend to 

simultaneously increase both the price and quantity. Additionally, efficiency-improving and 

quality-enhancing R&D both exert positive influences on the upstream demand for v. 

Figure 1 shows the simple intuition behind these results. Eq. (4) is indicated by the 

demand curve, D, while eq. (7) is given by the supply curve, S. Assuming that the sectors are at 

an initial equilibrium O in which the price and quantity of the upstream good are *
Up  and *

Uq  

respectively, RE has the effect of shifting the supply curve downward to S′, resulting in a new 

equilibrium A where qU expands and pU declines, while the effect of RQ is to shift the demand 

curve outward to D′, resulting in a new equilibrium B in which both pU and qU increase. In the 

realistic case where the upstream industry pursues both lines of research simultaneously, we get 

an equilibrium such as C where the level of output is unambiguously higher, but the price may 

increase or decrease relative to *
Up  within the bounds [ , ]U Up p . 

Both types of research have a positive impact on the downstream industry’s output, but 

their effects operate through distinct channels. The spillover effects of quality-enhancing R&D 

                                                           
5 For fossil fuel input shares in the range of observations (α ≈ 0.3), even if β  = γ = 0.1, for ξ to approach zero ω 
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give rise to neutral productivity improvement which raises the level of output, while R&D which 

makes upstream production more efficient reduces marginal cost, lowering pU and with it the 

cost of production downstream, enabling D to expand. Since neither kind of R&D has a direct 

influence on D’s use of the variable input, the unconditional demand for v simply increases as a 

consequence of the expansion of the sector. 

Our findings thus far have important implications for structural change and aggregate 

fossil-fuel use. Given that each sector exhibits its own response to each kind of innovation, a key 

question is whether R&D causes upstream sectors to expand relative to those downstream, or 

vice versa. To investigate this, we calculate the ratio of the outputs of the upstream and 

downstream industry, dividing (8) by (13) to obtain our measure of structural change: 

(14) 
1/(1 ) (1 ) (1 ) (1 )

7/ ( ) ( )E Q
U D D U Uq q w p R R

ξγ α β ω α β γ ω ε β γ ω α βθκ − − − − − − − − − − − =   . 

In addition, the fossil-fuel intensity of production in each sector indicated by the conditional 

demand for the variable input: 

(15) 
1/(1 )(1 ) 1 (1 ) (1 )

8/ ( ) ( )E Q
U U D U Uv q w p R R

ξα ω α ε β γ ω βθ ακ − − − − − − − − − =    

and 

/ /D D Dv q p wγ= . 

As before, κ7 and κ8 are constants in α, 
β

, γ, ε, xD, and xU. 

These results are summarized in panels A.II and B.II of Table 1. The impacts of R&D on 

structural change are both intuitive and consistent with expectations. Because it increases 

productivity in the upstream sector, efficiency-improving R&D will tend to favor the expansion 

of U relative to D. Conversely, the fact that investments in quality-enhancing R&D upstream 

redound to the downstream sector implies that this type of innovation favors the expansion of D 

                                                                                                                                                                                           
would have to exceed 0.7, which is implausibly large. 
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relative to U.  Depending upon which effect dominates and which industry (upstream or 

downstream) is the more energy intensive, aggregate energy intensity can be higher or lower. 

Regarding the latter, efficiency-improving R&D in the upstream sector will tend to lower 

energy intensity while quality-enhancing R&D has the opposite effect. This result is a 

consequence of the fact that the first kind of innovation saves on U’s inputs, while the second 

induces an outward shift in the demand curve for its product. Neither type of R&D has any 

impact on the intensity of fossil-fuel use in the downstream sector, which is consistent with the 

fact each kind of R&D has the same effect on D’s variable input demand as it does on output. 

Whether the attenuating impact of efficiency-improving R&D on energy intensity is 

outweighed by the amplifying effects of quality-enhancing R&D depends on the relative energy 

intensities of the upstream and downstream industries, the elasticities of output with respect to 

the two types of R&D, and the share of U’s output in D’s production.  Specifically, for given 

coefficients on energy use in each industry (fixed α and γ), the smaller the elasticity of upstream 

productivity with respect to RE (ε), the larger the elasticity of output with respect to RQ (θ), or the 

larger the share of U’s output in D’s production (β ), the greater the positive effect of quality-

enhancing R&D. In the following section we investigate the implications of these factors for a 

developing country using the results from an exercise that incorporates econometric estimates of 

the impacts of R&D into a CGE model for China. 

3. Modeling efficiency vs. quality-enhancing R&D: a  numerical 
general equilibrium analysis for China 
 

The key structural difference between our analytical model and the standard 

representation of innovation in both econometric and simulation models is that the latter almost 
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always resolve only a single stock of R&D capital.6  It is customary for this stock to be modeled 

as the accumulation of past investments in research by a particular firm or sector, which in a 

given period constitutes an intangible input to production that has an efficiency-improving effect. 

These modeling choices tend to be driven by data availability and analytical convenience. 

Data on R&D spending almost never separates investments in efficiency improvement from 

those intended to improve product quality, consequently we typically observe only the sum of RE 

and RQ. As well, the data used to estimate econometric factor demand models typically represent 

intermediate inputs only as broad composite goods like “energy” and “materials”, making it 

virtually impossible to resolve the impact of upstream product quality enhancements on 

producers’ purchases of individual intermediate commodities. 

The upshot is that standard econometric approaches are not capable of distinguishing the 

effects of the two kinds of R&D. Because a single R&D stock is assumed to drive both 

efficiency-improving and quality-enhancing innovation, econometric estimates for a given 

producer will indicate only the combined effect of RE and RQ. Moreover, such estimates will only 

reflect the impact of R&D on the price and quantity of output of the firm or sector in which the 

relevant research is actually undertaken. The aggregate character of the data on intermediate 

purchases makes it impossible to identify the shift in the downstream demand for the output of a 

particular producer’s investment in quality-enhancing R&D. The problem is that for an 

equilibrium such as C in Figure 1, econometric estimates of the effect of R&D on the cost of 

production will reflect the impact of RQ on the price of the innovating industry’s output but will 

fail to capture the impact on the quantity of output. 

                                                           
6 A prominent exception is Popp’s (2006) ENTICE-BR model which incorporates two stocks of R&D capital, one 
which saves conventional energy that produces CO2 emissions and the other which increases the productivity of a 
carbon-free backstop energy supply technology. However, this simulation does not represent the inter-industry 
structure necessary to distinguish between efficiency improvements and quality enhancements. 
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We go on to show that when estimates of this kind are naively incorporated into a CGE 

model’s system of inter-industry commodity demands, where every sector is both an upstream 

and a downstream producer, it is possible to generate results which are completely fallacious. 

 

3.1. Modeling technology development 

Fisher-Vanden and Ho (2006)—hereafter, FVH—have developed an econometrically 

calibrated CGE model of the Chinese economy, which incorporates the effects of innovation on 

neutral and factor-biased productivity in the industrial sectors. The lynchpin of their approach is 

a vector of industry-specific stocks of R&D capital, each element of which represents the 

accumulation of past deliberate investments in new technology development by a given 

manufacturing industry. 

We focus on the representation of innovation within the model and abstract from its other 

structural details, which is described in Fisher-Vanden and Ho (2006). The model resolves 33 

sectors, which include agriculture, 22 manufacturing industries, construction, transportation, and 

7 service sectors.  Each industry, which we indicate using the index j, produces a unique 

homogeneous commodity, which we indicate using the index i. In each period of time, t, the 

production of output (QOj,t) requires five types of inputs, capital (K), labor (L), land (T), energy 

(E) and materials (M), which are denoted by the index z = {K, L, T, E, M}. Production takes 

place according to a hierarchical Cobb-Douglas production function, whose associated dual cost 

function is expressed as a vector of zero profit conditions which equate industries’ output prices 

(POj,t) with their unit costs under the assumption of constant returns to scale (CRTS) and perfect 

competition: 

(16) , , , , , ,ln ln lnj t j t z j t z j t
z

PO G a P= +∑ . 
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In this expression, the variable P is a vector of the prices of the inputs to j at time t; a is a vector 

of parameters which denote the (time varying) shares of the various inputs in the cost of 

production ( 1zz
a =∑ ), and G is an industry-specific Hicks-neutral productivity term. 

In eq. (16), the composite price indexes of intermediate inputs of energy and materials 

(PE,j and PM,j) are the outputs of Cobb-Douglas unit cost sub-functions denominated over the 

vectors of output prices of energy-producing sectors (e) and materials-producing sectors (m): 

(17a) , , , , ,ln ln[(1 ) ]E j t i j i j i t
i e

P POη τ
∈

= +∑ , 

(17b) , , , , ,ln ln[(1 ) ]M j t i j i j i t
i m

P POµ τ
∈

= +∑ . 

The parameters τ
i,j indicate ad-valorem taxes on intermediate inputs, while the technical 

coefficients η and �  represent the fixed input shares in industry j’s E and M sub-cost functions, 

which also exhibit CRTS ( , , 1i j i ji e i m
η µ

∈ ∈
= =∑ ∑ ). Thus, each sector in the model is both an 

upstream and a downstream industry, using the outputs of the i upstream industries at prices POi 

(plus input taxes) to produce a commodity with unit cost POj, which is in turn employed as an 

input to downstream sectors. 

Autonomous and deliberate technological development affect production in the 

manufacturing sectors of the economy. Innovation is assumed to alter both the rate of technical 

change, given here by G, and the bias of technical progress—which is equivalent to the rate of 

change in the a parameters with prices held constant (Binswanger and Ruttan, 1978). FVH define 

indices of economy-wide autonomous technology development (represented as a time trend), ht, 

and industry-specific deliberate innovation, Rj,t. Neutral multifactor productivity is given by: 

(18) lnGj,t(ht,Rj,t) = gA,j ht+ gR,j lnRj,t, j ∈ manufacturing 

while biased technical progress is given by the definition of the input share parameters: 
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(19) az,j,t(ht,Rj,t) = az,j,0 + bA,z,j ht + bR,z,j lnRj,t, j ∈ manufacturing 

The coefficients bA, bR, gA and gR are econometrically-estimated parameters. The parameters, bA 

and bR capture the effects of autonomous and deliberate technology development on the cost 

shares of each input, while the parameters, gA and gR, indicate the effects of autonomous and 

deliberate technology development on neutral productivity. 

This specification enables the implications for the energy- and carbon-intensities of 

China’s industries of an increase in R&D activities to be simulated in the following way. 

Deliberate technology development in each industry is modeled as the growth rate of the stock of 

R&D, measured as cumulative R&D expenditures. For simplicity, autonomous technology 

development is modeled using a time trend. To implement eqs. (18) and (19), the model uses 

econometric estimates for the parameters bA, bR, gA and gR. These estimates are based on the 

work of Fisher-Vanden and Jefferson (2006), who measure the factor bias of autonomous and 

deliberate technology development activities by estimating a translog cost function along with its 

corresponding cost share equations on a data set of 1500 industrial enterprises in China over the 

years 1995-2001. 

These estimates are summarized in Table 2. Panel A illustrates that autonomous 

technology development has only a small impact on the bias of technical change. Its influence on 

the bias of factor hiring is for the most part not significant, and even where it is (e.g., in the 

paper, textile or chemical industries) the effect on cost shares is much smaller than that on 

neutral productivity, and without any discernable trend. On the other hand, autonomous 

innovation is associated with reductions in unit cost for seven out of the eight sectors in which its 
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influence is significant.7 Thus, we conclude that autonomous innovation is predominantly 

efficiency improving in character. 

Panel B illustrates that deliberate technology development is capital-using and energy-

saving in the majority of industries, but is equivocal in its influence on labor and materials. And 

out of nine sectors in which deliberate innovation has a significant neutral productivity impact, 

six exhibit positive responses, which implies that R&D has the effect of increasing the unit cost 

of production. As discussed above, we interpret this result to mean that the effect of quality-

enhancing innovation outweighs that of efficiency-improving innovation. But while the 

econometric estimates in Table 2 capture the combined effect of RE and RQ only on the industries 

in which research is being performed, they completely miss the corresponding impacts on the 

downstream users of these sectors’ outputs. 

The implications of this shortcoming become clear if we substitute the coefficients in 

Table 2 into eqs. (18) and (19) while ignoring downstream impacts on product quality impacts, 

and then simulate the CGE model under two sets of assumptions. The first is a business-as-usual 

(BAU) case in which aggregate R&D is assumed to remain at the initial level of 0.78 percent of 

GDP. The second is a R&D intensification scenario which assumes that the R&D intensity of the 

economy increases from 0.78 to 2.5 percent by the year 2050. Figure 2 shows the difference in 

real GDP and carbon emissions between the two cases. The results suggest that an increase in 

R&D activities will lower both real GDP and emissions. This outcome is not just 

counterintuitive, it is wrong. The parameterization of the model ensures that R&D drives up the 

manufacturing sectors’ output prices-cum-unit costs, whose apparent effect is to reduce sectoral 

and aggregate productivity, value added and intermediates use of fossil fuels. 

                                                           
7 The magnitude of the positive and significant estimate is the largest in the table, however the sector in question 
(other industry) is relatively minor, accounting for 12 percent of manufacturing value added and just five percent of 
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We would never expect such a result to see the light of day since any competent modeler 

would immediately reject it as implausible. However, this example serves as a cautionary 

reminder of the potential magnitude of the problem in developing-country economic simulations 

where quality enhancements are a significant component of innovation. We now address the 

issue of how to adjust the model to reflect the fact that the empirical estimates capture both 

process and product innovations.  

The problem arises from the way in which output is measured in the model. The 

foregoing exercise fails to account for the fact that while quality-enhancing R&D raises 

production costs, it shifts the composition of output toward higher value commodities for which 

there is greater demand, and which stimulates an increase in the quantity of output measured in 

“quality-adjusted” units. For example, in the case of computer manufacturing, we would want to 

measure output in terms of, say, data processing speed or capacity as opposed to the number of 

microprocessors. The implication is that quality enhancements lead to a larger quantity of output, 

which should be reflected in the price of commodity being produced. As we now demonstrate, 

this suggests a way to correct the estimates so that the model generates more reasonable results.   

 

3.2. Incorporating product quality 

In the analytical model of Section 2, quality-enhancing R&D in the upstream industry 

effectively increases the quantity of the upstream good used by the downstream industry. Using 

a tilde (~) to indicate a quantity measured in quality-adjusted units, it is clear from eq. (1) that 

from the perspective of the downstream sector, the quantity of the upstream good employed is 

( )Q
U U Uq R q= Θɶ .  The law of one price, however, implies that qU and Uqɶ  cannot have the same 

                                                                                                                                                                                           
GDP in the benchmark social accounting matrix used to calibrate the model. 
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price. In particular, market clearing in the upstream commodity means that the quality-adjusted 

price must satisfy U U U Up q p q=ɶ ɶ . We therefore have / ( )Q
U U Up p R= Θɶ . This clarifies the problem 

which gives rise to the results in section 3.1, and also suggests a potential remedy. 

Informed by this analysis, we turn once again to the CGE model. We note that in the 

most general setting, every sector in the model is potentially both a downstream and an upstream 

industry, simultaneously engaging in quality-enhancing R&D that reduces production costs in 

the “downstream” industries which purchase its product, while benefiting from the availability of 

higher quality intermediate inputs sold to it by “upstream” sectors pursuing improvements in 

product quality. Examining eq. (18), this suggests that by blindly plugging in values for gA,j and 

gR,j we are effectively treating all R&D as if it were efficiency-improving. Therefore, positive 

values for these coefficients are the equivalent of specifying a negative value for ξ in the 

analytical model, which would have the effect of lowering productivity, output and the demand 

for fossil fuels—exactly what we observe in the numerical results. 

Our problem is a misattribution of the effect of downstream quality-enhancing technical 

progress which makes it appear to be upstream efficiency-worsening technical retrogression. The 

root cause is the fact that the separate influences of the two kinds of technology development are 

not identified. In particular, the estimates in Table 2B represent the combined influence of 

efficiency improvements and quality enhancements. The implication is that 

(18′) , , , , , , ,ln ( ) ln lnE Q E E Q Q
j t A j A j t R j j t R j j tG g g h g R g R= + + + , 

where the new coefficients gE and gQ are the analogues of the ε and θ in the analytical model. We 

assume that E
Ag  and E

Rg  are both negative, while QAg  and Q
Rg  are both positive. 

If we could observe the individual terms in (18′), we could partition the neutral 

productivity term into efficiency and quality components, ln G = ln GE + ln GQ, where 
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, , , ,ln lnE E E E
j t A j t R j j tG g h g R= +  and , , , ,ln lnQ Q Q Q

j t A j t R j j tG g h g R= + . 

This would allow us to express both the price and quantity of the output of each industry in 

quality-adjusted units: � , ,,ln ln lnQ
j t j tj tQO G QO= + . Also, by the law of one price, 

� �
, , ,,j t j t j tj tPO QO PO QO= . But to be consistent with the theoretical model, the price of output in 

observed units must be adjusted so as to not be contaminated by the effect of quality-enhancing 

R&D, and to reflect only the influence of efficiency improvement. This suggests the following 

modification in the definition of G in eq. (16): 

(16′) , , , , , ,ln ln lnE
j t j t z j t z j t

z

PO G a P= +∑ . 

Together, these expressions imply that 

(20) �
, , ,ln ln ln Q

j t j t j tPO PO G= − . 

Therefore, to account for the influence of upstream increases in product quality on the costs of 

downstream producers, the final step is to adjust the price of intermediate inputs to reflect 

quality, as follows: 

(17a′) �
,, , , ,ln ln[(1 ) ]i tE j t i j i j

i e

P POη τ
∈

= +∑ , 

(17b′) �
,, , , ,ln ln[(1 ) ]i tM j t i j i j

i m

P POµ τ
∈

= +∑ . 

We face the challenge of making this scheme operational, given that neither the data nor 

the econometric estimates from Fisher-Vanden and Jefferson (2006) permit us to disentangle the 

effects of efficiency improvements from those of quality improvements. In the absence of 

alternative information, the best that can be done is to treat the two kinds of R&D in eq. (18′) as 

one in the same, i.e., setting , , ,
E Q
j t j t j tR R R= = , and then use their net effect on costs to filter the 

estimates in Table 2. Under this assumption, if the net effect of either autonomous or deliberate 
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technology development is efficiency improving, then | |E Q
A Ag g>  or | |E Q

R Rg g> , which implies 

that either gA or gR will be negative. Conversely, if the net impact of either autonomous or 

deliberate innovation is quality-enhancing, then | |E Q
A Ag g<  or | |E Q

R Rg g< , implying that either gA 

or gR will be positive. 

Having established the direction of the net effect, our final, heroic assumption is to 

attribute gA and gR to one or the other type of innovation, depending on their signs. We do this by 

filtering the estimates of these parameters in the following way. Where an estimate is negative 

and significant then we assume that it generates a neutral efficiency improvement but does not 

influence product quality: 

(21) , , , ,ln min(0, ) min(0, ) lnE
j t A j t R j j tG g h g R= + . 

Where an estimate is positive and significant we assume that it enhances product quality but has 

no effect on productivity: 

(22) , , , ,ln max(0, ) max(0, ) lnQ
j t A j t R j j tG g h g R= + . 

Eqs. (16′), (17′) and (20)-(22) make up our adjustment to the model for the representation of 

quality-enhancing R&D. 

The consequences of implementing this adjustment are shown in Figure 2, which 

illustrates the difference in real GDP and carbon emissions between the S&T takeoff and BAU 

scenarios. The results are consistent with intuition; i.e., real GDP should rise with increases in 

industries’ R&D intensity. Carbon emissions are higher as well. Although more research leads to 

greater energy efficiency, its impact on productivity leads to more rapid growth of output and a 

greater-than-proportional increase in economic activity. Importantly, we find that the growth in 

real GDP is outweighed by the rise in carbon emissions, implying that the emission intensity of 

the Chinese economy is rising as well. Drawing on the results of our analytical model, these 
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results may be interpreted as saying that the positive effect of quality-enhancing R&D on energy 

and carbon intensity outweighs the negative effect of efficiency-enhancing R&D, leading to an 

overall increase in the economy’s carbon intensity. 

4. Concluding remarks 
 

This paper has elucidated the channels by which efficiency-improving and quality-

enhancing R&D affect an economy’s aggregate intensity of energy use and emissions of CO2. 

Using an analytical model, we demonstrate that efficiency-improving innovation attenuates 

energy intensity while quality-enhancing innovation tends to amplify it, and illustrate that the 

balance of these opposing forces depends on the elasticity of upstream output with respect to 

efficiency-improving R&D, the elasticity of downstream output with respect to upstream quality-

enhancing R&D occurring upstream, and the relative shares of emissions-intensive inputs in the 

costs of production of upstream versus downstream industries. 

We highlight the challenges of incorporating these insights into numerical economic 

simulations using a CGE model of China’s economy which is calibrated based on econometric 

estimates of the sectoral impacts of efficiency-improving and quality-enhancing R&D. Failure to 

adjust for the effects of quality-enhancing innovation on interindustry demands leads to flawed 

results owing to models’ inability to resolve their influence on the general equilibrium 

commodity price vector. 

We develop a simple procedure to address this problem; however, our approach suffers 

from the fundamental limitation that neither kind of innovation can be directly observed, and 

must inferred from the sign of the relevant empirical estimates used to parameterized the model. 

In particular, our workaround attributes a positive (negative) neutral R&D elasticity of unit cost 
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to (efficiency) improvements, where in reality such estimates almost surely reflect the combined 

influence of both types of innovation. Therefore, our model results are biased to an unknown 

degree. But the fact that our data only allow us to estimate the net effect of homogeneous R&D 

highlights the need for more research and particularly data gathering on the characteristics of 

innovation being pursued by industrializing countries. 

References 

Binswanger, H.P. and V.W. Ruttan (1978). Induced Innovation: Technology, Institutions, and 

Development, Baltimore MD: The Johns Hopkins University Press. 

Congressional Budget Office (2005). Background Paper: R&D and Productivity Growth, 

Congress of the United States. 

Fisher-Vanden, K. (2003). “The Effects of Market Reforms on Structural Change: Implications 

for Energy Use and Carbon Emissions in China,” The Energy Journal, 24(3), 27-62. 

Fisher-Vanden, K., and M.S. Ho (2006). “What Will a Science and Technology Takeoff in China 

Mean for Energy Use and Carbon Emissions?” Manuscript, Dartmouth College. 

Fisher-Vanden, K., and G. Jefferson (2006). “Technology Diversity and Development: Evidence 

from China’s Industrial Enterprises.” Manuscript, Dartmouth College. 

Grubb, M.J., C. Hope and R. Fouquet (2002) Climatic implications of the Kyoto Protocol: the 

contribution of international spillover, Climatic Change 54(1/2): 11-28 

Popp, D.C. (2006). ENTICE-BR: Backstop Technology in the ENTICE Model of Climate 

Change, Energy Economics, 28: 188-222. 

Sue Wing, I. (2006). Representing Induced Technological Change in Models for Climate Policy 

Analysis, Energy Economics 28: 539-562. 



24 

Figure 1. 
The Impact of Efficiency-Improving and Quality-Enhancing R&D on Upstream Production 
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Figure 2. Change in Real GDP and Carbon Emissions:  
R&D Intensification Scenario vs. BAU Scenario 

Without Adjustment for Quality-Enhancing Impact of R&D 

-7.0%

-6.0%

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

20
26

20
28

20
30

Year

%
 d

iff
er

en
ce

 fr
om

 
B

A
U

 c
as

e

real GDP

Carbon emissions
 

 

 

 



26 

 

Figure 3. Change in Real GDP and Carbon Emissions:  
R&D Intensification Scenario vs. BAU Scenario 

With Adjustment for Quality-Enhancing Impact of R&D 
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Table 1. Summary of the Results of the Analytical model 

 
 A. Elasticity with respect to:   B. Sign of elasticity w.r.t: 

 RE RQ w pD  RE RQ w pD 

 I. Basic variables  I. Basic variables 

pU – ε (1 – 

β

 – γ – ω) / ξ

 

βθ

 (1 – α) / ξ

 [ α (1 – 

β

 – ω) – γ] / ξ

 (1 – α) / ξ
  – + ? + 

qU ε (1 – γ – ε) / ξ

 α βθ

 / 

ξ

 α( ω – 1) / 

ξ

 α / ξ
  + + – + 

vU 

β ε / ξ

 

βθ

 / 

ξ

 ( ω – 1) / 

ξ

 1 / 

ξ
  + + – + 

vD 

β ε (1 – 

β

 – γ) / ξ

 

βθ

 / 

ξ

 ( ε (1 + α β

) – 1) / 

ξ
 1 / 

ξ
  + + – + 

qD 

β ε / ξ

 

βθ

 / 

ξ

 –( α β

 + γ) / ξ
 ( α β

 + γ) / ξ
  + + – + 

 II. Derived quantities  II. Derived quantities 

qU / qD ε (1 – 

β

 – γ – ω) / ξ

 –

βθ

 (1 – α) / ξ

 [ γ – α (1 – 

β
 – ω)] / ξ

 [ α (1 – 

β
) – γ – ω] / ξ

  + – ? ? 

vU / qU – ε (1 – 

β

 – γ – ω) / ξ

 

βθ

 (1 – α) / ξ

 – (1 – α) (1 – ω) / ξ
 (1 – α) / ξ

  – + – + 

 
Notes: α = share of variable input in cost of upstream production; 

β
 = share of upstream commodity in cost of downstream production; γ = share of variable input 

in cost of downstream production; ε = elasticity of upstream output to own efficiency-improving R&D; 

θ
 = elasticity of downstream output to upstream quality-

enhancing R&D; ω = elasticity of downstream output to own efficiency-enhancing R&D; 
ξ

 = 1 – α β
 – γ – ω > 0; ? indicates that the sign of the relevant elasticity 

is ambiguous. 
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Table 2. Neutral and Factor-Biased Effects of Technical Progress by Industry 

Factor Bias 
Sector 

Neutral effect 
on cost Capital Labor Energy Materials 

A. Autonomous technology development 
Mining 
Food 
Textile 
Paper 
Petroleum 
Chemicals 
Rubber 
Nonmetal 
Metal 
Machinery 
Electric power 
Other industry 

-0.001 
-0.009* 
-0.018** 
0.006 
0.002 

-0.005 
-0.026** 
-0.008* 
-0.029*** 
-0.026*** 
-0.047*** 
0.054*** 

0.001 
-0.002 
0.003 

-0.003 
0.010 
0.006*** 
0.001 
0.0006 
0.001 
0.002 

-0.004 
0.005 

-0.003 
0.001 
0.004** 

-0.007*** 
-0.004 
-0.001 
0.004 

-0.003*** 
0.0008 
0.002 
0.0006 
0.006** 

0.004 
-0.001 
0.0004 

-0.001 
-0.012 
0.003 

-0.004 
0.006*** 

-0.001 
-0.001 
-0.007* 
0.0003 

-0.002 
0.003 

-0.007** 
0.010*** 
0.006 

-0.007*** 
-0.0005 
-0.004 
-0.0008 
-0.003 
0.010** 

-0.011** 
B. Deliberate technology development 

Mining 
Food 
Textile 
Paper 
Petroleum 
Chemicals 
Rubber 
Nonmetal 
Metal 
Machinery 
Electric power 
Other industry 

0.010** 
0.005** 

-0.007*** 
0.012*** 
0.036*** 

-0.004* 
0.003 

-0.003 
-0.005 
-0.009*** 
0.028*** 
0.013** 

0.004*** 
0.004*** 
0.003*** 
0.004*** 
0.005 
0.000 
0.001 
0.003*** 
0.003*** 

-0.003*** 
0.005*** 
0.005*** 

-0.004*** 
0.001 
0.005*** 

-0.002*** 
-0.003** 
0.001*** 

-0.002 
0.001*** 

-0.0001 
0.002*** 

-0.002*** 
-0.001* 

-0.005*** 
0.002*** 

-0.001* 
-0.001 
0.011** 

-0.004*** 
-0.0004 
-0.005*** 
-0.009*** 
-0.002*** 
0.006*** 

-0.002 

0.005*** 
-0.006*** 
-0.006*** 
-0.001 
-0.013*** 
0.003*** 
0.001 
0.001 
0.006*** 
0.003*** 

-0.010*** 
-0.002 

* Significant at the 10% level, ** Significant at the 5% level, ***Significant at the 1% level. 
 
 

 


