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ABSTRACT
The literature on climate policy modeling has paid scant attention to thetampie that R&D
is already playing in industrializing countries such as China, where Réd3tments are
targeting not only productivity improvements but also enhancements in the quality atd ofri
products. We focus here on the effects of quality-enhancing innovation on energy useGand GH
emissions in developing countries. We construct an analytical model to show thaheyfi
improving and quality-enhancing R&D have opposing influences on energy and emission
intensities, with the efficiency-improving R&D having an attenuatingatfand quality-
enhancing R&D having an amplifying effect. We find that the balance of these g pasies
depends on the elasticity of upstream output with respect to efficiency-impfR&iDgthe
elasticity of downstream output with respect to upstream quality-enhan&Dg&curring
upstream, and the relative shares of emissions-intensive inputs in the costs digraduc
upstream versus downstream industries. We employ a computable geneitadi@auiCGE)
simulation of the Chinese economy to illustrate the difficulties that arisednporating these
results into models for climate policy analysis, and offer a simple nemed
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1. Introduction

In the few simulation models that explicitly capture innovation’s influence on the
macroeconomic impacts of climate change mitigation policies, researcdeaaldpment (R&D)
either augments the factors of production or reduces the cost of abatingesngsireenhouse
gases (GHGs) By contrast, the modeling literature has paid scant attention to the important role
that R&D is already playing in key industrializing countries such as China, \filraseare
making R&D investments not only to improve their productivity, but also to enhance the quality
and variety of their products. In this paper we argue that quality-enhancingtionaan have
profound effects on energy use and GHG emissions in developing countries.

The conventional wisdom is that the diffusion of advanced technologies from developed
countries to developing countries will raise the latter’s efficiency,aieduheir intensity of
energy use and GHG emissidrBut while this outcome may well come to pass, it is also likely
that increased efficiency will induce an acceleration in the growth of outpahwidreases
energy use and emissions in absolute terms (see, e.g., Fisher-Vanden, 2003)hAlthoug
productivity improvements are an important target of R&D in most developing ca,rtnie
increasing share of innovatory activity is being devoted to enhancing produtt godlvariety.

This trend is important because such improvements can affect energy usessnhsry
shifting the composition of output and the distribution of value-added among industries, i.e.,
structural change. Those sectors which experience more rapid improvements it guadtityc
and variety will likely grow faster relative than their less technelly dynamic counterparts,

changing the composition of aggregate output. Depending on the energy-using dbacaaiér

! For a review, see Sue Wing (2006).
2 For an optimistic view, see Grubb, Hope and Fot(2@02).



these leading industries, the energy and emissions intensities of the aggcegatay may rise
or fall.

The accumulation of technological capabilities has two main benefits in gengelo
countries: a reduction in the marginal cost of production—which can be thought of @ss%ro
innovation”—and an expansion in the range of commodities to higher-value goods—which can
be thought of as “product innovation”. The key implication, which we examine here, is that in
order to project the future trajectory of GHG emissions from industrialcongtries, it is
necessary to capture the influencdothkinds of innovation on GDP growth and the aggregate
demand for fossil fuels.

We first develop a simple analytical model which illustrates that effay-improving
and quality-enhancing R&D have opposing influences on energy- and emission irgewsitie
efficiency-improving R&D having an attenuating effect and quality-enimg R&D having an
amplifying effect. We show that the relative magnitude of these forcesd®pa three factors:

0] The elasticity of output with respect to efficiency-improving R&D, in indastwhose
products are consumed by other, “downstream,” sectors;
(i) The elasticity of output with respect to quality-enhancing R&D occurringgegs, in

the industries which primarily consume the outputs of the “upstream” sectaxsandi
(i)  The relative shares of emissions-intensive inputs in the costs of production eaapstr

versus downstream industries.

These results are subsequently incorporated into a CGE model of the Chinese economy
which is calibrated using econometric estimates of the influence of R&bBeorost of
manufacturing industries in China. We show that failure to account for the interindust

transmission of quality changes (effect (ii), above) leads to a starttoghterintutive result: an



exogenous increase in the R&D-GDP ratio precipitates reductions in bothDBahi@al carbon
dioxide (CQ) emissions! The root of the problem is that interindustry demands are not
denominated in quality-adjusted units, consequently the model does not differentiaenlieave
opposing effects of efficiency improvements and quality enhancements on the general
equilibrium commodity price vector. We offer a method for correcting this probiémm the
algebraic framework of a CGE model. With this adjustment, a rise in the igteh&&D

induces acceleration in the growth of real GDP, as well as structural shahgé lead to a rise
in the intensity of energy use and £€nissions per unit output. This result suggests that for
China, the amplifying effect of quality-enhancing R&D on energy-intgnsit outweigh the
attenuating effect of efficiency-improving R&D, leading to higher aggte emissions.

The paper is organized as follows. Section 2 develops an analytical model of the impact
of efficiency-improving and quality-enhancing R&D on structural change and\eimgensity.
Section 3 summarizes results of our modeling exercise, and develops a method foratingrpor
the effects of quality-enhancing R&D into CGE simulations. Section 4 providesmaayrand

concluding remarks.

2. A simple analytical model
Ouir first task is to develop an analytical framework to assess the inpicati quality-
and efficiency-enhancing R&D for a country’s energy and carbon intensitieak&/a
deliberately simple approach. We construct a theoretical model in which tbdveoandustries,
one upstream) and the other downstream)( where the latter uses the output of the former as

an input to production. The solution gives the elasticities with respect to each tyRP off Bhe



price and quantity of upstream output, the upstream demand for variable inputs, and the quantity
of downstream output.

To keep the model simple, we assume that each industry manufactures a homogenous
good using Cobb-Douglas production technology. Output of the upstream indystsy,
produced from a variable inpwt{which we assume represents fossil fuels), and a generic input,
X, while output of the downstream industay, is produced using inputg, v, and the generic
input,x. We usgyy andpp to denote the prices of the upstream and downstream commadlities,
to denote price of the variable input, andndy to denote the cost sharesvah upstream and
downstream production, ado denote the cost sharegfin downstream production. We
further assume that in each industng in perfectly inelastic supply, and normalize its price to
one. Doing so guarantees upward sloping supply schedules, and makes thexarnmabbey for
each industry’s “capacity”, which enables us to work directly with theirtoofctions to
compute the output levels and unconditional input demands.

We assume that industries engage in two types of R&D: efficiency-improving and
quality-enhancing research, which we denBfeand R?. The first of these corresponds to the
way in which research is traditionally modeled—R&D increases the prodycor,
symmetrically, reduces the cost of output) in the industry where it is perforneedssMme that
both industries conduct efficiency-improving R&D, and therefore specify augtimnt
functionsE(R") and Q(RS) which act as neutral shift factors in the production functioni/for
andD.

Research which enhances the quality of output acts in a more subtle way. It does not

directly influence the production process in the sector where the R&D is pedobut rather

increases the productivity of downstream industries that use the sectpus authmodity as an



input to production. Our key simplification is to assume that quality-enhancing R&D is
conducted only in the upstream sector. Its effect is to reduce the compobéntost

associated with the use of the upstream good and, in so doing, shifts the demand qurve for
We therefore specify the functidg®(RY) as an augmentation factor which is appended to the

input ofqy to the production ob:*
1) o =ER)HV X"

B 5
@ 64 =FR)(OR)g) ¥ ¥
The key implication is that thadustries’ profits;zy andzp, are interdependent. Thus, in

order to understand the impact of quality-enhancing R&D we must analyze both isdustrie

profit maximization problems jointly. The profit functions are:

arg mpzév{l{, =p,q-wy - x - - @} s.t. (1),xy given,
w.R

arg ma>{ﬂD =P R QWY - X - Ig} s.t. (2),xp given.

Q. R

To facilitate exposition, we parameterize the @ffexf R&D on productivity using simple iso-
elastic functionsE = (R%)*, © =(R})? andQ = (R5)“, where, 6 andw are positive
parameterse( 6, w O (0, 1)).

To calibrate the reader’s expectations, firm-lembpirical estimates of the productivity

elasticities of private R&D lie in the range 0-Ov@th the majority of estimates being below 0.3

% Two points are worth highlighting here. First, tityaimprovements primarily affect energy use thghiwchanges in
the structure of economic activity, which suggéistd it suffices to examine the neutral effect &R We

therefore do not consider the effect of input bidasehnical change. Second, upstream and downstR&dbnare
treated in an asymmetric fashion, with both produnt technological “spillovers” (in the form of ditya
enhancements to interindustry commodity strearosjifig unidirectionally fronlJ to D. We choose this analytical
setup for the sake of transparency and tractaldityer than realism. Indeed, we note that in timailation in the
following section, every sector is potentially batllownstream and an upstream industry, simultastgengaging
in quality-enhancing R&D that reduces productiostsan the “downstream” industries which purchaseiroduct,



(see Congressional Budget Office, 2005, and references therein). As well, infostsiidtiels
rarely make up more than one third of the total cost of production in energy-supply or energy
intensive industries, so in the analysis below, intensive ugeatesponds to a value of no
more than 0.3 fo# or y. In particular, to facilitate interpretation of the results, we implose t
relatively mild restriction that 1 5—y > w.

We first consider the downstream industry, where we assume that the inputs for the
variable factor and the upstream commodity, as well as the investmenti@nefyiimproving

R&D are all chosen optimally. The resulting first-order conditions are:

‘;’VT =yPR(RE) (4 O(R))" ¥ &7 -

97 — By QRE) 4O ) §°7 ~ p=0,
%: "(RE N 7By _1—

s PQ'(R)(q0(R)) ¥ 77 -1=0.

The solution to this system of equations consisi¥’'ettonditional demand for the variable
input, inverse demand for the upstream commodity, and optimal investment in ejficienc

improving research:

w-1 B -p-y Bo
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while benefiting from the availability of higher glity intermediate inputs sold to it by “upstreaggctors pursuing
improvements in product quality.



We draw particular attention to the fact tisginpp, /0R} 1= sgniBd /(- y-w) >0,

which implies that quality-enhancing R&D has the effedhofeasingthe market price of the
upstream commodityAs we shall see, this result figures prominently in the empirical and
modeling results of the subsequent section. Blindly incorporating this effect @GE
simulation leads to R&D having a counterintuitive adverse impact on economic gronthars
outcome would only obtain in the real world if the unitgggfemained unchanged—that is, if
the upstream good was of similar quality. But quality improvements have #uot @fincreasing
the quantity of output in “efficiency” units, which is captured by the increased praitiuofi
downstream production due to augmentatiogof

We now turn to the upstream industry. As with the downstream industry the system of

equations made up of the first-order conditions for the variable input and the leveisieneyf
improving and quality-enhancing R&D may be jointly solved for the optimal values &}
and R} . Doing so makes it possible to exprd¥s, R}, RS, pu, qu, do, Vu andvp as functions

of the elasticity parameters, the prices of the variable inpubDandutput, and the levels of the

guasi-fixed inputs. Our objective here is different, however: we seek to understamgaiot of
upstream research on structural change which requires us to elaborate theerdi® and
RS on the other variables. Accordingly, we assumelthanly optimizes its use of the variable

factor, and treat the two types of upstream R&D parametrically.

The first-order condition with respect to the upstream use of the variable input is

* Also, sgnBRDE /aFgf]z sgnjpé /(- y— w)] > 0, which suggests that if the quantity of e#fiety-improving R&D
in the downstream industry is chosen optimallyargér quantity of quality-enhancing R&D in upstres@ators
would tend to induce more downstream innovatorgréeffie thank a referee for raising this interegtossibility.
Nevertheless, we are quick to emphasize that itittiesbearing on our subsequent simulation exsergj as R&D is
treated as an exogenous forcing variable withinGBE model.
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which yieldsU’s optimal conditional demand for the variable input:

1 1 -1 &£
6) v =are e w (R .

We then use this expression to substitutesfian (1) to derive the supply function for the

upstream commodity

M =W a)q /%) (R).
By combining egs. (4) and (7) we can derive the equilibrium quantity of the upstream

commodity in terms of exogenous variables:

(8) q, = KlI: pE W@ (RE)er-e)( FOQ)aﬂg]l/g’
where¢ = 1 —a ff —y —w, andk; is a constant.

Along with (4), this result allows us to eliminajgin egs. (3)-(6):

&

©) Vo =k, W H(R)F (R ]

(10) p, =4, [V\/J(l—ﬁ—w)—y e () e hr-o)( ) ke )ﬁg]ug |

1/E

(11) RS =k, W p(RB)*( )]

1/&

(12) v =k oW (R ()]
Finally, by substituting (8), (9) and (11) into eq. (2) we obtain the effects on the qudntity

downstream output:

1/

(13) G = K| WP (R () ]

The termsc;-«s in these expressions are all complicated constaatssiry, ¢, Xp, andxy.



Our main findings are summarized in panels A.l and B.l of Table 1. The signs of the
elasticities tabulated therein hinge on the sigfy @fhich is positive given the restrictions on the
parameters discussed abowle therefore look to the numerators of these expressions to
determine the direction of the relevant impacts.

Our focus is on the implications of the two kinds of R&D for upstream production costs,
structural change and aggregate energy intensity. We first examiseniavity of the price
and quantity of upstream output and the quantity of downstream output to efficiency-mgprovi
and quality-enhancing R&D. Subject to our restrictions on the variable input’s coss,§a
will tend to raise the quantity and lower the pric&J&f output, whereaB? will tend to
simultaneously increase both the price and quantity. Additionally, efficiemgyeving and
guality-enhancing R&D both exert positive influences on the upstream demand for

Figure 1 shows the simple intuition behind these results. Eq. (4) is indicated by the
demand curvd), while eq. (7) is given by the supply cur&Assuming that the sectors are at
an initial equilibriumO in which the price and quantity of the upstream goodpgrend g,
respectivelyRF has the effect of shifting the supply curve downwiars, resulting in a new
equilibriumA whereqy expands angy declines, while the effect & is to shift the demand
curve outward t®’, resulting in a new equilibriuf in which bothpy andqy increase. In the
realistic case where the upstream industry pursues both lines of researtangously, we get
an equilibrium such a8 where the level of output is unambiguously higher, but the price may

increase or decrease relativedp within the bound$p,, A1

Both types of research have a positive impact on the downstream industry’s output, but

their effects operate through distinct channels. The spillover effects d@lepr@iancing R&D

® For fossil fuel input shares in the range of obaions ¢ ~ 0.3), even iff =y = 0.1, foré to approach zere

10



give rise to neutral productivity improvement which raises the level of output, R&Dewhich
makes upstream production more efficient reduces marginal cost, lowegramgl with it the
cost of production downstream, enabliddo expand. Since neither kind of R&D has a direct
influence orD’s use of the variable input, the unconditional demand gamply increases as a
consequence of the expansion of the sector.

Our findings thus far have important implications for structural change anegaggr
fossil-fuel use. Given that each sector exhibits its own response to each kind ofiomavkey
guestion is whether R&D causes upstream sectors to expand relative to thoseedouyrestr
vice versa. To investigate this, we calculate the ratio of the outputs of the upstrgam

downstream industry, dividing (8) by (13) to obtain our measure of structural change:

1/&

(14) q, /qD = K7[V\}/_”(l_'8—w) rg(l—ﬂ)‘y—w( %)s(l—ﬂ—y—w)( |§)_(l_a )ﬂg:l
In addition, the fossil-fuel intensity of production in each sector indicated tpotiditional

demand for the variable input:

(15) VU /qJ = KBI:\N—(l—a)(l—w) F%—0/( be)—s(l—ﬁ—y—w)( |§),gg (ta ):|1/5

and
Vo /G =y W.
As beforex; andkg are constants i, S, y, &, Xo, andxy.

These results are summarized in panels A.ll and B.1l of Table 1. The impa&®aiR
structural change are both intuitive and consistent with expectations. Becagsesises
productivity in the upstream sector, efficiency-improving R&D will tend to falverexpansion
of U relative toD. Conversely, the fact that investments in quality-enhancing R&D upstream

redound to the downstream sector implies that this type of innovation favors the expaision of

would have to exceed 0.7, which is implausibly ¢éarg
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relative toU. Depending upon which effect dominates and which industry (upstream or
downstream) is the more energy intensive, aggregate energy intendity lsgmer or lower.
Regarding the latter, efficiency-improving R&D in the upstream seatbtend to lower
energy intensity while quality-enhancing R&D has the opposite effect. @$udt is a
consequence of the fact that the first kind of innovation savessanputs, while the second
induces an outward shift in the demand curve for its product. Neither type of R&D has any
impact on the intensity of fossil-fuel use in the downstream sector, which istemsvith the
fact each kind of R&D has the same effecDis variable input demand as it does on output.
Whether the attenuating impact of efficiency-improving R&D on energy irnjeissi
outweighed by the amplifying effects of quality-enhancing R&D depends oeldiee energy
intensities of the upstream and downstream industries, the elasticities ofwitiypngspect to
the two types of R&D, and the shareld$ output inD’s production. Specifically, for given
coefficients on energy use in each industry (fixexhdy), the smaller the elasticity of upstream
productivity with respect t& (¢), the larger the elasticity of output with resped®to(d), or the
larger the share d&f’s output inD’s production £), the greater the positive effect of quality-
enhancing R&D. In the following section we investigate the implications eétfeetors for a
developing country using the results from an exercise that incorporates eaomesighates of

the impacts of R&D into a CGE model for China.

3. Modeling efficiency vs. quality-enhancing R&D: a numerical
general equilibrium analysis for China

The key structural difference between our analytical model and the standard

representation of innovation in both econometric and simulation models is that thdrzdsdr a

12



always resolve only a single stock of R&D capitdt.is customary for this stock to be modeled
as the accumulation of past investments in research by a particular firotarr géich in a
given period constitutes an intangible input to production that has an efficiency-ingpesfiact.

These modeling choices tend to be driven by data availability and analyticahisooe
Data on R&D spending almost never separates investments in efficienoyenmnt from
those intended to improve product quality, consequently we typically observe only theRum of
andR®. As well, the data used to estimate econometric factor demand models yyjgiegsent
intermediate inputs only as broad composite goods like “energy” and “msitemalking it
virtually impossible to resolve the impact of upstream product quality enhancesnents
producers’ purchases of individual intermediate commodities.

The upshot is that standard econometric approaches are not capable of distingeshing
effects of the two kinds of R&D. Because a single R&D stock is assumeadéobaith
efficiency-improving and quality-enhancing innovation, econometric agtsfor a given
producer will indicate only theombinedeffect of RF andR?. Moreover, such estimates will only
reflect the impact of R&D on the price and quantity of output of the firm or sector i wWigc
relevant research is actually undertaken. The aggregate charactedatetiom intermediate
purchases makes it impossible to identify the shift in the downstream demand for thebatput
particular producer’s investment in quality-enhancing R&D. The problehaiddr an
equilibrium such a€ in Figure 1, econometric estimates of the effect of R&D on the cost of
production will reflect the impact &< on the price of the innovating industry’s output but will

fail to capture the impact on the quantity of output.

® A prominent exception is Popp’s (2006) ENTICE-BRdal which incorporates two stocks of R&D capitaie
which saves conventional energy that produces €ssions and the other which increases the ptwvityof a
carbon-free backstop energy supply technology. Hewehis simulation does not represent the intdustry
structure necessary to distinguish between effagiemprovements and quality enhancements.
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We go on to show that when estimates of this kind are naively incorporated into a CGE
model’'s system of inter-industry commodity demands, where every sector is bothraarps

and a downstream producer, it is possible to generate results which are dgrfgllatéous.

3.1. Modeling technology development

Fisher-Vanden and Ho (2006)—hereafter, FVH—have developed an econometrically
calibrated CGE model of the Chinese economy, which incorporates the effects ofiomowmat
neutral and factor-biased productivity in the industrial sectors. The lynchpin oagipeoach is
a vector of industry-specific stocks of R&D capital, each element of whctkgents the
accumulation of past deliberate investments in new technology development/by a gi
manufacturing industry.

We focus on the representation of innovation within the model and abstract from its other
structural details, which is described in Fisher-Vanden and Ho (2006). The modelg@&blve
sectors, which include agriculture, 22 manufacturing industries, construction, ttatisppand
7 service sectors. Each industry, which we indicate using the jnpeduces a unique
homogeneous commodity, which we indicate using the indexeach period of time, the
production of output@Q,;) requires five types of inputs, capitél)( labor (), land {T), energy
(E) and materialsM), which are denoted by the index {K, L, T, E, M}. Production takes
place according to a hierarchical Cobb-Douglas production function, whose assdaglteost
function is expressed as a vector of zero profit conditions which equate industies’pdes
(PO,) with their unit costs under the assumption of constant returns to scale (CRTS) ant perf
competition:

gt

(16) InPO,=InG,+> g,InP

14



In this expression, the varialdkeis a vector of the prices of the inputg t&t timet; a is a vector

of parameters which denote the (time varying) shares of the various inputsciost of

production Qzaz =1), andG is an industry-specific Hicks-neutral productivigrm.

In eq. (16), the composite price indexes of intatiate inputs of energy and materials
(Pe; andPy;) are the outputs of Cobb-Douglas unit cost suletfons denominated over the

vectors of output prices of energy-producing secg@rand materials-producing sectons){

(172) NP, =Y 7, In@+7,)PQ,],

(17b) InB, ,, => 4, In[L+75,)PQ,].

iOm
The parameters; indicate ad-valorem taxes on intermediate inpuksle the technical

coefficientsy andu represent the fixed input shares in indugg andM sub-cost functions,

which also exhibit CRTSX 7, = #,; =1). Thus, each sector in the model is both an

upstream and a downstream industry, using the tigduhei upstream industries at price&,
(plus input taxes) to produce a commodity with woetPO, which is in turn employed as an
input to downstream sectors.

Autonomous and deliberate technological developra#fatt production in the
manufacturing sectors of the economy. Innovaticassumed to alter both the rate of technical
change, given here [fy, and the bias of technical progress—which is esjai to the rate of
change in tha parameters with prices held constant (BinswangdrRuttan, 1978). FVH define
indices of economy-wide autonomous technology apraknt (represented as a time trehg),
and industry-specific deliberate innovatiy. Neutral multifactor productivity is given by:
(18)  InGjt(h,R,) =0ajhet grjINR;, j O manufacturing

while biased technical progress is given by théndefn of the input share parameters:

15



(19) azj(h,Ry1) = azjo + bazjh + brzjINRy;,  j O manufacturing

The coefficientd,, br, ga andgg are econometrically-estimated parameters. The paramaers,
andbg capture the effects of autonomous and deliberate technology development on the cost
shares of each input, while the parameigsndgg, indicate the effects of autonomous and
deliberate technology development on neutral productivity.

This specification enables the implications for the energy- and carbontiiete0$
China’s industries of an increase in R&D activities to be simulated in the fotjomay.

Deliberate technology development in each industry is modeled as the greendhtret stock of
R&D, measured as cumulative R&D expenditures. For simplicity, autonomous teghnolog
development is modeled using a time trend. To implement egs. (18) and (19), the model uses
econometric estimates for the paramelgr$r, ga andgr. These estimates are based on the
work of Fisher-Vanden and Jefferson (2006), who measure the factor bias of autonothous a
deliberate technology development activities by estimating a transsddguniction along with its
corresponding cost share equations on a data set of 1500 industrial enterprises in Ckinea ove
years 1995-2001.

These estimates are summarized in Table 2. Panel A illustrates that autonomous
technology development has only a small impact on the bias of technical chaingkidixe on
the bias of factor hiring is for the most part not significant, and even where i .isig the
paper, textile or chemical industries) the effect on cost shares is mudérsheal that on
neutral productivity, and without any discernable trend. On the other hand, autonomous

innovation is associated with reductions in unit cost for seven out of the eight sectorshinitsvhi

16



influence is significanf. Thus, we conclude that autonomous innovation is predominantly
efficiency improving in character.

Panel B illustrates that deliberate technology development is capitgl-arstl energy-
saving in the majority of industries, but is equivocal in its influence on labor andatsatand
out of nine sectors in which deliberate innovation has a significant neutral produotpégt,
six exhibit positive responses, which implies that R&D has the effect obsiogethe unit cost
of production. As discussed above, we interpret this result to mean that the effecitpf qual
enhancing innovation outweighs that of efficiency-improving innovation. But while the
econometric estimates in Table 2 capture the combined effBEtasfdR® only on the industries
in which research is being performed, they completely miss the correspamgiacts on the
downstream users of these sectors’ outputs.

The implications of this shortcoming become clear if we substitute the ceptficn
Table 2 into egs. (18) and (19) while ignoring downstream impacts on product qualitgsmpa
and then simulate the CGE model under two sets of assumptions. The first is a [assunsass-
(BAU) case in which aggregate R&D is assumed to remain at the initialde0el8 percent of
GDP. The second is a R&D intensification scenario which assumes that the R&Bitynof the
economy increases from 0.78 to 2.5 percent by the year 2050. Figure 2 shows the difference i
real GDP and carbon emissions between the two cases. The results suggestdhedsnin
R&D activities will lower both real GDP and emissions. This outcome is not just
counterintuitive, it is wrong. The parameterization of the model ensures thatiRgd3 up the
manufacturing sectors’ output prices-cum-unit costs, whose apparent etfeetducesectoral

and aggregate productivity, value added and intermediates use of fossil fuels.

" The magnitude of the positive and significantraate is the largest in the table, however the séttguestion
(other industry) is relatively minor, accounting 2 percent of manufacturing value added andfiustpercent of
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We would never expect such a result to see the light of day since any competdat mode
would immediately reject it as implausible. However, this example sensesasgionary
reminder of the potential magnitude of the problem in developing-country economictginaila
where quality enhancements are a significant component of innovation. We now address the
issue of how to adjust the model to reflect the fact that the empirical tetinapture both
process and product innovations.

The problem arises from the way in which output is measured in the model. The
foregoing exercise fails to account for the fact that while qualityseihg R&D raises
production costs, it shifts the composition of output toward higher value commoditiesi¢br w
there is greater demand, and which stimulates an increase in the quantity ohaaputed in
“quality-adjusted” units. For example, in the case of computer manufacturingowe want to
measure output in terms of, say, data processing speed or capacity as opposathtbe¢hef
microprocessors. The implication is that quality enhancements lead toraglaagéity of output,
which should be reflected in the price of commodity being produced. As we now demonstrate,

this suggests a way to correct the estimates so that the model generatesasonable results.

3.2. Incorporating product quality

In the analytical model of Section 2, quality-enhancing R&D in the upstream industry
effectivelyincreasegshe quantity of the upstream good used by the downstream industry. Using
a tilde (~) to indicate a quantity measured in quality-adjusted units, @asfcbm eq. (1) that

from the perspective of the downstream sector, the quantity of the upstream gooygkengpl

4, =O(R}) q,. The law of one price, however, implies thatand §, cannot have the same

GDP in the benchmark social accounting matrix usezhlibrate the model.
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price. In particular, market clearing in the upstream commodity mean$é¢hatiality-adjusted
price must satisfyp, g, = p, §, . We therefore havey, = p, /O(R}) . This clarifies the problem

which gives rise to the results in section 3.1, and also suggests a potential remedy.

Informed by this analysis, we turn once again to the CGE model. We note that in the
most general setting, every sector in the model is potentially both a downatrdaan upstream
industry, simultaneously engaging in quality-enhancing R&D that reduces produsdisrirc
the “downstream” industries which purchase its product, while benefiting from tiebalitst of
higher quality intermediate inputs sold to it by “upstream” sectors pursupr@vements in
product quality. Examining eq. (18), this suggests that by blindly plugging in values; Bordy
Or,j we are effectively treatingll R&D as if it were efficiency-improving. Therefore, positive
values for these coefficients are the equivalent of specifying a negatisefosf in the
analytical model, which would have the effectafering productivity, output and the demand
for fossil fuels—exactly what we observe in the numerical results.

Our problem is a misattribution of the effect of downstream quality-enhancimgic¢el
progress which makes it appear to be upstream efficiency-worseningctdaktriogression. The
root cause is the fact that the separate influences of the two kinds of technoldgprdewt are
not identified. In particular, the estimates in Table 2B represent the caibfheence of

efficiency improvements and quality enhancements. The implication is that

(18) InGy =(g5;+ R+ &E;In K+ in K,

where the new coefficientt andg? are the analogues of thandé in the analytical model. We
assume thag; and gg are both negative, whilg? and g3 are both positive.

If we could observe the individual terms in (}18ve could partition the neutral

productivity term into efficiency and quality compents, InG = In G + In G%, where
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INGE =gf h+ ¢ In K andinGS = g2 h+ ¢f,In K.
This would allow us to express both the price amangty of the output of each industry in

guality-adjusted unitsin 66” =In Gﬁt +In QQ, . Also, by the law of one price,

56,-; 66th = PQ, QQ, . But to be consistent with the theoretical moties, price of output in

observed units must be adjusted so as to not harmomated by the effect of quality-enhancing
R&D, and to reflect only the influence of efficigntnprovement. This suggests the following
modification in the definition o6 in eq. (16):

gt

(16) InPO,=InG,;+> g,InP

Together, these expressions imply that
(20) InPO;; =InPQ, -In &,.
Therefore, to account for the influence of upstréacneases in product quality on the costs of

downstream producers, the final step is to adhesprice of intermediate inputs to reflect

quality, as follows:

@7d) NP, =>7,In[+75,)POy],
iCe
A7b) IR, =>4, In[(1+7,)PO,].
i0m
We face the challenge of making this scheme omerailti given that neither the data nor
the econometric estimates from Fisher-Vanden afierden (2006) permit us to disentangle the
effects of efficiency improvements from those oélity improvements. In the absence of

alternative information, the best that can be dere treat the two kinds of R&D in eq. (1&s

one in the same, i.e., settiff, = R = R, , and then use their net effect on costs to fitter

t )

estimates in Table 2. Under this assumption, ifniteeffect of either autonomous or deliberate
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technology development is efficiency improving, they > % or | g; P g3, which implies
that eithemga or gr Will be negative. Conversely, if the net impact of either autonomous or
deliberate innovation is quality-enhancing, theig K g3 or | gs K g3, implying that eithega

or gr Will be positive.

Having established the direction of the net effect, our final, heroic assungptmn i
attributega andgg to one or the other type of innovation, depending on their signs. We do this by
filtering the estimates of these parameters in the following way. \\dmeestimate is negative
and significant then we assume that it generates a neutral efficrepoyviement but does not

influence product quality:

(21) InG{, =min(0,g,,)h + min(0,g ; )InR,.

Where an estimate is positive and significant weiaee that it enhances product quality but has
no effect on productivity:

(22) InG} =max(0,g,; h + max(0gs; )InR, .

Egs. (16, (17) and (20)-(22) make up our adjustment to the méatahe representation of
guality-enhancing R&D.

The consequences of implementing this adjustmengfawwn in Figure 2, which
illustrates the difference in real GDP and carbaissions between the S&T takeoff and BAU
scenarios. The results are consistent with intujti@., real GDP should rise with increases in
industries’ R&D intensity. Carbon emissions arehieigas well. Although more research leads to
greater energy efficiency, its impact on produtyileads to more rapid growth of output and a
greater-than-proportional increase in economiovdgtiimportantly, we find that the growth in
real GDP is outweighed by the rise in carbon emissiimplying that the emission intensity of

the Chinese economy is rising as well. Drawinglanresults of our analytical model, these
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results may be interpreted as saying that the positive effect of geiatigncing R&D on energy
and carbon intensity outweighs the negative effect of efficiency-enhan&ibgl&ading to an

overall increase in the economy’s carbon intensity.

4.  Concluding remarks

This paper has elucidated the channels by which efficiency-improving antygquali
enhancing R&D affect an economy’s aggregate intensity of energy use msibesiof CQ.

Using an analytical model, we demonstrate that efficiency-improving itioovattenuates
energy intensity while quality-enhancing innovation tends to amplify it, amstridite that the
balance of these opposing forces depends on the elasticity of upstream outpeseith to
efficiency-improving R&D, the elasticity of downstream output with resp@upstream quality-
enhancing R&D occurring upstream, and the relative shares of emissiorsvat@aputs in the
costs of production of upstream versus downstream industries.

We highlight the challenges of incorporating these insights into numedcabmic
simulations using a CGE model of China’s economy which is calibrated based on ecenomet
estimates of the sectoral impacts of efficiency-improving and qualhgrecing R&D. Failure to
adjust for the effects of quality-enhancing innovation on interindustry demanddddtaiged
results owing to models’ inability to resolve their influence on the generallagqunt
commodity price vector.

We develop a simple procedure to address this problem; however, our approach suffers
from the fundamental limitation that neither kind of innovation can be directly observed, and
must inferred from the sign of the relevant empirical estimates used togiarezed the model.

In particular, our workaround attributes a positive (negative) neutral R&Riaty of unit cost
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to (efficiency) improvements, where in reality such estimates almosygeflect the combined
influence of both types of innovation. Therefore, our model results are biased to an unknown
degree. But the fact that our data only allow us to estimate the net effectajdmmous R&D
highlights the need for more research and particularly data gatloeriting characteristics of

innovation being pursued by industrializing countries.

References

Binswanger, H.P. and V.W. Ruttan (1978). Induced Innovation: Technology, Institutions, and
Development, Baltimore MD: The Johns Hopkins University Press.

Congressional Budget Office (2005). Background Paper: R&D and Productrenytie;
Congress of the United States.

Fisher-Vanden, K. (2003). “The Effects of Market Reforms on Structural Changkcdtions
for Energy Use and Carbon Emissions in China,” The Energy Journal, 24(3), 27-62.

Fisher-Vanden, K., and M.S. Ho (2006). “What Will a Science and Technology Takeoff in China
Mean for Energy Use and Carbon Emissions?” Manuscript, Dartmouth College.

Fisher-Vanden, K., and G. Jefferson (2006). “Technology Diversity and Develodivelgnce
from China’s Industrial Enterprises.” Manuscript, Dartmouth College.

Grubb, M.J., C. Hope and R. Fouquet (2002) Climatic implications of the Kyoto Protocol: the
contribution of international spillover, Climatic Change 54(1/2): 11-28

Popp, D.C. (2006). ENTICE-BR: Backstop Technology in the ENTICE Model of Climate
Change, Energy Economics, 28: 188-222.

Sue Wing, I. (2006). Representing Induced Technological Change in Models foreCRolety

Analysis, Energy Economics 28: 539-562.

23



Figure 1.
The Impact of Efficiency-Improving and Quality-Enhancing R&D on Wgzstm Production

Pu
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Figure 2.

Change in Real GDP and Carbon Emissions:

R&D Intensification Scenario vs. BAU Scenario
Without Adjustment for Quality-Enhancing Impact of R&D
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Figure 3. Change in Real GDP and Carbon Emissions:
R&D Intensification Scenario vs. BAU Scenario
With Adjustment for Quality-Enhancing Impact of R&D
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Table 1. Summary of the Results of the Analytical model

A. Elasticity with respect to: B. Sign of elagtjow.r.t:
RE R w o8 RE R w  m

|. Basic variables |. Basic variables
Pu <(1-p-y-w) /< pO(L-a)l< [a (1 -p-w)—]1< (1-a)/& - + ? +
du e(l—y—g) /¢ afl & o(w—1) /¢ alé + + - +
Vu Belé& poIE (w-1)/& 1/¢ + + - +
Vb pe(L-p-y)1& pol< (@ +ap)-1)/C 1/¢ + + - +
U Pelé po1< —p+y) 1< (@p+y)l< + + - +
II. Derived quantities Il. Derived quantities
Qu/to e(d-B-y-w)/< B0 (1 —0) /¢ [—a(@-p-w)]l& [a(@Q-p-y-o]ll + - ? ?
wiagy -e(@-p-y-w)l& pO(L-a)l< —1-0)1-w)/¢ (1-a)/& - + - +

Notes:a = share of variable input in cost of upstream pabidn; S = share of upstream commaodity in cost of downstrpeaoductiony = share of variable input
in cost of downstream productions elasticity of upstream output to own efficierioyproving R&D; 6 = elasticity of downstream output to upstream igyal
enhancing R&Dw = elasticity of downstream output to own efficigrenhancing R&D¢ = 1 —aff —y —w > 0; ? indicates that the sign of the relevargtetay
is ambiguous.
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Table 2. Neutral and Factor-Biased Effects of Technical Progress by industr

Sector Neutral effect _ Factor Bias _
on cost Capital Labor Energy Materials
A. Autonomous technology development
Mining -0.001 0.001 -0.003 0.004 -0.002
Food -0.009* -0.002 0.001 -0.001 0.003
Textile -0.018** 0.003 0.004** 0.0004 -0.007**
Paper 0.006 -0.003 -0.007*** -0.001 0.010***
Petroleum 0.002 0.010 -0.004 -0.012 0.006
Chemicals -0.005 0.006*** -0.001 0.003 -0.007***
Rubber -0.026** 0.001 0.004 -0.004 -0.0005
Nonmetal -0.008* 0.0006 -0.003*** 0.006*** -0.004
Metal -0.029*** 0.001 0.0008 -0.001 -0.0008
Machinery -0.026*** 0.002 0.002 -0.001 -0.003
Electric power  -0.047*** -0.004 0.0006 -0.007* 0.010**
Other industry ~ 0.054*** 0.005 0.006** 0.0003 -0.011**
B. Deliberate technology development

Mining 0.010** 0.004*** -0.004*** -0.005*** 0.005***
Food 0.005** 0.004*** 0.001 0.002*** -0.006***
Textile -0.007*** 0.003*** 0.005*** -0.001* -0.006***
Paper 0.012*** 0.004*** -0.002*** -0.001 -0.001
Petroleum 0.036*** 0.005 -0.003** 0.011** -0.013***
Chemicals -0.004* 0.000 0.001*** -0.004*** 0.003***
Rubber 0.003 0.001 -0.002 -0.0004 0.001
Nonmetal -0.003 0.003*** 0.001*** -0.005*** 0.001
Metal -0.005 0.003*** -0.0001 -0.009*** 0.006***
Machinery -0.009*** -0.003*** 0.002*** -0.002*** 0.003***
Electric power  0.028*** 0.005*** -0.002*** 0.006*** -0.010***
Other industry ~ 0.013** 0.005*** -0.001* -0.002 -0.002

* Significant at the 10% level, ** Significant ate 5% level, ***Significant at the 1% level.
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