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Abstract

We characterize the evolution of U.S. carbon dioxide (CO2) emissions using an index num-

ber decomposition technique which partitions the 1963-2008 growth of states’ energy-related

CO2 into changes in five driving factors: the emission intensity of energy use, the energy inten-

sity of economic activity, the composition of states’ output, per capita income and population.

Compositional change and declining energy intensity attenuate emissions growth, but their im-

pacts are offset by increasing population and income. Despite absolute interstate divergence in

both emissions and their precursors, states’ emission- and energy intensities—and, ultimately,

CO2—appear to be stochastically converging. We assess the implications of these trends using

a novel vector autoregression (VAR) emission forecasting technique based on our index num-

bers. The resulting emission projections are comparable to, but generally exceed, those forecast

by the 2010 EIA Annual Energy Outlook.
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1 Introduction

Recent developments in U.S. climate change policy have seen the first tentative steps toward leg-

islating a binding aggregate emission cap and implementing curbs on GHGs at the state and re-

gional levels.1 This state and regional level policy action has been identified as both a critical

element in U.S. emissions reductions and as a force to shape national climate change mitigation

policy (Lutsey and Sperling, 2008; Byrne et al., 2007; Rabe, 2008). Consequently the resulting eco-

nomic effects of these policies is the subject of intense recent interest (Grainger and Kolstad, 2009;

Hassett et al., 2009; Sue Wing, 2010). The first step in making any such assessment, and one incor-

porated or mandated in all state climate action plans (EPA, 2012), is to forecast how states’ baseline

emissions are likely to evolve. Prerequisite to such projections is the ability to characterize the ge-

ographic variations in the precursors of GHGs—particularly CO2—based on an understanding of

their historical evolution.

In this paper we investigate how the driving forces behind U.S. carbon dioxide emissions have

evolved over the period 1963-2008. We take an explicitly spatial approach, quantifying in detail

the interregional variations in CO2 precursors that are largely absent in the literature. While sev-

eral recent papers have exploited state-level databases on the prices and quantities of fuel use,

their focus has been quantifying the aggregate effects of drivers such as income and prices.2 The

unfortunate consequence is that the substantial interregional heterogeneity underlying these re-

sults, which is interesting in its own right, has largely been ignored. An important exception to

this general trend is Metcalf’s (2008) inquiry into the drivers of the energy intensity of U.S. states,

which he disaggregates into intra-sectoral changes in energy efficiency and inter-sectoral changes

in the structure of economic activity. This paper’s key feature is the use of index number decom-

position analysis, which is a popular technique for apportioning the time-evolution of a composite

1The Regional Greenhouse Gas Initiative limits CO2 emissions from electricity generation in ten New England and
Mid-Atlantic states from 2009 onward, while California’s Global Warming Solutions Act of 2006 caps that state’s GHG
emissions in 2020 to a target of 427 million tons of CO2-equivalents, and the American Clean Energy and Security Act
of 2009 implements an economy-wide cap-and-trade scheme for cutting US GHGs to 83 % of their 2005 levels by 2050.
In total 32 states currently have climate action plans to develop mitigation strategies (EPA, 2012)

2Aldy (2005) performs a test of the environmental Kuznets curve by examining the dependence of emissions on
states’ per capita incomes, while Aldy (2007a) and Aldy (2007b) investigate the relationships between energy and
income and emissions and income at the state level and their variation across industries and shed light on the lack of
convergence in state-level per capita emissions. Finally, Auffhammer and Steinhauser (2007, 2010) exploit the interstate
co-variation of income and emissions to improve forecasts of aggregate CO2.
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variable into contributions associated with movements in its constituent factors.3 We build on this

approach, developing an extended decomposition framework which attributes the evolution of

CO2 emissions over space and time to five precursors: the emissions intensity of energy use, the

energy intensity of economic activity, the composition of states’ output, per capita income and

population.

This rest of the paper is structured as follows. In section 2 we develop our decomposition

framework and give a brief overview of our sources of data. Our findings are presented and dis-

cussed in section 3, which summarizes our five drivers at the national, regional and state levels

and tests whether the pattern of their evolution is consistent with interstate convergence. Finally

we present a forecast of emissions utilizing the decomposition model output 4. Section 5 con-

cludes.

2 Decomposition Methodology and Data

The starting point for our analysis is the familiar Kaya Identity (Kaya, 1990), which expresses CO2

emissions as the product of the emission intensity of energy use, the energy intensity of income,

GDP per capita and the level of population. We extend this framework to take full advantage of

the availability of U.S. data on energy use by f types of fuel in j economic sectors, s states, and

t ∈ [0, T] time periods. Our approach is particularly simple. In any year, the aggregate emissions

of a sample of S states, C , are given by the sum over sectors and states of disaggregate emissions,

χ. In turn, this quantity the sum over fuel types of disaggregate fuel use, indicated by ε, multiplied

by a fuel-specific emission coefficient, ϑ:

Ct = ∑
s∈S

∑
j

χj,s,t = ∑
s∈S

∑
j

∑
f
(ϑ f ε f ,j,s,t). (1)

Let e denote a particular industry’s energy use in a given state and year (ej,s,t = ∑ f ε f ,j,s,t), and

let y indicate that industry’s value-added in constant dollars. Then, using Y to indicate the state’s

real GDP (Ys,t = ∑j yj,s,t), and N to denote its population, we may write down an extended Kaya

3See Ang and Zhang (2000) for an extensive review. Since this, survey decomposition methods have, if anything,
become more popular, but the overwhelming majority of such studies are cross-country comparisons (see, variously,
Lee and Oh, 2006; Kawase et al., 2006; Ebohon and Ikeme, 2006; Lu et al., 2007; Diakoulaki and Mandaraka, 2007;
Raupach et al., 2007).
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identity:

χj,s,t =
χj,s,t

ej,s,t︸︷︷︸
ξ

×
ej,s,t

yj,s,t︸︷︷︸
φ

×
yj,s,t

Ys,t︸︷︷︸
θ

× Ys,t

Ns,t︸︷︷︸
I

×Ns,t. (2)

The right-hand side of this expression attributes emissions to five key driving forces: from left

to right, the CO2 intensity of fuel use (ξ), energy intensity of output (φ) and fraction of state value

added (θ) of industries within states, followed by states’ per capita income (I) and population.

Note that the product of the first two terms is just the emission intensity of each sector within a

given state, while the sum over industries of the product of all three industry-level terms is just

the particular state’s CO2-GDP ratio, which we denote X (Xs,t = ∑j ξ j,s,tφj,s,tθj,s,t). Exploiting this

fact, we combine (1) and (2) to obtain a simple expression for aggregate emissions:

Ct = ∑
s∈S

Xs,t Is,tNs,t. (3)

Obviously, the term within the summation sign represents each state’s emissions, which we indi-

cate using C.

Our decomposition procedure attributes the change in aggregate emissions to changes in the

five drivers in the following way. We model the instantaneous growth rate of C by taking the

logarithmic differential of (3). After rearrangement, this procedure yields:

∂

∂t
log Ct = ∑

s∈S
ωs,t

∂

∂t
log Xs,t︸ ︷︷ ︸

∑s Xs,t

+ ∑
s∈S

ωs,t
∂

∂t
log Is,t︸ ︷︷ ︸

∑a Is,t

+ ∑
s∈S

ωs,t
∂

∂t
log Ns,t︸ ︷︷ ︸

∑s Ns,t

(4)

where ω is a time-varying weight that corresponds to the contribution of each state to total emis-

sions (ωs,t = Cs,t/Ct). Applying the same procedure to the CO2 intensity of GDP allows us to

express the rate of growth of this quantity as the weighted sum of the logarithmic differentials of

the three industry-level factors:

∂

∂t
log Xs,t = ∑

j
ηj,s,t

∂

∂t
log ξ j,s,t + ∑

j
ηj,s,t

∂

∂t
log φj,s,t + ∑

j
ηj,s,t

∂

∂t
log θj,s,t

where the weight ηj,s,t varies over time and states, and represents each sector’s contribution to the

emission intensity of the state in which it is situated (ηj,s,t = ξ j,s,tφj,s,tθj,s,t/Xs,t). Consequently, the

3



first right-hand-side term in (4) can be expanded as:

Xs,t = ωs,t

[
∑

j
ηj,s,t

∂

∂t
log ξ j,s,t

]
︸ ︷︷ ︸

Ξs,t

+ωs,t

[
∑

j
ηj,s,t

∂

∂t
log φj,s,t

]
︸ ︷︷ ︸

Φs,t

+ωs,t

[
∑

j
ηj,s,t

∂

∂t
log θj,s,t

]
︸ ︷︷ ︸

Θs,t

(5)

Eqs. (4) and (5) decompose the annual rates of change of states’ emissions into five time-

varying factors (Zs,t = [Ξs,t, Φs,t, Θs,t, Is,t, Ns,t]′) which attribute observed growth and decline to

the effects of the corresponding drivers. The empirical implementation of this procedure is a

straightforward calculation in which the log-derivatives are approximated as centered-difference

growth rates: ∂ log Z/∂t ≈ 2(Zt − Zt−1)/(Zt + Zt−1), and the weights are computed as the av-

erages of the state and sectoral shares of aggregate emissions in adjacent periods.4 We com-

pute the cumulative impacts of the various factors relative to the initial year by chaining the

sequence of annual growth rates for each factor across years starting from a value of unity in

1963 (t = 0). The result is a vector of index numbers, which we henceforth identify using a tilde:

Z̃s,t = [Ξ̃s,t, Φ̃s,t, Θ̃s,t, Ĩs,t, Ñs,t]′:

Z̃s,t =
t

∏
τ=1

(
2 + Zs,τ

2− Zs,τ

)
. (6)

It is worth emphasizing that these are composite variables which embody not only the fundamen-

tal trend in the variable in question (e.g., the rate of change in a state’s energy-output ratio) but

also the extent to which that trend contributes to aggregate emissions. We shall see in Section 4

that this property proves very useful in constructing emission projections at the state level.

In this regard, a key benefit of our decomposition technique is the ability to express our in-

dex numbers in terms of CO2 emission equivalents. Let our five drivers be denoted by the in-

dex i, which we use to identify the elements of Zs,t. The instantaneous growth rate of state-

level emissions is therefore Gs,t = ∑i Zi
s,t, which, as in (6), can be approximated as ∆ log Cs,t ≈

4Our method is functionally equivalent to the Arithmetic Mean Divisia index number decomposition (Ang, 2002,
2005; Ang and Liu, 2001), while having the advantages of a small residual and the ability to gracefully handle negative
values and isolated zeros on both sides of the decomposition equation (cf. Ang and Liu, 2007). Boyd and Roop (2004)
and especially Metcalf (2008) advocate for the use of a Fisher ideal index because of its superlative theoretical properties
and zero residual. However, using the Fisher index number approach to decompose an aggregate series into numer-
ous factors quickly results in intractably complex mathematical formulae (see, e.g., Ang et al., 2004)—particularly in
cases such as our application where there are multiple summations, and in any case despite the use of discrete ap-
proximations of the logarithmic differential and interperiod linear instead of log mean weights,the fit of our simpler
decomposition to the data is excellent. The residual from the decomposition has magnitude less than 0.5% of the trend
in aggregate emissions.
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2(Cs,t − Cs,t−1)/(Cs,t + Cs,t−1). We may therefore write the inter-period change in the level of a

state’s emissions as ∆Cs,t = Cs,t − Cs,t−1 ≈ 0.5(Cs,t + Cs,t−1)∑i Zi
s,t, which our procedure above

disaggregates into components attributable to each factor δi
s,t = 0.5(Cs,t + Cs,t−1)Zi

s,t. Cumulating

each component over time yields the analogue of our chained index numbers, expressed in units

of emissions:

Di
s,t =

t

∑
τ=0

δi
s,τ. (7)

Data on energy use by fuel, sector and state for the period 1963-2008, average CO2 emission

factors, and state CO2 emissions were calculated using energy consumption data taken from the

U.S. Energy Information Administration’s (EIA) State Energy Data System (SEDS). We obtained

state-level time series of population and nominal value added by detailed industry groupings for

the same period from the Bureau of Economic Analysis regional accounts. The latter were aggre-

gated to match the EIA sectoral groupings and converted to real values using the GDP deflator

from the NIPAs.5

3 Stylized Facts

3.1 Aggregate and Regional Trends

The results of (7) are shown in Figure 1. Aggregate emissions doubled over the study period grow-

ing by just under 3 Gt prior to the recession. This increase was driven primarily by the growth

of per capita income, whose impact contributed nearly 5 Gt of added emissions potential, and,

to a lesser extent, population, whose impact increased by just over 2 Gt. The emissions reducing

influence of energy’s emission intensity is modest by comparison at less than 1.4 Gt, while energy

intensity and structural change are more potent inhibiting factors, reducing emissions by 1.8 and

1.5 Gt, respectively, below 1963 levels. These trends indicate that in the absence of these offsetting

impacts US emissions in 2008 would be nearly double their actual level of 5.8 GT, resulting in cu-

mulative emissions over the sample period that are some 55% higher than the actual stock of 215

Gt (cf Metcalf, 2008). The fact that cumulative emissions are 3.2 Gt higher absent either emission-

5The switch in BEA’s tabulation of industry groupings from the Standard Industrial Classification (SIC) to the North
American Industry Classification System (NAICS) posed a particular problem. The two series were concatenated by
aggregating separately from SIC and NAICS to EIA sectors, and then making adjustments to the NAICS series based
on the ratio of SIC to NAICS values for the 1997 base year when the series overlap.
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or energy intensity, and 4.7 Gt higher without structural change, highlights the importance of fuel

switching, energy-saving technological progress and particularly compositional shifts in moder-

ating emissions over the long run (cf Sue Wing, 2008).

Turning to the regional level, the patterns of evolution of CO2 emissions and its five precursors

is broadly similar in character, but of variable magnitude. The Northeast is the only region where

emissions appear to be stabilizing, while their growth is faster but still modest in the Midwest,

and rapid in the West and especially the South. In all regions there are large and positive im-

pacts associated with per capita income, coupled with the emissions reducing impacts of energy

intensity, structural change and the CO2-intensity of energy use.

The direct impact of state or regional emissions targets is not evident in our results as the

earliest adoption of such a plan did not occur until Rhode Island’s emissions target setting in

2002 and the majority of the remaining plans not being implemented until 2007 or later (EPA,

2012). But an interesting observation in these results is the apparent influence of the Clean Air Act

(CAA) in 1970, and its amendments in 1977 and 1990, as indicated by the dashed lines in Figure

1. At all geographic scales total emissions growth deflects downward slightly after these dates.

At the aggregate level this deflection is due to a decline in energy intensity related emissions in

1970 and 1990, and a small decline in structural change related emissions in 1977. Though very

modest, similar deflections in the trend are seen at the regional level with some variation in the

exact mechanism of influence on total emissions.

Far more striking emissions declines follow the 1973 and 1979 oil price shocks indicated by

solid lines in Figure 1. During the crises the price of crude oil increased dramatically from $21.07

per barrel to $58.23 in real terms from 1973 to 1974, and $68.15 to $94.24 between 1979 and 1980

(EIA, 2012). Both events signal marked declines in overall emissions growth that lasted two years

after the 1973 crisis and four years after the 1979 crisis, reducing emissions by 0.3Gt and 0.6Gt

respectively. In the first instance the primary mechanism for the decline is a drop in per capita in-

come as rising energy costs drove down consumer spending and economic output (Edelstein and

Kilian, 2009). The 1979 decline is driven by a fall in energy intensity related emissions with little

or no influence from changes in income, a pattern seen across all regions. Following the collapse

of crude oil prices in the early 1980s, when oil prices fell from over $90 to less than $30 in real

terms (EIA, 2012), emissions begin steady growth, achieving pre-1979 crisis levels by 1988. The
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economic impact of oil price shocks is widely discussed in the energy literature,6 and a detailed

discussion of this finding is outside the scope of this paper. However, our analysis provides some

insight into the response to these price disturbances and shows an economy better able to adapt

to rising oil prices following the 1973 crisis.

3.2 State-Level Trends

Underlying the national results is a great deal of heterogeneity at the state level, which our de-

composition approach makes it possible to characterize. For ease of exposition we examine the

cumulative growth in the emissions contributed by our five drivers over two time periods, 1963-

1985 and 1986-2008, which we summarize as a series of maps in Figure 2.

Panels A and B illustrate the growth of CO2 emissions at the state level. Panels C and D show

the effect of emission intensity, which is more variable at the state than at the regional level. Panels

E and F show the effect of energy intensity, which is generally large and exhibits considerable

heterogeneity, reflecting the geographic variation in energy saving technological change. In the

first period energy intensity change exerts downward pressure on emissions in almost every state.

In the second period there is a fourfold increase in the number of states in which energy intensity

has an amplifying effect on emissions.

Panels G and H illustrate how structural change has slowly but steadily acted to reduce ag-

gregate emissions. Exceptions to this trend are Alaska’s expansion in the first period, followed

closely by the coal states of Wyoming and North Dakota. In the second period Alaska, Wyoming

and North Dakota experience declines and a handful of formerly negative states begin to see their

emissions grow via this path.

The growth in emissions due to rising income in panels I and J is uniformly positive through-

out the sample period. Panels K and L show the influence of population, which has the most

clearly delineated spatial pattern in both time periods, and whose magnitude is second only to

per capita income growth as a contributor to emissions. Throughout the duration of the dataset

this effect is unsurprisingly largest in California, Texas and Florida.

6See Hamilton (1983); Burbidge and Harrison (1984); Mork (1989); Bohi (1991); Mork et al. (1994); Hamilton (2003);
Jimenez-Rodriguez and Sanchez (2005); Blanchard and Gali (2007)
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Figure 2: Cumulative Increase in State-Level CO2 Attributable to Emissions Precursors (MT)
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Figure 2: Cumulative Increase in State-Level CO2 Attributable to Emissions Precursors (MT)—
continued
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3.3 Interstate Convergence of Growth in Emissions and Their Precursors

Given the foregoing results it is useful to ask whether states’ contributions to emissions along

the five dimensions are becoming more or less similar over time. Answering this question yields

fresh insights into the underpinnings of Aldy’s (2007b) finding of interstate divergence in per

capita emissions.

To more rigorously characterize the implications of these patterns, we employ the methods

used by List (1999), Strazicich and List (2003) and Aldy (2007b) to test for convergence among

state per capita emissions. We first test for “absolute” or σ-convergence (Barro and Sala-i Martin,

1992) by examining whether the dispersion of each factor across states is decreasing over time.

Our statistic of choice is the coefficient of variation (CV), which in each period expresses the in-

terstate variance of each factor as a fraction of the mean of all states. The result is that states

σ-diverge along every dimension. Figure 3A shows that the interstate dispersion of the indexes

of per capita income’s influence increase only slightly, while population’s effect continually and

strongly diverges throughout the sample period. The dispersion of the remaining precursor in-

dexes continues to increase post-1985, but at a markedly slower rate, while the CV of structural

change effect exhibits non-monotonic behavior, rising slowly at first before jumping upward in

the wake of the OPEC oil price shocks, fluctuating and then declining into the 1990s before slowly

rising once more.

Next, we examine the stochastic convergence of the factors of emissions. In contrast to the

familiar cross-sectional concept of β-convergence, stochastic convergence is a time-series concept

in which economies are said to have converged if the disparities between them follow a zero

mean stationary process, which is more appropriate for the analysis of index numbers of the type

we construct here.7 The practical elaboration of this condition is that the logarithm of the ratio of a

particular factor at the state level to the U.S. mean is stationary. We test each of our factors for this

7With β-convergence, economies which start out with high values of a particular factor will tend to grow relatively
slowly, while those with low values at the beginning of the sample period will tend grow relatively quickly, and as a
result exhibit “catch-up” behavior. If economies are identical in terms of the attributes that determine the factor in ques-
tion, so that all possess the same steady state, then we should see “absolute” or “unconditional” β-convergence, which
is a necessary condition for σ-convergence. A more likely situation is “conditional” β-convergence, where economies
possess different steady states and therefore converge to different equilibrium levels of the factor, but, conditional on
one or more attributes being the same across economies, absolute convergence would be attained. The difficulty that
arises in applying these concepts to our index number series is that the latter are constructed to have the same base of
unity, which makes the assessment of catch-up problematic. Tests for stochastic convergence thus provide a convenient
means to circumvent this problem.

11



Figure 3: Convergence in CO2 Emissions and Precursors
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A. σ-Divergence: Coefficients of Variation of Indexes of Emissions and Precursors

t statistic

Variable 1963-2008 1986-2008

Emission Intensity (log relative Ξ̃) -1.893** -2.485***

Energy Intensity (log relative Φ̃) -1.633 -1.898***

Structural Change (log relative Θ̃) -1.576 -1.734***

Per Capita Income (log relative Ĩ ) -1.615 -1.093

Population (log relative Ñ ) -0.371 -0.853

CO2 Emissions (log relative C̃) -1.745*** -2.042***

Critical values: * 10% -1.64 , ** 5% -1.67, *** 1% -1.73.

B. Stochastic Convergence: Im, Pesaran and Shin Test of Log Indexes
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using the statistical procedure developed by Im et al. (2003), which is a test of the null hypothesis

that the series has a unit root (for details, see Strazicich and List, 2003).

Our results in Figure 3B are an important qualification of Aldy’s findings. Interestingly, over

the period 1963-2008 the null is decisively rejected for the contributions of CO2 intensity and for

overall emissions. Simultaneously, however, states are becoming less similar in terms of the con-

tributions to emissions of energy intensity, compositional change, affluence and population. Split

sample tests provide statistical confirmation of the apparent saturation in our index numbers’

CVs in the post-1985 period. The corresponding t statistics attest to the stronger influences of CO2

intensity, energy intensity and, in this more recent period, the impact structural change on the

convergence of the trends in states’ emissions. These results suggest that Aldy’s finding of inter-

state divergence in per capita emissions is due to divergence in the growth of states’ populations

and, to a lesser extent, per capita incomes, whose effects outweigh convergence in the growth of

the remaining precursors, and ultimately emissions themselves.

The implications for future aggregate emissions and their regional distribution are not imme-

diately clear. Establishing what the likely patterns are in that regard is the question to which we

now turn.

4 Future Aggregate and Regional CO2 Emissions

We utilize the large amount of data generated by our decomposition analysis to construct a 27-

year forecast of CO2 emissions. Instead of estimating the average covariation between income

and emissions across all states, as Auffhammer and Steinhauser (2007, 2010) do, we exploit the

joint covariation among all of the emission precursors in each state, generating 51 independent

state-level projections which we then combine to produce an aggregate emissions forecast. Our

approach is to econometrically estimate the covariance among factors by running the following

vector autoregression (VAR):

log Z̃s,t = As +
L

∑
`=1

Bs,` log Z̃s,t−` + us,t (8)

where A and B are 5× 1 and 5× 5× ` matrices of parameters to be estimated, and our default
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lag-length is set at L = 2 to conserve degrees of freedom. Following the logic of our discussion

in Section 2, the projected values of each index number embody both the fundamental time-trend

in the underlying variable and its contribution to the trend in aggregate emissions. This obviates

the inclusion of spatial lags of the covariates, allowing each state VAR to be run independently of

the others. The fundamental advantage of our VAR approach is that it is entirely self-contained,

with no need to rely on exogenous projections of the future growth of population and GDP (cf

Auffhammer and Steinhauser, 2010) or emission- and energy intensity (Yang and Schneider, 1998).

Running the regression (8) in logarithms constrains the forecast values of the emission pre-

cursors (Z̃?) to be strictly positive, while allowing them to be readily converted into total CO2

emissions by running our decomposition algorithm in reverse. In particular, eqs. (4)-(5) imply

that in forecast year T + k the growth rate of emissions at the state level is given by

G?
s,T+k = ∆ log C̃?

s,T+k = ∆ log Ξ̃?
s,T+k + ∆ log Φ̃?

s,T+k + ∆ log Θ̃?
s,T+k

+ ∆ log Ĩ ?
s,T+k + ∆ log Ñ ?

s,T+k (9)

which allows us to project the levels of states’ future CO2, C?
s,T+k, by chaining together the sum of

the first-differenced logarithms of the forecast values of their emission precursors, starting with

last year in which emissions are observed (T = 2008). Following eq. (6):

C?
s,T+k =

T+k

∏
τ=T+1

(
2 + G?

s,τ

2− G?
s,τ

)
Cs,T. (10)

The aggregate emissions forecast at T + k is then simply the sum of the state emission projections

in that year: C ?
T+k = ∑s C?

s,T+k.

To conserve space we consign the voluminous detailed parameter estimates to an online ap-

pendix.8 The fit of the model to our computed index numbers is generally good (R-sq. > 0.5), with

tests of the eigenvalues of the fitted system indicating stability (covariance stationarity and invert-

ibility with an infinite-order vector moving-average representation) of our basic specification in

44 states. For the states failing the stability test (Kansas, Louisiana, Missouri, Nebraska, Pennsyl-

vania, S. Carolina and Wyoming) we conducted systematic specification searches to uncover the

8http://www.jamesgeorgebaldwin.com/research/var_results.html
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most parsimonious stable lag structure. This ended up being a lone second-order lag in the case

of S. Carolina, and a second-order lag with the addition of a time trend for the rest.9

Based on these estimates we construct dynamic forecasts of the emissions precursors at the

state level out to the year 2035. The resulting 30-year growth of the indexes of states’ CO2 emis-

sions and their precursors are shown in Figure 4. The contribution of CO2 intensity is generally

small in magnitude and, with the exception of 13 states (most notably Arkansas and Oklahoma),

tends to attenuate emissions growth. Energy intensity’s overall impact is similar but more pro-

nounced, while the contribution of change in industrial composition is about the same magnitude

but more uniformly negative in its impact (except in Nebraska). The contributions of per capita

income and population are both large and overwhelmingly positive, and are the dominant influ-

ences on the projected growth of states’ CO2 emissions, which are forecast to more than double in

Nevada and Virginia and more than triple in Georgia and New Hampshire. The implications of

the aforementioned interstate divergence in income and population are apparent in the particu-

larly rapid growth of emissions in the South (Georgia, Missouri, Virginia and the Carolinas) and

the West (Colorado, Nevada, Utah and Washington).

The 95% confidence bounds of the projected annualized rates of growth of our precursors and

the resulting emissions of CO2 at the state level are available as an online appendix10 The forecast

confidence bounds are generally tight, with a tendency for the growth rates for population and

per capita income effects to be bounded away from zero. This is less true for energy intensity,

structural change, and particularly CO2 intensity, which does not exhibit statistically significant

change in one third of the states. Forecast confidence intervals for the future trajectory of state-

, regional- and aggregate-level emissions were constructed using the delta method11 (see online

9Unit root tests on our state-level index number series indicated that the overwhelming majority of these variables
are I(1). Mindful of the potential for spurious regression, we conducted cointegration rank tests of eq. (8). We then
re-estimated our VARs as vector error-correction models. However, this yielded no improvements in stability, and
although the resulting forecast means closely matched those from the VAR in levels, the standard errors were so large
as to render the estimates unusable in constructing confidence intervals for future emissions. Following Lin and Tsay
(1996) and Allen and Fildes (2005), we do not resort to running (8) on the first-differenced series. And since it has long
been known that cointegration constraints may fail to improve long run forecasts in practical settings (Lin and Tsay,
1996; Hoffman and Rasche, 1996; Christoffersen and Diebold, 1998), we opt to retain the unconstrained VAR in levels
as our preferred specification.

10 http://www.jamesgeorgebaldwin.com/research/forecastbounds.htm
11Nonstationarity in the state-level index numbers is a potential source of error in in the calculation of the standard

errors from the VAR procedure, and thus the resulting forecast confidence intervals which our future research will seek
to refine.
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Figure 4: 2008-35 % Change in State-Level Indexes of CO2 Emissions and Precursors

CO2 Intensity Energy Intensity Structural Change
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appendix 12 ) . The results for CO2 are equivocal in two fifths of the states, positive in 29 states and

negative in four states.

The implication of the spatiotemporal evolution of CO2 precursors for the future trajectory

of U.S. emissions is illustrated in Figure 5 and Figure 6. The implications of σ-divergence can

be seen in panel A, where the 2008-2035 increase in the convexity of the schedule of rank-ordered

state emissions suggests that under future climate mitigation policies, the interstate distribution of

baseline emissions, CO2 abatement and associated primary economic burdens will be moderately

more unequal compared to the present. Panel B shows that the estimated interrelationships among

our five drivers suggest that aggregate emissions will continue to increase at average annual rates

of 0.5-1.1%, with the result that 2035 emissions will be 16-33% higher than their 2008 levels. Over

the period 2009-2035 we project cumulative emissions of 182 GT of CO2. The attenuating effects

of energy intensity and structural change each reduce cumulative emissions by about 18 GT, with

the result that cumulative CO2 would be some 22% higher had the influences of these precursors

remained at 2008 levels.

By comparison, 2035 emissions in the 2010 Annual Energy Outlook (AEO) reference case fore-

cast are 12% lower than our mean projection. This difference is unsurprising given that our data

series do not capture the unprecedented declines in output and energy use associated with the se-

vere recession of 2009-10. The fact that emissions in 2009 were 7% lower than in 2008 (U.S. Energy

Information Administration, 2010) makes us confident that updating our procedure as new data

are released will bring the two sets of forecasts into closer agreement. But even so, EIA forecasts’

tendency to overpredict energy intensity while underpredicting GDP (Auffhammer, 2007), and

understate aggregate final energy (Fischer et al., 2009) suggest that the gap will not be entirely

eliminated. Moreover, Figure 6 indicates that may be a persistent geographic component to such

divergence. Although our confidence intervals overlap the AEO’s forecast uncertainty regions

over much of the country, we project substantially faster emissions growth in the East North Cen-

tral, South Atlantic and East South Central regions. While the origins of this discrepancy are not

clear, our own results nonetheless highlight the usefulness of our methodology in generating an

empirically-grounded benchmark against which other long-run forecasts may be compared. The

key policy implication is that, barring unforeseen major structural shifts in the US economy, over

12http://www.jamesgeorgebaldwin.com/research/CIcalculation.pdf
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Figure 5: Projected CO2 Emissions (MT)
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the next quarter century aggregate emissions of carbon dioxide will continue to rise—and will

likely do so more rapidly than official forecasts currently project. While all forecasts that make

use of historical trends are subject to potential unexpected changes in technological, political or

economic circumstance, the consequence of this baseline projection is an even greater challenge to

state and federal policy makers in addressing climate change than is currently anticipated.

5 Conclusion

The evolution of carbon dioxide emitted by the US over the last 45 years suggests that reducing

energy-related emissions is likely to be a great challenge. In this paper we have undertaken an

index number decomposition analysis based on an extended Kaya-identity that apportions the

growth of CO2 among five key driving forces. We find that at both the national and regional

levels, growth of per capita income and especially population have been the major determinants

of the increase in emissions, outstripping the principal mitigating influences of declining energy

intensity and changing composition of output. The upshot is that emissions have largely stabilized

in the northeast and grown slowly in the Midwest, while experiencing robust expansion in the

south and west of the country. Despite considerable state-level heterogeneity in the trends in

our precursors, the cumulative growth of states’ emissions appear to be converging stochastically,

driven by interfuel substitution, and, recently energy efficiency improvement and compositional

shifts.

To assess the implications of these trends we developed a novel VAR forecasting methodol-

ogy which employed our historical index number series as inputs to generate state and national

emission projections to the year 2035. The results of our forecast indicate increasing dispersion

in the interstate distribution of baseline emissions, suggesting that the abatement and economic

burdens of any future emissions reduction policy is likely to be increasingly unequal. Owing to

the effects of the 2009-10 recession, our aggregate emission projection is somewhat higher than the

official AEO 2010 forecast. While the two sets of forecasts share many similarities at the level of

U.S. regions, they tend to diverge in the south and central portions of the country. Finally, at both

the regional and aggregate levels our forecast confidence intervals are comparable in magnitude

to the economic growth uncertainty in the AEO.
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