NO SUCH LOOK: PROBLEMS WITH THE DUAL CONTENT THEORY
(Forthcoming in Phenomenology and the Cognitive Sciences)

Walter Hopp
Boston University

Abstract:
It is frequently alleged that a round plate viewed from an oblique angle looks elliptical, and that
when one tree is in front of another that is the same intrinsic size, the front one looks larger than
the rear one. And yet there is also a clear sense in which the plate viewed from an angle looks
round, and a clear sense in which the two trees look to be the same size. According to the Dual
Content Theory (DCT), what explains these and other similar phenomena is that perceptual
experiences present us with two different sorts of spatial properties: intrinsic and perspectival
spatial properties.

I will argue that the Dual Content Theory is false because it rests on flawed
phenomenological descriptions of the experience of spatial properties. The only conditions under
which a plate tilted away and an ellipse look alike, or two objects which are different in size look
the same size, is when at least one of the objects being compared is misperceived. I will consider
several responses to the arguments I present, and conclude by suggesting that abandoning DCT
would constitute an improvement upon Noë’s enactive theory of perception.

It is frequently alleged that a round plate viewed from an oblique angle in some sense looks like
an ellipse, and that when one tree is in front of another that is the same intrinsic size, the front
one in some sense looks larger than the rear one. If you were to draw those trees, after all, the
figures representing the trees would differ in size. If you were to depict the round plate, you
would represent it accurately by drawing an ellipse. And yet there is also a clear sense in which
the plate viewed obliquely looks round, and a clear sense in which the two trees look to be the
same size. According to the Dual Content Theory (DCT), versions of which have been defended
by Michael Tye, Alva Noë and Susanna Schellenberg, what explains these and other similar
phenomena is that perceptual experiences present us with two different sorts of spatial
properties: intrinsic spatial properties and perspectival or situation-dependent spatial properties.1

“Perceptual content,” writes Noë, “has a dual aspect. There’s the way the experience presents the
world as being, as it were apart from your perspective … And there is the way the world is
presented in experience” (Noë 2004: 163).

I will argue that the Dual Content Theory is false because it rests on flawed
phenomenological descriptions of the experience of spatial properties. The only conditions under
which a plate tilted away and an ellipse look alike, or two objects which are different in size look
the same size, is when at least one of the objects being compared is misperceived. For example,
round objects tilted away do not look elliptical when they are perceived veridically; rather, they
look the way things which just happen to be elliptical when the latter look, nonveridically, to be
round and tilted away. If DCT is correct, however, the plate ought to look elliptical, and the two

1 See Noë 2004 and Schellenberg 2008. Similar ideas have been put forward by in Harman 1990 and Tye 2000. The
latter writes, “The nearer tree (or its facing surface) is represented as being larger from here, while also being
represented as being the same objective size as the further tree” (78).
trees ought to look different in size, even in veridical situations. I will consider several responses to the arguments, and conclude by suggesting that abandoning DCT would constitute an improvement upon Noë’s enactive theory of perception.

1. The way a round plate appears changes as I walk around it. It does not, however appear to undergo any intrinsic changes. Its intrinsic shape and size perceptually appear to remain constant. And yet, some insist, as I view the plate from different angles, the plate also appears to change in shape or size. “Certainly when one’s location in relation to an object changes,” writes Susanna Schellenberg, “one is typically aware of something changing regarding the shape or size of the object” (Schellenberg 2008: 78). Again, when I view the plate from an angle in normal conditions, it looks round. Yet it also, some prominent philosophers insist, looks elliptical. “The plate looks to be circular (it really does),” says Alva Noë, “and it looks elliptical from here (it really does).” Or again, if you see two trees of the same size but different distances from you, the closer one will “look[] larger to you,” even when “you see that they are roughly the same size” (Noë 2004: 79, my emphasis)—that is, the trees will both visually look and not look to be the same size.

If these descriptions are correct, it would seem that the contents of many of our visual experiences are incoherent. This is what Charles Siewert calls the “Problem of Contradictory Visual Appearances” (Siewert 2006: 5). The Dual Content Theory (DCT) constitutes a rather ingenious attempt to preserve what is correct in the descriptions above while avoiding the Problem of Contradictory Visual Appearances. According to DCT, we must recognize two distinct kinds of mind-independent spatial properties: intrinsic spatial properties and situation-dependent or perspective spatial properties. This is not a distinction between properties objects actually have and properties they merely appear to, but do not, have (Schellenberg 2008: 63). Nor is it a distinction between properties that perceptually appear and those which do not. Rather, objects possess both sorts of properties, and we typically perceive both sorts of properties.

This, according to defenders of DCT, resolves the Problem of Contradictory Visual Appearances without phenomenological cost. When I view a plate from an oblique angle, it appears to be elliptical and it appears to be round. Furthermore, the experience is not incoherent, nor need any part of its content be nonveridical, because the plate is elliptical and round. More precisely, as Noë puts it, the plate is both intrinsically round and perspectivally elliptical or “elliptical from here” (Noë 2004: 123), and that is just the way it appears to be. “Your experience presents you with the circularity of the plate, but also with the elliptical shape it presents from here” (Noë 2004: 163). Michael Tye writes that in experiencing a tilted coin as both round and elliptical from a given position, “no illusion is present” (Tye 2000: 79). The fact that the plate appears elliptical from here, far from being illusory, not only captures the way it is, but is necessary for it to look intrinsically circular from that perspective. As Noë says, “we experience the plate as circular precisely because we encounter its elliptical look from here” (Noë 2004: 78).

Again, an experience that presents two trees with the same intrinsic size as different in size will be correct when one tree is further away than the other. As Schellenberg puts it, “there is nothing illusory about representing the trees to be presented as different in size given the

2 Noë 2004: 164. Also see Tye, according to whom a tilted coin “looks round,” but also “looks elliptical from the given viewing position” (Tye 2000: 79).
situation. Indeed, given the situation, representing the trees to be presented as different in size is correct” (Schellenberg 2008: 70). Once we distinguish perspectival spatial properties or “P-properties,” which Noë characterizes as “the apparent shape and size of objects” (Noë 2004: 83), from intrinsic properties, and the dual contents of perception in virtue of which they are presented, we can appreciate how such claims can be true.3

There are a number of interesting and important differences among the various versions of DCT. For instance, one may understand perspectival spatial properties to be two-dimensional projections on a plane perpendicular to the line of sight, as Noë does. One might define perspectival properties counterfactually in terms of such projections, which, as René Jagnow points out, is Tye’s strategy.4 Or one might characterize such properties in terms of objects’ angular size and angular shape relative to points in space, as Michael Huemer does.5 The role of perspectival properties in the phenomenology of perceptual experience is also disputed. Both Noë and Schellenberg, for instance, appear to hold that perspectival spatial properties are perceived more directly than intrinsic spatial properties. Tye, to my knowledge, makes no such claim. Furthermore, there does not appear to be a general consensus regarding their role in determining the way an object perceptually appears. According to Noë, for instance, perspectival spatial properties, or “P-properties,” are the way things appear or look (Noë 2004: 85). Schellenberg’s view is more nuanced. While characterizing situation-dependent properties as “the way an object is presented” (Schellenberg 2008: 60), she claims that they are not, like Noë’s P-properties: “analyzed in terms of how things look” (Schellenberg 2008: 60, n.9). On her view, situation-dependent properties are determined solely by an object’s intrinsic properties and the “situational features” such as viewing distance and angle, lighting, and so on (Schellenberg 2008: 60), all of which are mind-independent. This leaves it open that various mind-dependent features of a perceptual experience help determine the way an object perceptually appears, and Schellenberg expressly endorses that claim (Schellenberg 2008: 59).

Different versions of DCT, then, provide different accounts of (a) what the non-intrinsic spatial properties we perceive are and (b) exactly how the intrinsic and non-intrinsic spatial properties contribute to the phenomenological character of visual experiences. As interesting as these differences are, my objections against DCT target commitments held by every version of

3 One important difference between Schellenberg’s account and those of Noë and Tye is that, on her view, in perception we are aware of both intrinsic and situational properties without, however, often being able to tell which properties are intrinsic and which are situational. See Schellenberg 2008: 68.
4 See Jagnow forthcoming, 7-8. Tye writes: “Here the represented feature is that of having a shape that would be occluded by an ellipse placed in a plane perpendicular to the line of sight” (Tye 2000: 79).
5 The angular size of an object from p is the size of the visual angle whose vertex is at p and whose intersecting lines connect to the object’s extremities. We can then characterize an object’s perspectival shape (or “angular shape”) as determined by the totality of all such visual angles generated by every pair-wise taking of its parts. Two objects A and B will have the same perspectival shape when “for each pair of parts of A, there is a corresponding pair of parts of B, such that the distances between any two parts of A are in fixed proportion to the corresponding parts of B” (Huemer 2001: 121).
6 Noë writes, “perception has two moments, the encounter with how things appear and the encounter with how things are. We experience the world by experiencing how it looks” (Noë 2004: 85). Schellenberg argues for a different but related claim, namely that our perceptual knowledge of an object’s intrinsic properties is epistemically dependent on our perceptual knowledge of its situation-dependent properties, a claim that is supported by the intuition that “one perceives an object’s intrinsic properties because of the way the object is presented” (Schellenberg 2008: 75). Accordingly, “the question of how subjects can have perceptual knowledge of objects cannot be answered by insisting that we perceive intrinsic properties directly” (Schellenberg 2008: 58).
the view. According to DCT, the content of our veridical visual experiences of size and shape is dual.

This means that, first, both intrinsic and relational or perspectival sizes and shapes exist.

Second, both sorts of spatial properties are presented to us in perceptual experience. We do not, according to DCT, typically experience one sort of spatial property and infer, think about, or otherwise nonperceptually represent the other type of spatial property. DCT is not just a theory of how things seem when we perceive spatial properties, or what we infer or think or judge on the basis of such experiences. It is a theory of how things perceptually look when we perceive spatial properties.

Third, both sorts of spatial properties are typically perceptually experienced simultaneously, and in normal cases are experienced veridically. Although we may not attend to both sorts of properties equally, they are both presented in experience at the same time.

As we will see, my objections to DCT will seriously undermine even the weaker view that retains only the first two commitments above. Not only is there no good reason to think we are perceptually aware of perspectival shapes and sizes and intrinsic shapes and sizes at the same time, there are no good reasons to suppose that perspectival shapes and sizes exist at all, in which case they are never the objects of veridical sensory experiences.

2. My first argument against DCT is quite straightforward:

1.1 If DCT is true, then there are cases in which a round plate D perceived from an angle looks like an ellipse E viewed perpendicularly to the line of sight when the intrinsic shape of each is perceived veridically.

1.2 There is no case in which D looks like E when the intrinsic shape of each is perceived veridically.

1.3 So, DCT is false.

I will argue instead that the only conditions under which D looks like E is when either D looks, nonveridically, to be intrinsically elliptical, or when E looks, nonveridically, to be intrinsically round and tilted away.

When the defenders of DCT claim that a round plate D looks elliptical when tilted away, I take this to imply that D looks the way ellipses sometimes do. That, at any rate, had better be part of the story. It would be more than slightly odd to claim that something looks red, for instance, but does not look like things which are red. Similarly, it would be quite odd to claim that D looks elliptical, but that it doesn’t look the way any ellipses do. That would only be true if ellipses did not ever look elliptical. Ellipses do, however, sometimes (but not always) look elliptical. That D looks the way ellipses sometimes do cannot quite be the whole story, however. Two complications present themselves.

First, statements such as “S looks elliptical” do not entail that S’s shape looks any particular way, since the things which are and look elliptical, namely ellipses, do not have just one way of looking, even if we confine ourselves to veridical cases. We normally see all objects, even two-dimensional ones, as being at some distance-in-depth and orientation relative to us, and how those relational properties are presented can affect how an object’s spatial properties look in

7 Sean Kelly claims that, on Noë’s view, “we always experience both the real and the apparent property of an object” (684). Although Kelly, as we will see, agrees that we can experience both intrinsic and apparent properties, we cannot experience both simultaneously. Kelly’s view, then, does not qualify as a version of DCT as I understand it. Nor, of course, does it qualify as a version of the view as he understands it.
profound ways. This is true even of two-dimensional figures. Consider this ellipse:

![Figure 1](image-url)

Figure 1

Your present experience most likely presents Figure 1 as being some distance away from you, and probably presents that distance fairly specifically. Even if it looked to be on your eye, that would just be a special case of looking some distance away, just as, in the case of touch, “touching me” is an answer to the question how far away something is. There are also many different distances and orientations at which you could perceive Figure 1. If you orient it at different angles to your line of sight, or move it closer to you, you will likely experience it as remaining constant in shape and size despite the fact that it looks differently from each orientation and distance. We cannot, therefore, fully capture the phenomenological character of any experience of shape merely by saying that something “looks elliptical,” since ellipticality is the shape that ellipses appear to have when they appear, throughout their manifold ways of appearing, elliptical. I will assume in what follows that what the defenders of DCT have in mind

8 See Briscoe 2008 for an excellent discussion. Schellenberg maintains that while distance and orientation are among the situational features upon which the way an object is presented partially supervenes, they need not be among the properties represented in an experience. Accordingly, “subjects can perceive the trees to be different in size given their location, without being aware of their location with respect to the trees” (Schellenberg 2008: 68). It seems to be Schellenberg’s view that there are certain spatial properties, namely the situation-dependent ones, which will appear the same no matter which distance and orientation our experiences present their objects as having, provided that the actual distance and orientation remain constant. The examples which follow will, I think, cast this claim into considerable doubt with respect to both shape and size. Schellenberg is, however, undoubtedly right to claim that we are not always presented with the precise distance and orientation of an object. It’s also the case that we do not need to perceive those features precisely in order to see shapes. Our experience of the moon, for instance, presents it as round, even though it does not present us with its precise distance. It is not silent about its distance, however. There are a lot of possible answers to the question “How far away is the moon?” that can be ruled out on the basis of visual experience, such as “at the tip of my eyelash” or “between that tree and me.” Furthermore, the indeterminate way in which we perceive the moon’s distance largely accounts for the fact that its intrinsic size is presented so indeterminately. It also explains, in part, the fact that our perception of its shape is nonveridical. It looks flat, though it’s a spheroid. In order for it to appear veridically, our experience would have to present its center as closer to us than its edges.

9 Even when an object’s parts appear to be located on a plane oriented at a right angle to the line of sight, some of its
in saying that something “looks elliptical” is best illustrated with reference to the way ellipses look under optimal conditions, and that those conditions obtain when an ellipse is at a right angle relative to the line of sight.

The second complication involved in saying that something “looks elliptical” is that not everything that is in fact an ellipse looks elliptical. Although the claim that ellipses sometimes do not look elliptical is, in my experience, sometimes met with surprise, it is easy to verify that two-dimensional figures are not always perceived veridically. They are not even perceived veridically more readily than three-dimensional objects are, despite having all of their parts in view. There are some two-dimensional figures which our visual systems typically refuse to present veridically, even when those figures are viewed at a right angle to the line of sight, in good lighting, and so on. Consider Necker Cubes (sic).

Figure 2 looks cubical, but it is, quite obviously, not a cube. Let us call this sort of shape a “schmube.” Schmubes are rarely perceived as being schmubical—I cannot see this one as

parts will appear to be located further away from you than others if the experience is veridical. The wall at which I am now directly looking appears, veridically, to be flat, but its center appears—again veridically—to be closer to me than its edges. If all of its parts looked to be the same distance away, then the wall would look as though it were, like Reid’s visible figures, on the inside of a sphere. Even if all objects look as though they are on a plane perpendicular to the line of sight—a doctrine remarkable both for its open defiance of plain phenomenological fact and for the allegiance it has commanded—this cannot be because we do not perceive depth at all or because all objects appear to be at one distance-in-depth, since even the parts of such a plane will neither be nor appear to be the same distance from our eyes.

One reason is that it is part of the phenomenology of our visual perception of three-dimensional objects that they not only just happen to have hidden parts, but they look like they have hidden parts. Having hidden parts that could be revealed by changes in orientation is itself something specified by the content of a typical experience of such an object. This claim is not, as A.D. Smith points out, an “incursion into the pure phenomenology of the ‘objective’ knowledge that physical objects have unperceived sides.” Rather, “Physical objects appear like that—i.e. as having more to them than is revealed in one glance—and we take them to be like that” (A. D. Smith 2008: 324). And not having hidden parts—being fully in view—is also part of the phenomenological character of the veridical experience of two-dimensional objects. It affects the way they look. If the content of one’s experience presented a two-dimensional object as having hidden parts and sides, then the two-dimensional object would likely look, nonveridically, to be shaped otherwise than it in fact is.
schmubical no matter how hard I try. Doing so would require me to see all of its lines as being on a plane. Rather, schmubes typically have two different ways of looking. The figure above can look as though the “X” marks the left front corner of a cube or the left rear corner of a cube. But in both cases it looks, nonveridically, cubical rather than schmubical. Tromp l’oeil paintings provide another sort of example in which figures which are two-dimensional stubbornly refuse to look that way. I take this to be a vindication of common sense against Hume, according to whom “all bodies, which discover themselves to the eye, appear as if painted on a plain surface” (Hume 1978: 56). If that is so, it is for exactly the opposite reason Hume supposes. Ordinary objects look the way accurate two-dimensional paintings of them look, not because the former look two-dimensional, but because such paintings do not. Making things look flat was what painting techniques prior to the development of perspective managed to accomplish.

Now, then, for a defense of premise 1.1. Unlike schmubes, ellipses viewed at a right angle to the line of sight are quite often perceived as being shaped in the way that they are. Like schmubes, however, such ellipses can also look other than they in fact are. For instance, they are sometimes perceived as being intrinsically round, namely when they look, nonveridically, as though they are tilted away from one. I suspect that you can see Figure 1 as a round thing tilted away from you, for instance. If, however, an ellipse looks like that, then it will not look elliptical. Rather, it will look, nonveridically, to be intrinsically round and tilted away.

This should not be the sort of situation that the defenders of DCT have in mind in saying that D looks elliptical. If it were, then the claim that D looks elliptical when it is perceived veridically amounts to the claim that D looks the way something which just happens to be an ellipse looks when the ellipse looks, nonveridically, to be intrinsically round and tilted away. Of course it does. But saying that D looks elliptical under those conditions would be rather like saying that a pink balloon under normal light looks white because it looks the way a white balloon looks under a red light, or that cubes look schmubical, since they look the way things which just happen to be schmubical look when they look, nonveridically, cubical. What we should rather say is that white balloons under red lights look pink, and that schmubes look cubical. Similarly, what we should say here is that the plate D looks round and tilted away. That D looks like something which is elliptical does not entail that D looks elliptical. Rather, in order to look elliptical, it must look like something (or some possible thing) which looks elliptical. Since ellipses only look elliptical when perceived veridically, then if D looks elliptical, it has to look the way an ellipse does when the ellipse is perceived veridically. Furthermore, if DCT is right, then D ought to look elliptical even when its intrinsic shape is perceived veridically. Suppose that D looks elliptical, but not in situations in which it looks, veridically, to be intrinsically round. To take a very salient possibility, suppose that D, despite actually being tilted away, looks as though all of its parts are situated on a plane at a right angle to the line of sight. Under those conditions, D would undoubtedly look elliptical. However, it would look intrinsically elliptical.

This, again, had better not be the sort of situation the defenders of DCT have in mind when claiming that D looks elliptical. First, according to DCT, when we experience a round plate as looking elliptical, we are not under any kind of illusion. Indeed, experiencing it as elliptical is what partly accounts for the fact that we see it to be intrinsically round.11 But seeing a round

11 Some of Noé’s remarks, taken in isolation, suggests that plate’s looking elliptical from here is sufficient for it to look round. “We experience the plate as circular precisely because we encounter its elliptical look from here” (Noé 2004: 78). Encountering its “elliptical look from here” can only be a necessary, not a sufficient condition, of experiencing its circularity, however. We also experience the elliptical look of an ellipse from here, but in doing so
plate as intrinsically elliptical is, obviously, an illusion.

Second, the claim that a round plate which just happens to be tilted away looks elliptical when it is presented, nonveridically, as being intrinsically elliptical is not an interesting claim. Of course it does. But that does not give us any reason to think it looks elliptical when it looks, veridically, to be intrinsically round.¹²

Third, if the plate looked, nonveridically, to be intrinsically elliptical, there would be no need to invoke two kinds of shape properties to account for the phenomenology of the experience. The reason is that when an ellipse looks, veridically, to be intrinsically elliptical, there is no reason to invoke two kinds of shape properties to account for the phenomenology of that experience. As I understand DCT, when an ellipse is perceived veridically at a right angle to the line of sight, this is a special case in which the perspectival and intrinsic sizes “match,” to borrow Schellenberg’s term.¹³ Even granting that there is a metaphysical distinction between the perspectival and intrinsic spatial properties in matching cases, it is difficult to see how we could become perceptually aware of any difference between them on the basis of such cases alone. An experience that presents an ellipse as being intrinsically elliptical and oriented at a right angle to the line of sight, on the one hand, and perspectivally elliptical, on the other, would not seem to have two contents. But if D looks just the way an ellipse looks when an ellipse is perceived veridically, then it will not seem to have two contents either.

Now for a defense of 1.2: D and E do not, contrary to what DCT requires, look alike when each is perceived veridically. I claimed earlier that ellipses do not always look elliptical. The following example¹⁴ shows that this is the case:

¹² Overgaard rightly accuses Tye of a similar mistake. According to Tye, we need to say that the two trees in some sense look the same size because under atypical conditions in which we lose sight of the relative distances, “the nearer tree would still look larger from here” (Tye 2000: 79). Overgaard responds that this example “only shows that when a more distant object no longer appears more distant than a nearer object of the same size, then the former will look smaller than the latter. But this is perfectly compatible with the view that normally, the object further away just looks further away and not smaller” (Overgaard 2010: 278).

¹³ Schellenberg 2008: 61. On the same page, she illustrates this as follows: “Say I am looking at the round rim of a cup from directly above. From such a location, the rim of the cup is presented as round.” She points out, however, that even in matching cases, the situation-dependent property and the intrinsic property are metaphysically distinct. What matching could possibly amount to when it comes to intrinsic size, I do not know. If there is some distance at which an object’s apparent size matches its intrinsic size, it certainly won’t be the same for all objects. Presumably whiskers and specks of dust are best perceived at distances very different from those that are optimal for perceiving skyscrapers, mountains, and the Earth.

Contrast (a) the way the figures in the second of the four columns of Q look with the way the figures in the left-hand column of S look, and (b) the way that the two large figures in the third column of Q look with the way that the figures in the second column of S look. (The corresponding figures in R can be quite easily made to look like either, since R is an ambiguous figure in which the center vertical line can appear, as in Q, like a crease or, as in S, like a corner.) In both cases, the figures compared are qualitatively identical. But thanks in part to the overall gestalts in which they are embedded, their distance and orientation appear to be different. So, as a consequence, do their shapes. The small ellipses in Q and the large ellipses in S look like round things tilted away. The small ellipses in S and the large ellipses in Q do not. They look, rather, to be elliptical.

Which of these sets of ellipses look like our plate D does when D looks, veridically, to be intrinsically round and tilted away? The answer, I think, is the small ellipses in Q and the large ellipses in S—the ellipses, in other words, which look, nonveridically, to be round and tilted away. D, when perceived veridically, would not look much like the small ellipses in S or the large ellipses in Q at all. If our friend E were one of those ellipses, the claim that D looks like E would be false. But since those are the ellipses which look, veridically, to be elliptical, those are just the ones that ought, by DCT’s lights, to look like D. DCT, therefore, is false. It seems as though the only time a round thing and an ellipse look like one another is when one or the other does not look the way it is.

The claim that round things tilted away sometimes look the way ellipses do is true. But since ellipses have more than one way of looking, this is an elliptical way of saying that round things share one of those ways of looking with ellipses. Once we disambiguate this claim, however, we can see that the defenders of DCT face a dilemma: if they claim that the plate D looks like E when E looks, veridically, to be intrinsically elliptical, then what they say is false. And if they say that the plate looks the way E looks when E looks, nonveridically, round and tilted away, then there is nothing even apparently incoherent about the content of the experience of a plate, and therefore no need to posit two contents of experience to reconcile the apparent conflict. There is, instead, a rather elegant single-content (or rather single shape content).
explanation: the plate looks like a round thing tilted away from you, and E looks like a round thing tilted away from you. This description not only has the benefit of being phenomenologically accurate, it also does not require us to perceive anything we didn’t already know that we perceive, namely the intrinsic spatial properties of an object and the (situation-dependent) distance and orientation of its parts. Finally, it provides experiences with contents that are not only coherent (albeit nonveridical, in some cases), but which do not even seem to be incoherent.

3. My second argument against DCT deals with the apparent size, rather than apparent shape, of objects. Before I present it, consider the following scenario. Suppose that you look down a tunnel and see an enormous, terrifying ghoul BG in pursuit of another, much smaller one SG. Suppose further that from where you stand upon first observing them, BG is just the right distance away from you to subtend exactly the same angle of your visual field as SG. An accurate two-dimensional image of the scene would contain two ghoul-images, Image\textsubscript{BG} and Image\textsubscript{SG}, of precisely the same size.

Here is the argument:

2.1 If DCT is true, then ghoul BG looks the same size as SG when their relative intrinsic sizes are perceived veridically (i.e., when BG looks intrinsically bigger than SG).

2.2 If BG looks the same size as SG when their relative intrinsic sizes are perceived veridically, then two accurate images of them Image\textsubscript{BG} and Image\textsubscript{SG} look the same size.

2.3 Image\textsubscript{BG} and Image\textsubscript{SG} do not look the same size.

2.4 Therefore, DCT is false.

As we have seen, the defenders of DCT distinguish perspectival and intrinsic size. Many of them also provide fairly clear criteria for determining the perspectival size of an object, and according to many of those criteria, the two ghouls BG and SG should have the same perspectival size under the conditions described above. According to Noë, for instance, “The P-shape is the shape of the patch needed to occlude the object on a plane perpendicular to the line of sight” (Noë 2004: 83). Given some distance \(d\) on which such a plane is situated, the patch required to occlude BG will be the same size (and shape) as the patch required to occlude SG. They also have the same perspectival size if perspectival sizes supervene on visual angles, since the two ghouls do, by hypothesis, have the same visual angles from the viewing position. So, by these criteria, BG and SG have the same perspectival size, and to that extent look, in some phenomenologically salient way, the same size.

Furthermore, they should look the same size when each is perceived veridically; that is, they should look the same perspectival size even when we can see that one ghoul is intrinsically larger than the other. The defenders of DCT, after all, are trying to describe the phenomenological character of the veridical perception of size. Just as it is a veridical case of perception to see the two trees A and B—which, recall, are the same intrinsic size but situated at different distances—as being both the same intrinsic size and different in perspectival size, this should be a case in which SG and BG appear to be different (intrinsic) sizes and the same (perspectival) size.

As for 2.2, I assume that when a two-dimensional image of a three-dimensional scene is accurate, that is because the image looks like the scene it depicts. Care is needed here, of course; images do not typically look exactly like the scenes that they depict, especially when it comes to
size. With apologies to the extraordinarily small among us, a wallet-sized photograph of someone does not look the same intrinsic size as the person that it is of. Nevertheless, there is plainly a phenomenologically salient and unmistakable way in which accurate two-dimensional images look like the things they represent. Furthermore, an image of two objects, even if it does not even approximately depict their intrinsic sizes, can faithfully represent their relative intrinsic sizes. A good two-dimensional image is capable of representing whether one object is larger than another, for instance, and how much larger it is.

Now, finally, for the defense of 2.3:

![Figure 4](image)

Here are Image$_{BG}$ and Image$_{SG}$. They’re the same size. They don’t look it.\(^\text{15}\)

This argument might seem to suffer because, while Image$_{BG}$ and Image$_{SG}$ do indeed look different in size, that is only because our perceptual experience of Figure 4 is nonveridical. But if that is so, then Figure 4 is not an *accurate* image. This objection, however, rests on a mistake. Accurate two-dimensional images of three-dimensional objects do not have to be perceived veridically. Two-dimensional images most resemble three-dimensional objects precisely when they are *not* perceived veridically—when, in particular, they do not look two-dimensional. Schmubes, for instance, resemble cubes because their parts do not appear to be on a plane, even though they are. If we saw schmubes veridically, then schmubes would not, for us, serve as accurate images of cubes. And ellipses look most like round things tilted away precisely when they do not look two-dimensional, but look round and tilted away. If you were to perceive Figure

\(^{15}\) “Terror Subterra,” in Shepard 1990: 47. Note that since the two images themselves have identical visual angles and would be occluded by patches of the same size, they should look the same size. That they don’t is itself an argument against DCT.
4 veridically, then it would then fail to look like BG and SG when they are perceived veridically. Under those conditions, Image\textsubscript{BG} and Image\textsubscript{SG} would look to have the same intrinsic size and be located on the same plane, which is not how BG and SG look.

Another way to think of the case against DCT’s account of the perception of size is to frame the present argument more along the lines of the first argument regarding shapes. Since Figure 4 does accurately represent the relative sizes of BG and SG, Image\textsubscript{BG} and Image\textsubscript{SG} do look to differ in intrinsic size. And, according to the most explicit criteria laid down by defenders of DCT, there is also a phenomenologically important way in which BG and SG look the same size. It should, therefore, be possible to represent them accurately by means of two things which are the same size and which look, veridically, to be the same size. This latter point is important, as we know: what makes it the case that BG and SG look the same size cannot be that they look the way two things which just happen to be the same size look when the latter look, nonveridically, to differ in size. Fortunately, it is possible to represent the relative sizes of BG and SG accurately by means of two images which are the same size. However, the only conditions under which that is the case are those in which those images look, nonveridically, to differ in intrinsic size. If their intrinsic sizes were perceived veridically, then for that very reason they would not look like BG and SG do when they are perceived veridically. That is:

3.1 If DCT is true, then BG and SG look the same size in conditions C, even when their relative intrinsic sizes are perceived veridically.
3.2 If BG and SG look the same size in C when their relative intrinsic sizes are perceived veridically, then they look the way two images which are the same size (Image\textsubscript{BG} and Image\textsubscript{SG}) look when those images are part of an image that accurately represents how BG and SG look, when perceived veridically, in C, and when Image\textsubscript{BG} and Image\textsubscript{SG} are themselves perceived veridically.
3.3 But Image\textsubscript{BG} and Image\textsubscript{SG} do not look like BG and SG when each pair of objects is perceived veridically.
3.4 So, DCT is false.

Once again, I think the advocate of DCT has fallen prey to a phenomenological illusion. Figure 4 looks the way real things in the world look—or, rather, it looks the way real things would if the world were teeming with terrifying, bald, naked ghouls. Are we then entitled to conclude that, because the ghoul-images are the same size, the real ghouls would perceptually look the same size? Clearly not. It is not enough that the ghoul-images are the same size. What we need to establish is that the drawn ghouls look the same size. And they don’t.

One possible response to my argument is that DCT does not predict that Image\textsubscript{BG} and Image\textsubscript{SG} look the same size. For instance, the defender of DCT might insist that perspectival sizes are, as Schellenberg and Noë claim, fixed by situational features together with an object’s intrinsic properties, but claim that an expanded set of situational features, over and above being occludable by a patch or sharing a visual angle, help determine perspectival size. For instance, there are lots of cues in Figure 4 to help determine distance-in-depth, and such cues are plausibly mind-independent situational features of the scene. There’s nothing obviously subjective about the orientation of lines, relative distance-in-depth of the ghouls, and texture gradients, for instance. These features are, furthermore, presented in the experience itself.

That might be right. The problem, however, is that if Image\textsubscript{BG} and Image\textsubscript{SG} do not look the same size, then neither would BG and SG. Insofar as what generates the appearance that
Image_{BG} and Image_{SG} differ in size is, in large measure at least, the fact that the former looks further away than the latter, that would also be the case in the scenario involving BG and SG. Indeed, the appearance of a difference in size between BG and SG would be even more robust, since the difference in their distances-in-depth would be, at least under normal conditions of stereoscopic vision, far more pronounced. If the situational features that obtain when we look at Figure 4 are enough to prevent Image_{BG} and Image_{SG} from looking the same size, then the situation that obtains when BG is chasing SG would, a forteriori, also prevent BG and SG from looking the same size.

Perhaps the defender of DCT would and should be eager to accept the consequence that BG and SG would not look the same size either. But now consider the case of the trees A and B, which are the same intrinsic size but look, according to the defenders of DCT, different in size. The explanation for why the front tree A looks bigger than B cannot just be that A subtends a larger angle of our visual field or that it would take a larger patch to occlude it than the one which would occlude B, since as Figure 4 and every other realistic two-dimensional image demonstrates—and as every three-dimensional object demonstrates even more convincingly—the size an object appears does not supervene on either of those features. Why would it, when those features provide absolutely no information about the distance-in-depth of an object? If, however, we allow an expanded set of situation-dependent properties to contribute to the way sizes perceptually appear—especially the relative distance-in-depth at which figures not only are but are perceived as being—why would they not also prevent our two trees A and B from looking different in size in the same way, and for the same reason, that they prevent BG and SG (and their images) from looking the same size? If we perceive their relative intrinsic sizes correctly, then we will also see that B is further away from A. It is hard to see why A and B would, as defenders of DCT insist, look different in size when similar conditions are enough to prevent BG and SG from looking the same size.

A further problem with this response to the arguments from the previous section is that it does not seem to provide any answer to the first argument concerning shape. More specifically, if the defenders of DCT were to admit that the apparent (not just the actual) distance-in-depth of an object and its parts help contribute to the size it is presented (whether veridically or not) as having, then they should readily admit that it can also contribute to the shape an object is presented as having. They should, that is, be prepared to admit that when a round plate which is tilted away looks, veridically, to be tilted away, it just does not look elliptical at all. After all, even things which are in fact elliptical sometimes don’t look elliptical when their parts appear to be at different distances-in-depth away. To admit that, however, would be to rob them of one of their standard examples.

Another response to the arguments above is that Image_{BG} and Image_{SG}, as well as BG and SG themselves, really do look the same size, simple phenomenological considerations notwithstanding. True, they do not look the same intrinsic size. But intrinsic size is not the only kind of size that we perceive. The size that they share is perspectival size. And while perspectival size is itself an object of sight, we typically pay far more attention to the intrinsic properties of objects than to their perspectival sizes. “In normal life,” writes Noë, “we tend to pay little attention to P-properties” (Noë 2004: 83; also Schellenberg 2008: 78). This is also a potential response to the case of the ellipse E and the plate D considered earlier. They really do both look elliptical. It’s just that they look perspectively elliptical, and that property is not a normal object.
of our attention.

If these claims capture the phenomenology of our experience, we should expect there to be good phenomenological evidence that they are true. A decent case can be made. Take a closer look at Figure 4 above. Can’t you tell, by looking, that Image_{BG} and Image_{SG} are the same size? And can’t you tell, when you examine Figure 3, that the shapes in the second column of Q are the same shape as those in the left-hand column of S? I suspect you can—with sufficient effort at least.

Nevertheless, I remain unconvinced that the figures look alike in an ordinary experience of them. For one thing, the fact that we can see that Image_{BG} and Image_{SG} are the same size when we attend to them does not entail that our initial experience of them presented them as being the same size all along, since in attending to the figures in that way we generate a new experience, one which presents features of the scene that might not have been presented to us before. “If I am supposed to describe how an object looks from far off, I don’t make the description more accurate by saying what can be noticed about the object on closer inspection” (Wittgenstein 1958: §171).

This point, by itself, is merely skeptical: why should we think that we have discovered what was present in our experience of an object simply because we have discovered something about the object of that experience? I don’t think we have to rest content with skepticism here, though. There is, rather, a phenomenological difference between discovering something about an experience of an object and discovering something new about the object of experience. Contrast, for instance, the following cases:

Case 1: You are busy working, and the chiming of a clock grabs your attention. You realize that this is the third chime, and that you have heard the first two on the margins of your field of consciousness.

Case 2: You are presented with the task of counting how many times the players in white jerseys pass the basketball. When you watch the video again without performing this task, you are astonished to notice a gorilla ambling onto the court, slowly spin around in the midst of the players, and make a leisurely exit.

Case 2 is a standard example of inattentional blindness (Simons and Chabris 1999). Part of what explains your astonishment is that inattentional blindness really is a form of blindness, at least as far as your conscious awareness is concerned. Even though there was a gorilla in the scene of which you were conscious, when you first watched the video there was no consciousness of the gorilla. No phenomenological characterization of your initial experience would have to mention any gorillas at all. In Case 1, by contrast, you do not need to take a closer look at the event of which you were conscious in order to verify that the clock was already chiming before you turned your attention to it. No reexamination was necessary, nor would you have the sort of “I can’t believe it!” experience you might have in Case 2. Any complete phenomenological description of your conscious awareness during the first couple of chimes would have to mention that you were marginally conscious of the chiming of the clock. This is a case of inattentional hearing, not inattentional deafness.

If Image_{BG} and Image_{SG}, or the contrasting columns of ellipses in Figure 3, really do look the same size or shape in an ordinary experience of them, then discovering that they are ought to resemble Case 1 more closely than Case 2. However, such discoveries seem to resemble Case 2. In my case at least, when I discovered that Image_{BG} and Image_{SG} are the same size, I did not seem to be making explicit or attending to a feature of the scene that I had already been aware of. Rather, I was surprised by the discovery of a new feature of the scene, one that had escaped me.
before. That strongly suggests that the figures did not look the same size or shape in my original experience, any more than the gorilla was present to me while I was counting the passes.

For similar reasons, I am not persuaded that DCT, or even the claim that objects have perspectival spatial properties, is supported by the possibility of taking up the painterly attitude towards three-dimensional objects such as D or BG and SG. When one takes up such an attitude, it is alleged, one can come to see the “apparent elliptical-ness” of the plate (Kelly 2008: 685). I agree that taking up such an attitude is possible (though I simply cannot do it myself), but I do not think this provides strong evidence for DCT. First, as Kelly himself insists, the fact that one can do this does not show that one was aware of D’s apparent elliptical-ness, or BG’s and SG’s apparent sameness of size, all along, any more than the ability to see the famous duck-rabbit image as an image of a duck or a rabbit shows that we ever experience it as both simultaneously. It does not, that is, support the claim that the content of perception is dual.

Secondly, and more importantly, while taking up the painterly attitude can make a round plate appear elliptical, it does not follow that we veridically experience an actual property of the plate, its apparent elliptical-ness. Another explanation is that we experience the plate’s intrinsic shape nonveridically. When I manage to see the ellipses in the second column of Q (Figure 3) as ellipses rather than circles tilted away, I do this by focusing on and attending to them in such a way that I isolate them from the gestalts in which they are embedded so that they look like they and all of their parts are situated on a plane perpendicular to my line of sight. In doing so, I do not become aware of a new, hitherto unseen perspectival property. Rather, their intrinsic shapes appear differently than before. For this reason, I suspect that when one takes up the painterly attitude towards ordinary objects, one is producing an experience in which the intrinsic spatial properties of the objects are presented nonveridically, rather than a situation in which a new spatial property bursts onto the scene. To see a round plate as elliptical, I suspect, is a matter of ignoring the relative distances-in-depth of its parts and seeing it as though its parts were on a plane. But then one is simply seeing its intrinsic shape nonveridically, not experiencing some other property, its apparent elliptical-ness, veridically.

This would explain why Kelly’s claim that one cannot see an object’s apparent elliptical-ness and its intrinsic circularity at the same time it true. It would also accord with his claim that seeing both the plate’s roundness and its apparent elliptical-ness simultaneously would be similar to seeing the “two views of the Necker Cube” simultaneously or the two views of the famous duck-rabbit simultaneously (Kelly 2008: 686). The reason one cannot see both views of a Necker Cube simultaneously is because doing so involves perceiving the same parts to be at incompatible distances-in-depth simultaneously. And the reason one cannot see the duck-rabbit as both a duck and a rabbit simultaneously is because there are some of its parts such that one must see those parts as two very different things simultaneously—for instance, one would have to see the same parts as both ears and a bill. Similarly, the reason we cannot take up the painterly and the ordinary attitude simultaneously is because it requires us to attribute incompatible spatial properties to the plate simultaneously.16

If this is right, then Kelly’s criticism of DCT, while correct, is too weak, since it leaves intact the idea that a circular plate actually has both kinds of spatial properties, and that both an experience of its circularity and of its apparent elliptical-ness are veridical. But this is not so. A

16 Of course, there might be some people who can see objects as having incompatible properties simultaneously; the Waterfall Illusion suggests that we all can in some cases (Crane 1988). But that doesn’t change the fact that seeing the plate as both round and elliptical simultaneously would involve seeing it as having two properties that it could not have simultaneously.
circular plate can appear elliptical. But when it does, its parts appear to be the same distance-in-depth away. But if its parts appear to be the same distance-in-depth away, then one’s experience of its shape is not veridical. The problem with DCT is not that the content of veridical experiences of an object’s shape from a given orientation is not dual at the same time, but that it is not dual at all. We do not need to postulate the existence of additional types of spatial properties, least of all the sort that mysteriously cannot be perceived at the same time the intrinsic spatial properties are perceived, in order to explain the painterly attitude, since the competing explanation offered here not only accounts for the phenomenon, but makes it intelligible why the properties that show up in the painterly attitude cannot be perceived alongside the properties that show up in the natural attitude.

This response is, I think, actually in accordance with Kelly’s own views concerning the nature of perception. On Kelly’s view, perceptual experience has a normative component. We do not just see objects and their properties. Rather, we see those objects and properties in better and worse ways. As he puts it, in non-optimal conditions, “It is part of the very experience of the size of an object that I am drawn to improve the experience by changing my distance to the object” (Kelly 2010: 149). Similar remarks hold for shape, color, and other properties. In seeing a plate from an angle, for instance, I am perceiving the roundness of the plate non-optimally, and the non-optimality of my experience is built into its own content; the experience is essentially an inadequate presentation of a round plate, not an optimal presentation of something totally different. Seeing round things from angles or large things from closer distances “is not a matter of the objects looking apparently elliptical or apparently larger. It is a matter of their looking to be presented at a skewed angle or at a distance” (Kelly 2010: 148). In the terms of Kelly’s theory, the advocates of DCT are committing the mistake of supposing that a non-optimal presentation of a shape R is or essentially involves an optimal presentation of some other shape R*.

There might, finally, be other reasons to endorse DCT, based not so much on direct phenomenological considerations but on arguments. One argument that might seem to push things in DCT’s favor is due to Michael Tye. According to Tye (2000: 79), a round plate (or rather a coin) tilted away looks elliptical because it would be perfectly occluded by an ellipse situated on a plane perpendicular to the line of sight. This argument obviously needs an additional premise. One possible candidate is this: if an object O could be perfectly occluded by another object O* which is F-shaped, then O looks F-shaped. This, however, entails that every object looks infinitely many shapes. True, a plate tilted at an angle of 45 degrees relative to the line of sight could be occluded by an ellipse oriented at 90 degrees relative to the line of sight. But it could also be occluded by a circle oriented at 45 degrees to the line of sight. And it could be occluded by infinitely many differently shaped ellipses at other orientations in between. However, it does not look infinitely many shapes.

Another possible premise for Tye’s argument is this: if an object O could be perfectly occluded by another object O* which is situated on a plane perpendicular to the line of sight, which is F-shaped, then O looks F-shaped. There are two problems with this premise, however. First, it doesn’t generalize to size, and so cannot provide any reason to think there are perspectival sizes. To see why, consider the claim that if an object O could be perfectly occluded

17 For a good criticism of this proposal, see Overgaard 2010:274-5.
by another object \(O^* \), situated on a plane perpendicular to the line of sight, which is \(S \) in size, then \(O \) looks \(S \). This cannot be right. What size must an object be to occlude the Empire State Building as it appears from across the East River? Extremely large, if it is a millimeter away from the Empire State Building. Extremely small, if it is a millimeter in front of your eyes. There are infinitely many planes between you and the Empire State Building, and just as many differently sized objects which, if situated on those planes, would perfectly occlude it. But the Empire State Building does not look infinitely many sizes.

The second problem is that once we acknowledge that we do perceive distance-in-depth and orientation, the idea that an object looks to be shaped \(F \)-wise simply because it would be occluded by a \(F \)-shaped object on a plane perpendicular to the line of sight is completely arbitrary. Being on a plane, much less on a plane oriented at 90 degrees relative to our line of sight, is just one of countless possible ways in which the parts of a thing can appear to be located relative to us and to one another. There is no a priori reason to think that anything would look like a plane figure oriented at a right angle to the line of sight under normal conditions unless it was, in fact, a plane figure oriented at a right angle to the line of sight. Nor, for what it is worth, does it seem too terribly likely that the default assumption of a visual system that has evolved in conditions such as ours—conditions in which the things we eat, hunt, flee, court, and reside in are almost never plane figures—would be that the objects it presents are, improbably, on a plane, much less on a plane oriented at the unlikely angle of 90 degrees relative to our line of sight.

Finally, because we see objects, even those on planes, as oriented and in depth, it is also useless to distinguish intrinsic and perspectival properties by saying, as both Noë and Tye do, that a round plate looks round, but it also looks elliptical from here. “Your experience presents you with the circularity of the plate, but also with the elliptical shape it presents from here” (Noë 2004: 163). The plate also looks round and tilted away from here. That the plate can look round, even from here, is clear from the phenomenon of shape-constancy. As Charles Siewert puts it, “If I experience that plate as constant in shape as it turns, surely it is still ‘from here’ that I thus experience it” (Siewert 2006: 7).

Siewert (2006: 7) suggests that when Noë claims a plate tilted away is “elliptical from here” (Noë 2004: 123), what he really means is that it is elliptical-from-here. I do think that’s what he means, since it is obvious that the plate is, and looks, circular from here. Notice, however, that the claims that (a) we see the plate’s shape from here and (b) we see the plate’s shape-from-here are not in any obvious way equivalent. The thing I see when I see a shape from here is something that could be seen from over there. I could not, however, see a shape-from-here from anywhere but here. Nor is it obvious that (a) entails (b). In seeing a barn from a perspective, I do not see a different kind of barn, a barn-from-a-perspective. Why, then, would I see something other than its shape, its shape-from-a-perspective, just because I see its shape from a perspective?

Because one can hold that we perceive shapes from perspectives while denying that we see shapes-from-perspectives, denying the existence of perspectival shapes and sizes by no means compels one to hold, with the most naive of naive realisms, that merely citing the monadic shape and size properties of an object of perception is sufficient to capture how it looks. That the content of perception is situation-dependent ought to be uncontroversial. Accounting for the fact that shapes can look differently under different circumstances, however, does not require us to appeal to yet more shapes. After all, we do not need to explain the fact that barns look differently under different circumstances by appealing to a new kind of barn, perspectival barns,
or properties like perspectival barnhood. The reason is that we can explain the different ways a barn looks by appealing to the differing ways in which its shape, size, and color(s) look, which parts are in view and which are hidden, and so forth. Similarly, if the perception of shape and size is, as the considerations in this paper strongly suggest, bound up in complicated ways with the perception of orientation and distance-in-depth, then we should be able to appeal to those features—which are uncontroversially situation-dependent, insofar as being a certain distance or orientation from here is not an intrinsic property of anything—as part of an explanation why a given shape looks differently from different points of view (Jagnow 2008: 63). To say that something looks round and tilted away says enough about the look of the object’s shape to make any additional remarks about its looking elliptical misleading but trivial at best (it looks the way ellipses look when they look round and tilted away) and downright false at worst (it looks the way ellipses look when they look, veridically, elliptical).

I will wrap up with a positive suggestion, and that is that the most fully developed version of DCT, Noë’s enactive theory of perception, would benefit from abandoning perspectival shape and size properties altogether. Consider the following claims. First, Noë maintains that any single, momentary perceptual experience of an object can only provide a partial view of that object. When I see a house, some of its parts are present, while others are hidden from view. Perception involves both presence and “presence in absence” (Noë 2004: 128). Since every object and property—even shadows, colors, and soap bubbles—can be revealed in experiences that differ qualitatively from one another and reveal more or fewer of its parts and features, no single perception can claim to be an adequate or absolute presentation of its object. “There is no quality that is so simple that it is ever given to us all at once, completely and fully” (Noë 2004: 193, my emphasis). Second, to perceive an object requires knowing its sensorimotor profile, knowing, that is, “how its appearance changes as you move with respect to it” (Noë 2004: 78). And, again, this sort of knowledge characterizes all perception: “From the standpoint of the enactive approach, all perceptual representation … depends on the perceiver’s deployment of sensorimotor skills” (Noë 2004: 19, my emphasis).

None of these claims seem to hold of P-shapes. First, perceiving a P-property cannot require knowing “how its appearance changes as you move with respect to it” (Noë 2004: 78), since the result of moving will be a new encounter with a new P-property. A P-property only has one appearance, and no sensorimotor profile. Second, since there is nothing further to discover perceptually about a P-property by moving, P-properties are simple enough to be perceived fully and completely in a single experience. Since, on Noë’s view, P-properties are also perceived more directly than intrinsic properties, his enactive account fails to apply to what one would have expected to be the paradigmatic cases of perception, namely those of the direct variety. What he offers appears to be an enactive account of indirect perception.

I am rather confident that his theory could be improved by jettisoning the idea that the perspectival awareness of ordinary objects is a “two-step process” (Noë 2004: 82) consisting in the complete, non-perspectival perception of P-shapes and a process of “go[ing] beyond what is, strictly speaking, given in experience” (Noë 2004: 79). Part of the solution is to deny that anything ever is “strictly speaking” given in experience, and instead maintain that even the appearance of what is present depends, in part, on what is present-as-absent. 18 (This doesn’t

18 Sean Kelly (2004: §1), for instance, provides an example contrasting the same objects when they are perceived as buildings in an Old West town (saloons, banks) and when they are perceived as fixtures on a movie set. This is not a case in which the two experiences have an identical component, differing only in that we “go beyond” that component in different ways. Rather, even the fronts of the structures look different under these conditions.
require one to deny that objects ever are given—just that they are not ever completely given.) This actually seems to be Noë’s view. “Perceptual experience depends constitutively on the exercise of sensorimotor knowledge” (Noë 2004: 27). Moreover, it is not as though in the absence of such knowledge, we would still have perceptual experiences of something much simpler. We would, rather, be “experientially blind.” Merely having “visual impressions or sensations” (Noë 2004: 5), such as those who have had their congenital blindness corrected experience immediately after surgery, is not enough to see anything, including P-shapes. Neither is having the skin on one’s back or tongue stimulated by a TVSS (tactile-visual sensory substitution) device sufficient, in the first few moments of wearing one, to perceive anything at which the camera is pointed—not even perspectival properties. Rather, “in order to see one must have visual impressions one understands” (Noë 2004: 6), and this understanding largely consists in the ability to represent features which are present-as-absent, and to know how to make those features present. On this view, what makes your present experience present its object in the precise way that it does is not that there is a common core of perceptual content that you would share with someone completely lacking sensorimotor knowledge, which is what it would seem to be if P-properties are perceived in the non-perspectival, absolute way that they seem to be. Rather, such sensorimotor knowledge is necessary for your present experience to have perceptual content at all. The resulting view is certainly controversial, but it strikes me as being a more consistent development of Noë’s enactive account and, more importantly, substantially more plausible than the Dual Content Theory.

Merleau-Ponty provides many examples designed to illustrate the non-self-sufficiency of “sensations.” “A wooden wheel placed on the ground is not, for sight, the same thing as a wheel bearing a load” (Merleau-Ponty 1962: 60). And Husserl, who is largely responsible for discovering the phenomenon of presence as absence, writes that the sensuous or intuitive contents in perception, which are responsible for presenting us with objects and properties, “are nothing for themselves; they are appearances-of only through the intentional horizons that are inseparable from them (Husserl 2001: 43).
Works Cited