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Abstract ‘
Economic agents are characterized by their types in a static model
of migration. Individuals cannot change their types in one generation,
but are free to migrate to communities most beneficial to their inter-
ests. Given a large population of fixed type-composition, can we find
a migrationally stable partition of this population? (So that no sub-
population will have further incentives to emigrate and form a new

community.) In this paper a general theorem is proved to address this
question.

1 Introduction

In many situations economic agents can be classified into types, which de-
termine the agents’ preferences and how they are to be preferred by other
agents, and the only practical strategic possibility open to them is to form
communities most advantageous to their members. In a specific theory of
migration, types may denote professions, linguistic affiliations, religions, in-
come groups, capital endowments, or any other characteristics that cannot
be strategically altered in a relevant scale of time (such as one generation).
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This is complementary to the evolutionary view of social and economic
behaviour, which focuses upon the changes in agents’ actions and charac-
teristics from generation to generation; whether these changes arise from
learning or from demographic selection. '

A fundamental problem in a static migration model is to determine when
a given population can be partitioned into communities in a way that is
migrationally stable, which is to say there will be no incentive for further
emigration and cross-migration to take place. In this paper we give general
conditions under which this stability may be expected.

We shall formulate the migration problem as a coalition game involving
a continuum of players. Migrational stability is achieved when the resulting
welfare allocation lies in the core of the game. Amongst coalition games
with a continuum of players our model is quite special; in particular we
assume that the population falls into finitely many types. We prefer to use
the language of “migration” in this paper, not only as specification for this
kind of coalition game, but also to put emphasis on the core-partition, rather
than the core-allocation.

The existence theorem for “migration-proof equilibrium” turns out to
be sufficiently general to provide a unified approach to diverse economic
problems, involving finite as well as continuum populations. It extends an
old theorem of H. Scarf [6] on the core of multi-person games without side
payments. Replication phenomena and the existence of approximate core,
which have been observed and applied in the theory of coalition games, can
also be recovered, simplified and strengthened by means of the model. (For
reviews, see [4, 10].) It also generalizes the existence aspect of the well-
developed theory of bilateral matchings to a multilateral setting. (See [5]
for an introduction to the theory of bilateral matching.) Migration phenom-
ena in socio-economics, such as club formations and the locational aspects
of public goods, have also received increasing attention from theoretical re-
searchers in recent times. Some of their results are related to our model.
We should also mention that a precursor of our model has been introduced
and studied by A.Shaked in [7], where a special case of our Main Theorem
is proved!.

In Part II of the paper we set out to explore the implications of our
migration model for finite populations.

We shall also examine briefly the limitations of the existence theorem.
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the Canadian Economic Theory Conference (McGill University, May 27, 1995), where I
presented an earlier version of this paper.




In particular, from this static model one can already see that interactions
between communities (for example, by trade) may be a source of migrational
instability. This underlines the importance of understanding migration as a
dynamic phenomenon. '

2 A Simple, Static Model of Migration

Suppose there are n types of agents, indexed byi=1,... ,n. Let X be the
standard (n — 1)-simplex?, defined by

X={zeR" :Eiz,-=1andx,-20foralli.}
The agents’ preferences are specified by the payoff correspondence
WcCcX xR

A point (z,u) € W is called a community profile, or simply a community,
by an abuse of language to be justified by the ensuing discussion. The
projection mapping

m: W — X given by n(z,u) ==z

specifies the profile z = (z,,...,z,) of relative populations of the various
types of agents in the community, whilst the component u = (uy,...,uy,)
prescribes a feasible per-capita payoff u; to an agent of each type i in that
community. Notice that for some type(s) it may happen that z; = 0, so
that no agent of type i is actually present in that community. Nevertheless,
u; is still defined. This redundancy is convenient, and imposes no essential
restriction on the model.
We make the following assumptions about W.

Hypothesis 1. The mapping 7: W — X is surjective, so that there is at
least one feasible community for every profile of relative populations.

Hypothesis 2. W is a closed and bounded subset of X x R™.
A subset M C W is called a formation (of communities). Intuitively,

the formation M is not migration-proof if there is incentive for some agents
present in M to form a new community P amongst themselves. According

Note that n — 1 is the dimension of the simplex.




to our model, an individual agent can be induced to migrate only if its
payoff in the defecting community P is strictly higher than its status quo
in M. This assumption may be Justified on various grounds. For instance,
the benefits derived from a community may be recurrent, but there is an
(unspecified) one-time cost incurred by an act of emigration. This cost can
only be recovered if the promised payoff in the new community is strictly,
however slightly, higher.
The following definitions formalize these notions.

Definition. We say that a community P = (z,u) € W is a possible
defection from M if, for every i € {1,...,n},

Either z; = 0;

Or z; > 0, and there ezists (y,v) € M such that ¥i >0 and u; > v;.

Definition. A formation M is said to be migration-proof if there are no
possible defections from M.

Several economic assumptions are implicit in our formulation:

1. (Scale Invariance) The feasible payoffs for an individual agent in a com-
munity depend only on the profile of relative populations, but not on the
size of that community. This would seem to contradict the fact that the
welfare of individuals may be affected by the total resources available to
the community. However, under some circumstances one can include each
factor of production (such as a specific amount of capital) as a type in the
model. Then, in the picturesque language of the classical economist, they
will migrate towards the highest profits.

Under this assumption, the migrational stability or instability of a collec-
tion of communities will not be affected if all the populations are multiplied
by the same factor. ,

2. (Absence of Externalities) We have assumed that the feasible payoffs for
an individual agent depend only on its own community and its type, and not
on the configuration of other communities. While this assumption may be
a good approximation in many situations, it is a serious restriction imposed
by the model. Indeed, we shall see that payoff-relevant interactions amongst
communities may undermine the existence of migration-proof formations.

3. (Infinite Divisibility) In our model, every point in the continuum X is
assumed to be realizable as the relative population profile of a community;
and a community defecting from a formation is allowed to have arbitrary
size. Clearly that cannot be the case in a world consisting of a finite number
of indivisible individuals; but, due to the scale-invariance of the model,
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one may regard this assumption as an approximation when the number of
individuals becomes extremely large. :
In the second place, this assumption is a technical expedient that would
allow topological methods to be used in their most natural form. In fact,
significant conclusions about the migrational stability of discrete populations
can be drawn from the analysis of the continuum model.
4. (Equal Treatment within Communities) Since the payoff correspondence
prescribes a single per-capita payoff vector to each community, we are as-
suming that all individuals of the same type in the same community are
treated equally. However, this assumption is not necessary for the existence
of migration-proof formations, as we shall show in a later section.

Let us now address a fundamental problem raised by the model. In
addition to the payoff correspondence W, we are also given a total population,
described by a vector

ZE=(Ny,...,N,),

where N; is the total number (or mass) of individuals of type i. Let N =
2. Ni. The profile of the total population is a point £ € X, given by

=E/N = (M/N,... ,Na/N).

We would like to know whether the individuals in = can be partitioned
into communities in such a way that the resulting formation M is migration-
proof.

Suppose that is the case. Then

E=N¢= ) N(P)x(P),
Pem

and
N= 3" N(P),
Pem
where N(P) is the total population of the community P, and 7(P) € X is
its profile. Hence :
§ € the convex hull of n(M).

Motivated by this observation, we make the following definition.
Definition. Given a population profile £ € X and a formation M C W,

we say that { can be distributed into M if and only if € is in the conver
hull of m1(M).




Thus the question above is answered by the following theorem.

Main Theorem. Suppose the payoff correspondence W satisfies Hypothe-
ses 1 and 2. Then, given any total population = with profile £ € X, there
ezists a migration-proof formation M C W such that £ can be distributed
into M.

Furthermore, the number of communities in M may be taken to be no
greater than n, the number of types in the model.

3 Proof of the Main Theorem

We now give a proof of the Main Theorem. The argument is geometric. First
we interpret the migration-proof formations as the vanishing loci for certain
critical payoff levels (Lemma 2). This enables us to reduce the solution of
the fundamental problem to a well-known topological theorem.

Brouwer’s Fixed-Point Theorem. If f : X — X is a continuous map-
ping from the (n — 1)-simplez to itself, then f has a fized-point. In other
words, there is a point x € X such that f(z) = z.

See e.g. [3, 9] for a proof. (Aside from this proposition our proof of the Main
Theorem will be self-contained.)

NOTATION. The set R} is defined to be {zeR*: z; >0 for all i}, and the
set RT is defined to be {r € R : —z € R:}.
Given a subset I C {1,...,n}, the I-face of the standard (n — 1)-simplex
A CRY is

X' ={zeX: ;=0 for all igrI}.

The boundary of the simplex X is

= U A
I#{1,... n}

For an arbitrary subset A of the simplex X (or of R*), its convex hull will
be denoted by Cvz(A).

A correspondence G from X to Y is a subset G € X x Y which projects
surjectively onto X. (This is consistent with our previous usage when defin-
ing the payoff correspondence.) One may regard G as a point-to-set map-
ping. Given a point z € X, by definition G(z) = {y € Y : (z,y) € G}.
Similarly, for a subset A C X, by definition G(4) = {y € Y : (z,y) €




G and z € A} = |J,4 G(z). Thus a correspondence G is said to be sur-
jective if G(X) = Y; and it reduces to an ordinary mapping G: X = Y if
G(z) is always a singleton. .

A mapping or correspondence G C X’ x Y between (n — 1)-simplices is said
to preserve faces if G(XT) C V! for all I.

Consider the payoff space H = R™. For each A € H, let
Wy = {P = (z,u) € W : For all i, either z; = 0; or z; > 0 and ui > A}

Also define
E={dAeH:W,#0}.

Thus E consists of those payoff vectors that are offered (or surpassed)
by some feasible community, whilst W), is the set of feasible communities
offering the payoff vector A (or better). The following lemma records two
straightforward consequences of these definitions. (See Figures 1 and 2.)

Lemma 1. As a subset of H,

(a) E is closed;

(b) E is comprehensive, that is to say: for all \, X', if A € E and X' < A
then ' € E.

Let L =1+ sup{|u;| : (xr,u) € W}. By the boundedness of W, L < oo.
The topological frontier of E is defined to be

F = E \ Interior(E).
Note that F is a closed set.

Lemma 2.

(a) If A € F, then W), is migration-proof.

(b) If a formation M C W is migration-proof, then M C W, for some
A€EF.

PROOF. (a) Suppose A € F, but W), were not migration-proof. Then there
is a possible defection from W), say P = (z,u) € W. Consider the payoff
vector \' € H with components

M= u; ifz; >0,
*T 1L ifz;=0.




Figure 1: Population space X

)

Figure 2: Payoff space R"




Then X' € E and A} > ); for all i. Since E is a comprehensive set, this
implies that A € Interior(E) and we arrive at a contradiction.
(b) For any nonempty formation M, let us define a payoff vector A(M) with
components

Ai(M) = inf{v; : (y,v) € M,y; >0} if this set is non-empty,
1 L otherwise.

Thus A;i(M) is the minimal payoff level for type-i individuals, wherever
they can be found in the formation M.

Observe that M C W)y M) and hence A(M) € E. Now suppose M is
migration-proof, but A\(M) € Interior(E). Then there is a vector X' € E such
that A; > A\;(M) for all i. Since W) is non-empty, we can find a community
P € Wy.. Then P is a possible defection from M, a contradiction. Hence
A(M) € F and the lemma is proved.

Let A € H be the vector (L,...,L), and consider the hypercube
Hp={Ae H:|\| <L for all i}.
The I-face of the hypercube is defined to be
Hi={\e€Hy:\=+Lforalli¢gI}.

These faces meet at the vertex A. Preliminary to the next lemma let us
state a useful fact.

Geometric Estimate for Comprehensive Sets. For A\, X' € R, define
d(\, X') = max;|\; — X{|. Note that d is @ metric. Also define u(d) =
min{|Ai| : A\; < 0} if the latter set is non-empty, and +oo otherwise.

Suppose K C R" is a comprehensive set, and A € K NR". Given any
6>0,

if ze€R® and d(z,)\) < p(/\)l—_—f_—&, then (1+6)z € K.
PROOF. We show that under the stated conditions (1 +6)z; <\ for all i.
Then since K is comprehensive and A € K, we get the desired conclusion
(1+46)z€ K.
Suppose z; < A, then (14 68)z; € z; < A;. On the other hand, suppose

z; > A;. Then )A; < 0 since z € R*, and

5 SN S < Mg = -h (1- ).

On
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Hence z; < Ai/(1+6), or (1 +6)z; < \;, as required.

Lemma 3. Let F=Fn Hp and F! = Fn Hf. Then F is homeomorphic
to a standard (n — 1)-simplez with F! as its faces.

PROOF. In the space H = R", let S be the unit sphere centred at A. Define
S$=8NnHyand § = Sn H{. Then § is an (n — 1)-simplex, with $7
as its faces. We shall define a mapping ¢ : § — F', and show that it is a
face-preserving homeomorphism. (See Figure 2.)

For each s & 5’, consider the ray emanating from A in the direction s,
that is:

A=r(s—A)forr>0.

For s € §, let r(s) = inf{r:A~r(s—A)€E}. Let \= A —r(s—A).
When r becomes sufficiently large at least one coordinate, say A;, will be less
than —L. Then a community consisting solely of a type-i population will be
in W), and hence A —r(s - A) € E. Therefore r(s) has a well-defined value.
In fact, r(s) < (the Euclidean distance between A and ~A) = 2y/nL. Also,
from the definition of L it follows that r(s) 2 1. In particular, A ¢ E.

From the geomtric estimate for comprehensive sets, f A~r(s—A) € E,
s'€ § and
6

rd(s,s") =rd(s — A,s' — A) < p(s — A)m,

then A —r(1+6)(s' = A) € E. Note that u(s—A)>1/\/nforallse S.
This implies that for any § > 0,

1+ 6)_1 < r(s')/r(s) <(1+46)
whenever s,s’ € § and

, (vn)7l6 6
Aos) S S AT+ 0) = I TH)

It follows that r(s) is a continuous function of s.
We now define the mapping ¢ by

p(s)=A—-r(s)(s—A) for se 8.

Thus (s) is the first entry-point of the ray into the set E. Hence w(s) €
F'. Since r(s) is continuous, so is ¢. ~
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—S

¢ is discontinuous at s and u is not in Image(y)

Figure 3: Noncomprehensive Set

For s # s', ¢(s) and (s') belong to distinct rays emanating from A, and
¢(s) and y(s') cannot be at the origin A. Hence ¢(s) # ¢(s'), showing that
¢ is injective. Given any point A € F', consider the ray joining A to A. Let
s € S be the direction of this ray. Since E is a comprehensive set, this ray
cannot have an entry-point into E earlier than A. Hence A = ¢(s), showing
that o is surjective. If s € §/ , then the ray in the direction s remains in H I{
and so (s) € FI; whence  is face-preserving.

Now F, being a subspace of R*, is a Hausdorff space; and $ is compact.
Hence the continuous bijective mapping ¢ : S~ Fisa homeomorphism,
proving the lemma. (Note that the comprehensiveness of E is crucial for
the continuity and surjectivity of ¢, see Figure 3.)

Lemma 4. (Carathéodory’s Theorem) Suppose A is a subset of R® and
§ € Cvz(A). Then there is an affine independent subset B C A such that
§ € Cvz(B). In particular, the cardinality of B is no greater than n + 1.

PROOF. There are many proofs and many applications of this theorem, see
e.g. [1]. We sketch an argument. Consider the set

Cvzo(A) = {all finite convex linear combinations of points in A}
Note that Cuvzo(A) is a convex set containing A, hence Cuzo(A) =

Cuvz(A). Therefore if £ € Cuz(A), there is a finite subset B C A such
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that { € Cvz(B). Furthermore, we may assume that B has minimal cardi-
nality amongst such subsets. Let m = |B|. We will show that B is affine
independent. .

LetII={a€R™:} a;=1},and A={a€ll:q; >0 for all i }. The
space R™ can be identified with the set of all functions a : B — R. We shall
do so, and define a linear mapping

£:R™ >R, {a)= 2 zep o)z

Let B’ be the set {(z,1) € R**! : z € B}. Then B is affine independent
in R™ if and only if B’ is linearly independent in R™*!. These conditions
hold if and only if

dim Null-space(¢) < 1.

Note that dim Null-space(¢) > m — n. Hence if B is affine independent then
m<n+l.
Consider the set

L={a€ell: Yzepa(z)z=¢}.
Since § € Cvz(B), there is a point ap € A N L. Indeed,
L =1IN(ag + Null-space(?)).

Now II is an affine linear space of dimension m — 1, and L is an affine
linear subspace of II. The dimension of L is given by

dim L = dimII + dim Null-space(¢) — dimR™ = dim Null-space(¢) — 1.

If it were true that dim Null-space(¢) > 1, then dim L > 0. In that case
L contains a line through the point ag. Since the simplex A is a closed and
bounded set, this line must intersect its boundary A, say in the point ;.
But that means

Yzep(T)T=§, a1 € A, and a;(z) = 0 for some z € B.
This expresses £ as a convex linear combination of a prbper subset of B,
contradicting its minimality. Hence dim Null-space(€) < 1, B is affine inde-

pendent, m < n + 1, and the lemma is proved.

We now define a correspondence I' ¢ F' x X , as the composite

Ar— W,\ — CvI(ﬂ(W,\)).
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Lemma 5.

(a) T is closed.

(b) D(FTY C X! for all I.

(c) T(}) is a conver subset of X for every A € F.

Proor.
(a) Suppose (A\x,zx) € T'is a convergence sequence with limit point (), z).
We need to show that (\,z) € I.

Since F" is closed, A € F. For each k, we have z; € Cuz(m(Wy,)). By
Carathéodory’s theorem we can find an n-tuple of points (P,g, ..., P?) in
Wi, s0 that P{ = (z},u}) and 24 = 3", al.zi is a convex linear combination.
(Thus 3,0} = 1,0} >0.)

By compactness of the simplex, we can extract a convergent subsequence
of (P{,...,Pal,... »ay). Let the limit be (PY,... P a!,... o), and
write P* = (z,u’). Recall that each z' is a point in X, denote by (z%); the
j-component of z*. Similarly, denote by (u'); the j-component of u’. (The
J-component corresponds to individuals of type j in the model.)

First observe that '

2.a'=1 o'>0, and z=Y,aiz'.
Secondly, observe that P* € W, for every i. We can verify it as follows:

(z'); > 0= (z}); > 0 for sufficiently large &
= (Ui)j 2 (Ak)j since P,'Z € W,,
= (w); 2 (V);.

This holds for every type j. Combining these observations, we conclude
that z € Cuz(m(W),)) = T(A).
(b) Suppose A € FI. Consider any point P = (z,u) € W,. Then for all
i €1, A\ = +L > u;. Hence z; must be 0 for i € I. In other words,
m(Wx) C X7. Since X7 is convex, Cvz(m(W)) C X1,
(c) Follows directly from the definition of the correspondence T'.

We can now complete the proof of the Main Theorem. By Lemma 2,
as A vary through F the formations Wy (and their subsets) vary through
(all) the migration-proof formations. The desired conclusion is that every
point £ € A should be in the convex hull Cvz(m(M)) for some migration-
proof formation M. This follows directly from the following topological
proposition.
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Lemma 6. LetT' C F'x X be any correspondence between (n—1)-simplices.

Suppose it satisfies the conditions (a), (b), and (c) of Lemma 5. Then T is
surjective.

PROOF. We identify the (n—1)-simplex £ with the standard (n—1)-simplex
&, and consider I as a correspondence I' C X’ x X. Let us first consider the
special case when I is a continuous, face-preserving mapping, and show that
it is surjective. It is sufficient to show that Interior(X) C I'(X). Indeed,
since & is compact I'(X) is closed, so if Interior(X’) C I'(X) then X = I'(X).

Assume, to the contrary, that y is a point in the interior of X , but
y € T(X). ,

The retraction mapping p: X \ {y} — X is defined as follows. Consider
a ray in X' emanating from y and terminating in a point z on the boundary
X. Then p maps every point on the ray (except y) to z. Since every point
of X'\ {y} lies on exactly one such ray, p is well-defined; and p is continuous.
Furthermore,

p(z) =z forevery z € X.

Also define the antipodal mapping 0 : X — X , as follows. Let x4 =
(1/n,...,1/n) be the barycenter of X. Consider a straight line in X through
zo. This line interects A’ in exactly two points, say z and 2’. Then o(z) = 2/
and o(z') = z. Note that o is well-defined and continuous. Furthermore, for
every face X7 c X, '

c(xXHnx!l=o.

Let ¢ : X — X denote the inclusion mapping.

By assumption, I' : X — X \ {y}. Consider the composite mapping f,
given by

xLox\{y) xS ¥ Ly

Clearly no interior point can be a fixed-point of f, due to the retraction p.
On the other hand, suppose z € X/ is a boundary point. Then p(T(z)) € X1
since I is face-preserving; and o(p(I'(z))) € X! since o(X! ynxl = .
Therefore f(zr) # z. Hence the mapping f : X — X is continuous, but it
has no fixed-point. This contradicts Brouwer’s Fixed-Point Theorem and
proves the surjectivity of I'.

We turn to the general case of the lemma, when T is not necessarily a
mapping.

Let {K™} be a sequence of (finite) simplicial decompositions of X, with
mesh(K™) — 0. Let X(™ C X be the set of vertices in the decomposition
K™. (For example, we can take {K™} to be the successive barycentric
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subdivisions of X'. The mesh of a simplicial decomposition is the maximal
diameter of all the simplices in the decomposition. For more details on the
properties of simplicial decompositions, see e.g. [9].)

We now approximate I" by a sequence of continuous mappings

fm: X=X,

contructed as follows. For z € X(™), define f,,(z) to be any point in I[(x).
Now every point z € X belongs to the interior of a unique k-simplex in K™,
(This simplex is called the carrier of z.) More precisely, for every m and
every T € X, there is a unique number k = k(m,z) € {0,... ,n—1} and a
unique subset km(z) = {z0,...,2k} € X™), such that km(z) is a simplex
in K™ and z € Interior Cvz(km(z)). Thus z can be uniquely expressed as
a convex linear combination z = agzg + ... + axzx, with strictly positive
weights ag, ... ,ar. We define fm(z) to be agfm(20) +... + ok fm(2i).

Note that f, is a continuous mapping. Since I' is face-preserving by
hypothesis, so is fm. Hence, by what has been proved above, f,, is surjective.
Given any y € X, there is a point z,, € X so that fp(zm) = v. By
compactness of X, we can extract a subsequence of {z,,} converging to a
point z. We show that y € I'(z). This will establish the surjectivity of I.

Since k(m, ) can take on only finitely many values, we can extract a
subsequence of {z,} so that the values k(m, Zm) are all equal for the indices
m in the subsequence. Suppose that has been done. Let k be the common
value of k(m,zn,), and let

Km(Zm) = {20°,... , 21},
Tm=o0g2 +...+07z, with of*>0, Y,e"=1,
w' = fm(2) for i=0,...,k

Then, since fm(zm) =y,
y=oguwy +...+aguwp.
Consider the sequence
(20" s 25 W0y W O ..., Q),

for m = 1,2,.... By compactness of the simplex, we can extract a conver-
gent subsequence. Let the limit be

(20y--+ y2K3 W0, - -+ s Wk QD ... ,Ok).
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First note that
T=apzo+...+apz, @20, =1

Recall that 2g'y--- » 2" are vertices of a single simplex in the decompo-
sition K™. Since mesh(K™) — 0, we have

=21 =....=2p,=1T.

Secondly, note that (2]*,w]") € T. Since I' is closed by hypothesis,
(2i,w;) € T. Hence
wg,... , Wk € 1"(:1:).

Thirdly, observe that
y=oaowo+...+apwg, a; >0, E,-a,- =1.

This means that y € Cvz(I'(z)). But I'(z) is convex by hypothesis, so
y € I'(z). The lemma is proved.

Finally, it is clear that a subset of a migration-proof formation is again
migration-proof. Thus the second conclusion of the Main Theorem will
follow if, for every A € F and § € Cuz(m(W,)), we can find a subset M C W,
of cardinality n (or less) so that the relation £ € Cvz(m(M)) already holds.
This follows immediately from Carathéodory’s Theorem (Lemma 4).

4 Equal Treatment

In order to achieve migrational-proofness, a population of the same type
often have to be divided into more than one community. In general, the per-
capita payoffs to these individuals may be different in different communities.
We now give a sufficient condition that will guarantee the equal treatment
of individuals of the same type across the communities of a migration-proof
formation.

For each point z € X, let I(z) = {i : z; > 0}. Note that z € X/(=).

Definition. A community P = (z,u) € W is said to be nonsingular (with
respect to the payoff correspondence W) if the following conditions hold:
1.(Continuity) For € > 0 and i € I(z), let us define

Ui(P,e) = {y € ') : 3v such that (y,v) €W and |u; — v < ¢} .
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Then U;(P,¢) contains an open neighborhood of z in X1 for every e > 0
and i € I(z). _
2.(Non-satiation) In every open neighborhood U of z in X1, and for every
subset J C I(z) with |J| = |I(z)| — 1, there is @ community (y,v) € W such
that y € U and v; > u; for every j € J.

Theorem. (An Equal Treatment Principle) Suppose M C W is a
migration-proof formation in which every community P € M 1is nonsin-
gular. Consider any type i.

Then the per-capita payoffs to the individuals of type i are the same in
every community P = (z,u) € M where they are present (i.e. z; > 0).

PROOF. Assume the contrary. Then there will be two communities in M ,
say P = (z,u) and P’ = (2/,u/), and a type i, such that z; > 0, z! > 0, and
u; > uﬁ. :

Let us choose € to satisfy u; — u} > € > 0, and J = I(z) \ {i{}. From
the nonsingularity of P we see that there will be a community (y,u) €
Ui(P,e) € X! which will attract individuals of type ¢ to defect from P’
and individuals of types j € J to defect from P. But this contradicts the
migration-proofness of M, and the theorem is proved.

Despite the intrincate appearance of the definition, the nonsingularity
condition can be verified in several broad and natural classes of payoff corre-
spondences, and thus yielding a variety of special equal treatment principles.
The following propositions are quite straightforward.

Proposition.® Suppose W is a payoff correspondence which permits full
tranfer of utility amongst all individuals of all types in a community. That
15 to say, if (z,u) €W and ¥ ziu; = ¥ ziv; then (z,v) is also in W.

Then every community is nonsingular. Hence equal-treatment prevails
in every migration-proof formation.

Proposition. Suppose W is the graph of a differentiable payoff mapping
w: X — R Write w(z) = (w1(z),... ,wn(z)), and denote by grad(w;) the
gradient vector of the function w;.

Then a community P = (z,u) is nonsingular if grad(w;) # 0 for all i
such that z; > 0. If a migration-proof formation M consists solely of such
communities, then equal-treatment prevails in M.

%1 am indebted to Professor Aaron Eidlin for drawing my attention to this interesting
application of the general equal treatment principle. :
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We turn to the question of equal treatment within communities. Thus
far in our analysis this is an assumption in our model. As promised, we will
now give a version of the existence theorem which will allow for unequal
treatment of individuals of the same type in the same community.

NOTATION. Let M(R) denote the space of probability measures on the real
line R For 4 € M(R) and u € R, let pfu] = p({r : £ < u}). We say that u
is the essential infimum of u if and only if u[u] = 0 and u[u + ¢ > 0 for all
€ > 0; and write u = ess. inf p.

The payoff correspondence is now a subset
W CXxxMmMR)".

We interpret y as the payoff schedule for the community P = (z,p) € W,
where p;[u] is the relative mass of individuals of type i in P who receive a
payoff less or equal to u. As with the original model, an individual will
leave an existing formation M to join a proposed defection P only if there
is strictly positive advantage to do so; and the defection is successful if it
can recruit all its member from M. Thanks to the assumptions of scale
invariance and infinite divisibility, which we maintain, it is easy to see that
if one can recruit the individuals who are worst-off (amongst its type) in the
defection P then one can certainly recruit the requisite proportions of those
who are better-off. These considerations reduce to the following definitions.

Definitions. A formation is a subset M C W, as before. The community
P = (z,p) € W is a possible defection from M if, for every i € {1,... ,n},

Either z; = 0;

Or z; > 0, and there ezists (y,v) € M such that y; > 0 and ess. inf p; >
ess. inf v;.

Again, M is migration-proof if and only if there are no possible defec-
tions from it.

Let us consider the reduction map
R: X xIMR)" — X xR", with R(z,p) = (z, ess. inf p).
Directly from these defintions we gather the following observation.

Observation. A formation M C W is migration-proof with respect to the
payoff correspondence W (with unequal treatment within community) if and
only if R(M) C R(W) is migration-proof with respect to the reduced payoff
correspondence R(W) (with equal treatment within community).
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By virtue of this observation we can now recover our Main Theorem for
the more general payoff correspondences.

Main Theorem—under Unequal Treatment Within Community.
Suppose the reduced payoff correspondence R(W) satisfies Hypotheses 1 and
2. (That is, 7 : W — X is surjective and R(W) is a closed and bounded
subset of X x R*.) Then, given any total population = with profile £ €
X, there ezists a migration-proof formation M C W such that £ can be
distributed into M.

Furthermore, the number of communities in M may be taken to be no
greater than n, the number of types in the model.

5 Interaction and Instability

According to our model, when a community defects from an existing forma-
tion the welfare of its members is determined purely by the internal structure
of this new community, and no consideration need be paid to any potential
reconfiguration of the world that it leaves behind.

Furthermore, we may assume that the defecting community is internally
stable. Formally, let us call a community P emigration-proof if the singleton
formation {P} is migration-proof according to our definition. Then the
following statement is easily verified.

Proposition. If a formation M is not migration-proof, then amongst all
possible defections from M there will be one that is emzigration-proof.

These observations serve to show that our notion of migrational stability
is quite credible, provided that there are no interactions (externalities) across
the communities in a formation. If this provision does not hold, the very
criterion for migrational stability may depend on the actual situation on
hand. In considering defection, individuals will have to take into account
the future reactions of the remaining population. Presumably they will not
defect for the temporary advantage based on the formation found at the
instant of defection; nevertheless, the potential migrants may behave more
or less conservatively. Various game-theoretic, “coalition-proof” equilibrium
concepts may be invoked to formulate the requisite stability criterion. Also
it should be mentioned that many studies on clubs, local public goods,
congestions, matchings in the labour market, etc. may be thought of as
migration models with interaction. It is likely to be a subject for continued
future research. (For a review, see [2].)
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Here we shall be content merely to point out that interaction can be a
source of migrational instability, illustrated by a rather special example 4.

There is only one type of agent, with total population mass 1 (after
normalization). Let us consider formations that consist of finitely many
communities, with populations

0<zr<...€2,<...<z2n, <11, YTy =1

Denote this formation by z.

The production function of each community is p(z) = 2, with B8 >1,
so that the gross product from a community with population z is p(z) (in
units of a numeraire good). The per-capita cost to an individual in this
community is taken to be Ap(z)/z, where 0 < A < 1. (For z = 0 the cost is
defined to be 0; since 8 > 1, the cost function is continuous for z € [0,1}.)

Now suppose that the communities in the formation engage in a certain
system of trade, which entitles every individual to an equal share of the total
gross product. For an individual in the community with population z,, the
net payoff is
p(zs)

us(z) =p(z1) +... + plzm) - A z.

We will not ask how such a “communistic” system of allocation may come
about, but show that it gives individuals incentive to migrate whatever is
the prevailing population distribution. Under such a system, migrational
stability can only be imposed exogenously, if at all.

Proposition.
(a) There is a mazimal level of payoff C > 0 (independent of ), so that

lus(z)| < C

in any formation r.
(b) There is a critical population § > 0 (independent of z ), so that if

O0<z,<$é

for all the communities in a formation z, then there is incentive for the
whole population to combine into a single community. In other words, the
migration

(*15-+- yZm) ~ (0,...,0,1)

4In order to allow for interactions, we have to re-formulate our model; see appendix.
However, the following discussion will be self-explanatory.
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will take place.
(¢) In any formation z, there is incentive for a sub-population € = e(x) > 0
of the community =, to emigrate. In other words, the migration

(Z1,--. ,Zm) = (T1y-+ - 1 Tm — €,€)
will take place.

PROOF.
(a) First note that the function p(z) = 2# (8 > 1) is superadditive:

p(z) + p(w) < p(z +w) for z,w > 0.

Indeed, p is convex on the domain [0,00). Hence for 0 < z < w < z + w,
p(z) — p(0) < p(z + w) — p(w). But p(0) = 0, whence superadditivity. Now

(2] = [ple) + .. + plam) — APZE)
<lp(z1) +... +p(zm)| + | Ap(xs)/z,
<plm)+...+p(zm)+ A
<p(l)+ A (by superadditivity)
<1+A

This proves the assertion, with C = 1+ A. Incidentally, the argument
shows that if A = 0 (so there is no cost for production), then the formation
consisting of a single community is migration-proof, as well as efficient (i.e.
payoff-maximizing).

(b) Since 8 > 1, we can choose § so that

0<6<1 and 6! < (1-4)/3.
We need to verify that, when0< z; <... < z,, <6,

(@) = ple1) + -+ + plam) ~ 4B < 1) — 421

=1-A

Since 0 < z; < 1 and Y, z; = 1, by forming partial sums of the form
Yj = Ty + ...+ z;» we can find a formation {y;,... ,yx} satifying

vi+...+uw=1, and 6/2<y; <6 for all but at most one j .
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Then the number of communities in this new formation is bounded as
follows:

k<14 (2/6) <367L.
We have

us(z) S p(z1) + ... + plzm)

<p(y1)+ ... +p(y) (by superadditivity of p)

< kp(6) (by monotonicity of p)
3p(8)

< —_—

]

= 36°-1

<1- A, as desired.

(c) We need to verify that, for sufficiently small ¢,

(@) + -+ + plzm) — ARZR)
<pl@) ++ o+ plam = ) + ple) - AR,

This is equivalent to the inequality

Ben) 5 B9 2 olam) - plam = ) - p(e).

We can choose € > 0 so small, that 1 > 1 —¢ > z,, > 0 and

p(zm)
Tm

1

=281 > A1 4 Z(Be - €F).
A

Since p is convex,

P(zm) = p(zm =€) S p(1) = p(1 - €) < p'(1)e = fe.

Hence this choice of ¢ will yield the desired inequality, and the proof of
the proposition is complete.
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6 Notes

Certain resemblances will be noted between some of the ideas used in our
proof of the Main Theorem and those employed by Shapley in his proof [8] of
Scarf’s theorem [6] (on the existence of the core). Thanks to the continuous
nature of our model, the geometric method can be pursued more effectively,
yielding stronger conclusions in more intuitive ways. Indeed, Scarf’s Theo-
rem itself will be seen to be a direct corollary of the Main Theorem (Part
II).

Logically, the analysis can also be run in reverse, regarding the con-
tinuum model (and “large economies”) as the limit of coalition games in-
volving only discrete (or “small”) populations. Historically, this is the path
taken. Scarf’s Theorem is the basis for most of the relevant results surveyed
in [4, 10]. Close inspection of the argument in [7] shows that it again relies on
Scarf’s Theorem, and the “stable partition-allocation” (or migration-proof
formation in our terminology) is obtained as a limit of the balanced sets
provided by [6, Theorem 2].
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Appendix: Migration Models with Interaction

We give a general yet tentative formulation.

As before, there are n types of agents, indexed by the superscript i €
N = {1,...,n}; and we index the communities by the subscript s € S.
Generally, S is an infinite set.

Let z‘ 2 0 be the population of individuals of type i in the community
s, and u; € R be the per capita payoff for these individuals. Let r =
(SB,)zeN,se.s, and v = (ul)ienses- The array z is called a formation. The
payoff function U specifies

u=U(z).
The total population profile E = (Z1,... ,Z") of the formation z is given
by . .
=3,z

Or we say that = can be distributed into the formation z.

A migration process consists of a pair (z,¢), where € = (¢!, )icn s scs is
the population of type i migrating from the community s to s’. The array
€ satisfies the condition ef”, + €., = 0 for every i.

Thus the formation after the migration is given by

T _ i
Ys = X, + Zs' €1y

Note that the total population profile is conserved.

The migration process (z, €) is incentive compatible if: whenever ¢
then Ui (y) > Ui(z).

We also say that (z,¢€) is voluntary if: whenever €}, > 0 for some i then
2, = 0 for all j. In other words, migrants are only allowed to form new
communities — there cannot be any forced immigration without the consent
of the indigenous population.

A formation z is migration-proof if there is no migration process (z, ¢)
which is voluntary and incentive compatible.

The model will ‘be scale-invariant if U(kz) = U(z) for all k > 0; and
non-interactive if u} depends only on (z,...,z7). The reader will have no
difficulty reconciling this formulation with the one used in the paper.

>0

ss'
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