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Abstract

This paper studies a two-stage procedure for estimating partially identified models,
based on Chernozhukov, Hong, and Tamer’s (2007) theory of set estimation and inference.
We consider the case where a sub-vector of parameters or their identified set can be
estimated separately from the rest, possibly subject to a priori restrictions. Our procedure
constructs the second-stage set estimator and confidence set by taking appropriate level
sets of a criterion function, using a first-stage estimator to impose restrictions on the
parameter of interest. We give conditions under which the two-stage set estimator is a
set-valued random element that is measurable in an appropriate sense. We also establish
consistency of the two-stage set estimator.
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1 Introduction

Statistical inference for partially identified economic models, pioneered by Charles Manski

(see Manski, 2003, and the references therein), is a growing field in econometrics. In this

context, the economic structures of interest are characterized by an identified set ΘI , rather

than by a single point in the parameter space Θ. Recent studies of partial identification

have shown that consistent set estimators and confidence regions can be constructed for the

identified set as a whole or for its elements. In particular, Chernozhukov, Hong, and Tamer

(2007) (CHT) propose a general framework based on the extremum estimation approach.

Within their framework, the identified set is defined as a set of minimizers of a criterion

function. A consistent estimator of the identified set can be constructed by taking a suitable

level-set of a sample analogue of the criterion function. This level-set estimator can also be

used to compute a critical value to construct a confidence set for the identified set.

The main contribution of this paper is to establish measurability of general level-set

estimators allowing for the presence of a sub-vector of parameters or its identified set that can

be estimated separately from the rest. Specifically, we consider cases satisfying the following

conditions: (i) the parameter vector consists of two subvectors: a “first-stage” parameter and

a “second-stage” parameter; (ii) the identification of the first-stage parameter depends on

neither the identification nor the value of the second-stage parameter; and (iii) the identified

set for the second-stage parameter depends on the first-stage parameter through the criterion

function. In practice, we often encounter cases where these conditions are satisfied. For

example, Bajari, Benkard, and Levin’s (2007) estimation framework for dynamic imperfect

competition models has this structure. In financial econometrics, Kaido and White (2009)

apply the two-stage procedure developed here to study the set of market risk prices under

incomplete markets.

Our procedure constructs a two-stage set estimator by taking appropriate level sets of

a criterion function, using a first-stage estimator to impose restrictions on the parameter

of interest. The presence of a first-stage parameter introduces some complications when

establishing the measurability of the two-stage set estimator. Specifically, when the first-

stage parameter is partially identified, our estimator is a level set of a sample criterion

function, whose first argument is restricted to a first-stage set estimator. This set is a

somewhat complicated object whose measurability is not trivial to show. We show that

the measurability of our estimator is related to that of the first-stage set estimator and the

infimum of the criterion function over random sets. We then exploit this fact and establish

the measurability of the two-stage set estimator using the results of Stinchcombe and White

(1992). We also establish Hausdorff consistency of the two-stage set estimator.

For a special case of the two-stage structure, we also discuss an inference procedure based

on a quasi-likelihood ratio statistic. Specifically, we assume that the first-stage parameter is

point identified and study a procedure for testing hypotheses on the second-stage parameter.
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Our analysis does not address the general setting where the researcher wishes to conduct in-

ference for particular subcomponents of the whole parameter vector without knowing whether

the other components are point or partially identified. The case we study, however, is still

of practical interest. For example, the aforementioned applied examples (Bajari, Benkard,

and Levin, 2007; Kaido and White, 2009) admit point-identified first-stage parameters when

some a priori restrictions are available.

The paper is organized as follows. Section 2 summarizes CHT’s econometric framework

and formalizes the two-stage structure just described. Section 3 gives two illustrative exam-

ples. Section 4 provides measurability and consistency results for the two-stage set estimator.

Section 5 provides a discussion of inference based on a quasi-likelihood ratio statistic. Section

6 concludes. The appendix contains formal proofs.

2 The Data Generating Process and the Model

2.1 CHT Framework and Two-Stage Structure

Our first assumption describes the data generating process, the parameter space, and the

estimation criterion function.

Assumption 2.1: Let d1, d2 ∈ N and d := d1 + d2. Let Θ1 ⊂ Rd1 and Θ2 ⊂ Rd2 be

nonempty compact sets. Let Θ := Θ1 × Θ2. (i) For n = 1, 2, ..., let Q̄n : Θ → R̄+ be a

continuous function. (ii) Let (Ω,F, P 0) be a complete probability space. For n = 1, 2, ...,

let Qn : Ω × Rd → R̄+ be such that Qn(·, θ) is measurable for each θ ∈ Rd and Qn(ω, ·) is

continuous on Θ for each ω ∈ F ∈ F, P 0(F ) = 1, and for all ω ∈ Ω and θ /∈ Θ, Qn(ω, θ) =∞.

Θ is the finite-dimensional parameter space. Compactness is a standard assumption on

Θ for extremum estimation. The parameter of interest θ ∈ Θ consists of two subvectors,

θ1 ∈ Θ1 and θ2 ∈ Θ2. Throughout, we will call θ1 a first-stage parameter and θ2 a second-

stage parameter. The probability measure P 0 embodies the data generating process (DGP)

and thus governs the stochastic properties of the data. Throughout, we assume that there

exists a set P of complete probability measures on (Ω,F) such that P 0 ∈ P. Consistent with

White (1994), we call P the model.

The function Qn acts as the sample criterion function for estimation; for example,

Qn(ω, θ) = n−1
n∑
i=1

q(Xi(ω), θ)− inf
θ∈Θ

n−1
n∑
i=1

q(Xi(ω), θ), (2.1)

where {Xi : Ω → R} is a sequence of random vectors taking values in X ⊆ Rk, k ∈ N,

and q is a suitable function, e.g., q(x, θ) = − ln f(x, θ), where f(·, θ) is a probability density

function for each θ. This example corresponds to the case of quasi-maximum likelihood

estimation. The second term ensures that Qn(ω, θ) ≥ 0. As is common, we may write Qn(θ)

[3]



as a shorthand for Qn( · , θ).
The function Q̄n is the population criterion function. Without loss of generality, we

normalize the minimum value of Q̄n to 0, i.e. infΘ Q̄n(θ) = 0. For example, when the

expectations exist, the population analog for the above example is

Q̄n(θ) = n−1
n∑
i=1

E[q(Xi(·), θ)]− inf
θ∈Θ

n−1
n∑
i=1

E[q(Xi(·), θ)].

CHT defines the identified set as the set of minimizers of Q̄n. Examples of studies in

which the identified set is defined in this way are those of CHT, Bajari, Benkard, and Levin

(2007), Ciliberto and Tamer (2009), Kaido and White (2009), Bugni (2010), and Romano

and Shaikh (2010). Under regularity conditions, Qn eventually reveals the set of minimizers

of Q̄n. CHT’s approach is to use the level sets of Qn to construct confidence sets and a set

estimator for the identified set. A practical challenge occurs when the identified set has a large

dimension. In many cases of interest, this challenge can be addressed by taking advantage

of the structure of the optimization problem. Here, we consider identified sets that have

“two-stage” structures, defined as follows.

Definition 2.1: The unrestricted identified set Θu
I,n is defined as

Θu
I,n := {θ ∈ Θ : Q̄n(θ1, θ2) = 0, θ1 ∈ Θu

I,1}, (2.2)

for some Θu
I,1 ⊆ Θ1, where Θu

I,n is identified without knowledge of Q̄n. Θu
I,n defined above is

said to have two-stage structure.

We will give two examples with this structure in the next section. Observe that Θu
I,n has

an n index, due to the n index of Q̄n. With stationary data, the n index is unnecessary; with

asymptotically stationary data, if Q̄n converges to a uniform limit, say Q̄, then the n index

also becomes unnecessary. In what follows, we may suppress the n subscript for notational

simplicity and simply write Q̄ and Θu
I .

Definition 2.1 requires Θu
I,1 is identified separately from the rest of parameters. In other

words, we may identify and estimate Θu
I,1 without using Q̄, which can help simplify set

estimation. Not all examples studied in the literature, however, have this structure. For

example, the identified set for regression coefficients with an interval valued outcome variable

can be characterized as the set of minimizers of some criterion function Q̄ (see Manski and

Tamer, 2002, Section 4.5), yet it does not admit the two-stage structure without additional

restrictions.

A special case of the two-stage structure is the setting where the first stage is fully

identified, so Θu
I,1 is simply {θ0

1}, say. From now on, we mainly consider two-stage structures.

Formally, we impose
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Assumption 2.2: Θu
I has two-stage structure.

When θ0
1 satisfies a priori restrictions, these can restrict the first-stage identified set. A

common restriction is that θ0
1 has a known relationship to another point identified parameter

ψ0.

Restriction 2.1: Let Ψ be a compact subset of a finite dimensional Euclidean space.

Let m2 ∈ N, and let s : Θ1 × Ψ → Rm2 be a given jointly measurable function. θ0
1 satisfies

s(θ0
1, ψ

0) = 0, where ψ0 ∈ Ψ is point identified.

A special case of Restriction 2.1 is the setting where s does not depend on ψ0, in which

case the restriction reduces to ρ(θ0
1) = 0 for some known function ρ : Θ→ Rm2 . A restriction

defines a set Θr
1 of parameter values satisfying the restrictions. Define

Θr
1 := {θ1 ∈ Θ1 : s(θ1, ψ

0) = 0}.

The set of identified parameter values that satisfy the restrictions is therefore Θr
I,1 := Θu

I,1 ∩
Θr

1. We call this set the restricted first-stage identified set.

Most of our results hold even without first-stage restrictions. Accordingly, we state our

results in terms of a generic identified set for the first-stage parameter, denoted ΘI,1, whenever

the results hold with or without the restrictions. We call ΘI,1 the first-stage identified set.

Given ΘI,1, we define the two-stage identified set as follows:

Definition 2.2: The two-stage identified set is

ΘI :=
{
θ ∈ Θ : Q̄(θ) = 0 and θ1 ∈ ΘI,1

}
.

Given two-stage structure, ΘI and Θu
I coincide when ΘI,1 = Θu

I,1. They differ when the

first stage is restricted. As a special case, we may achieve full identification of the first-stage

parameter. In this case, we can define the second-stage identified set.

Definition 2.3: Let ΘI,1 = {θ0
1}. The second-stage identified set is

ΘI,2 :=
{
θ2 ∈ Θ2 : Q̄(θ0

1, θ2) = 0
}
.

In this special case, the identified set for θ is simply ΘI = {θ0
1} × ΘI,2. We here note that

the second-stage identified set, in general, differs from the projection of the set of minimizers

of Q̄. To see this, for each θ1 ∈ Θ1 define Ξ2(θ1) := {θ2 ∈ Θ2 : Q̄(θ1, θ2) = 0}. For each θ1,

Ξ2(θ1) gives a “slice” of the set of minimizers of Q̄. The projections of the set of minimizers
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of Q̄ are defined by

Θ∗I,1 := {θ1 ∈ Θ1 : Q̄(θ1, θ2) = 0, for some θ2 ∈ Θ2}

Θ∗I,2 := {θ2 ∈ Θ2 : Q̄(θ1, θ2) = 0, for some θ1 ∈ Θ1}.

It is straightforward to show that Θ∗I,2 = ∪θ1∈Θ∗I,1
Ξ(θ1), which is in general a superset of

the second-stage identified set ΘI,2 = Ξ2(θ0
1). The equality Θ∗I,2 = ΘI,2 holds only if Q̄ is

minimized on {θ0
1} ×ΘI,2 and is strictly positive outside this set.

A natural approach to conducting estimation and inference for ΘI (or ΘI,2 when θ0
1 is

fully identified) is to replace ΘI,1 (or θ0
1) with its consistent estimator Θ̂1n (or θ̂1n). We

will discuss how to construct the first-stage estimator in Section 4.3. For now, we impose

the presence of a possibly set-valued estimator of the first-stage parameter as a high-level

assumption. For this, let F(Θ1) be the set of closed subsets of Θ1.

Assumption 2.3 (First-Stage Estimator): Θ̂1n : Ω→ F(Θ1) is a measurable mapping.

When θ0
1 is fully identified, we explicitly denote its estimator by θ̂1n : Ω → Θ1. The “mea-

surability” imposed here is Effros-measurability. We discuss this in detail in Section 4.

Given a first-stage estimator, we can construct a set estimator or a confidence region for

the identified set ΘI (or ΘI,2) in the second stage based on the CHT framework. Generally,

the sample criterion function Qn approximates Q̄ well as n tends to infinity. As CHT show,

a level set of Qn with level decreasing to 0 at a proper rate is a good estimator for the set

of minimizers of Q̄. As our main focus is to estimate ΘI , we additionally restrict θ1 to the

estimator Θ̂1n of ΘI,1. We formally define the two-stage set estimator as follows.

Definition 2.4 (Two-Stage Set Estimator): For each n ∈ N, let ε̂n : Ω → R+ be mea-

surable. Given a sequence {an} and Θ̂1n : Ω→ F(Θ1), the two-stage set estimator is

Θ̂n :=
{
θ : anQn(θ1, θ2) ≤ ε̂n, θ1 ∈ Θ̂1n

}
.

If ΘI,1 has only one element, then given θ̂1n : Ω→ Θ1, the second-stage set estimator is

Θ̂2n :=
{
θ2 : anQn(θ̂1n, θ2) ≤ ε̂n

}
.

3 Examples

In this section, we present two examples exhibiting the two-stage structure described in the

previous section. The first example is Bajari, Benkard, and Levin’s (2007) (BBL) analysis of

dynamic models of imperfect competition.
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3.1 Dynamic Models of Imperfect Competition

Let L,M,N ∈ N. Let i = 1, · · · , N be the player (firm) index. For each period t ∈ N, let

st ∈ S ⊆ RL be a vector of commonly observed state variables. Each player observes st and

a private shock vit ∈ Vi ⊆ RM and decides their action ait ∈ Ai.
A pure Markov strategy for player i is a measurable function σi : S × Vi → Ai. Let

at ∈ A = A1 × · · · × AN . Given a common subjective discount factor β0 and a payoff

function πi : A× S ×Vi → R, a pure-strategy Markov perfect equilibrium (MPE) is a profile

σ = (σ1, · · · , σN ) of Markov strategies such that

Vi(s;σ) ≥ Vi(s;σ′i, σ−i)

for all players i, states s and Markov strategies σ′i, where Vi(s;σ) is the value function defined

recursively as

Vi(s;σ) := E

[
πi(σ(s, v;α0), s, vi; γ0) + β0

∫
Vi(s

′;σ)dP (s′|σ(s, v;α0), s;α0)

∣∣∣∣s] .
A parameterized version of the Markov process transition probability P (s′| a, s;α0) is

P (s′|a, s;α), α ∈ Rd1 . The strategy σ is also assumed to be parameterized by α. The

private shock vit is drawn independently across players and over time from a player-specific

distribution Gi(·|st; γ0), where γ0 ∈ Rd2 . The vector γ0 also enters the payoff function

πi(a, s, vi; γ0), parameterized as πi(a, s, vi; γ). Assuming that the subjective discount factor

β0 is known, the true parameter vector of interest is (α′0, γ
′
0)′.

Following BBL, let x := (i, s, σ′i). Let X denote the set of admissible x values, and let

g(x, σ;α0, γ0) := Vi(s;σ
′
i, σ−i;α0, γ0)− Vi(s;σi, σ−i;α0, γ0).

Without specifying the equilibrium selection rule, the equilibria consistent with the true

parameter vector are characterized by the set of inequalities g(x, σ;α0, γ0) ≤ 0 for x ∈ X .

BBL show that α0 can be fully identified in many cases; α0 is the first-stage parameter.

The inequality conditions, however, do not necessarily guarantee the full identification of

the second-stage parameter γ0. Therefore, they consider the case where the parameter is

partially identified. Let H be a distribution over X chosen by the researcher1. For y ∈ R, let

{y}+ := max{y, 0}. Their population criterion function is defined by

Q̄(α, γ) :=

∫
X
{g(x, σ;α, γ)}2+ dH(x).

When α0 is fully identified, the first-stage identified set is ΘI,1 = {α0}, and the second-stage

1The distribution might be chosen in a variety of ways. BBL considers the possibility that σ′i is distributed
as a slight perturbation of the equilibrium policy σi and that σ′i differs from σi at a single state.
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identified set is ΘI,2 = {γ : Q̄(α0, γ) = 0}. The identified set for (α, γ) is therefore {α0}×ΘI,2.

BBL show that α0 can be estimated from repeated observations on individual actions

and states {ait, st}. Let α̂n be the first-stage estimator of α0. This gives the first stage

estimate P̂ := P (s′|a, s, ; α̂n) and σ̂ := σ(s, v; α̂n) of the transition probability and the pol-

icy function. Now, let {x1, · · · , xJ} be the set of x values chosen by the researcher2. For

each x ∈ {x1, · · · , xJ} and γ ∈ Rd2 , one can estimate the value function Vi by forward

simulation (BBL, Section 3.3) given the first stage estimators P̂ and σ̂. This gives an es-

timator V̂i(s, σ̂i, σ̂−i; α̂n, γ) of the value function. Let ĝ(x, σ̂; α̂n, γ) := V̂i(s, σ
′
i, σ̂−i; α̂n, γ) −

V̂i(s, σ̂i, σ̂−i; α̂n, γ). BBL consider the sample criterion function for γ

Qn(α̂n, γ) :=
1

J

J∑
j=1

{ĝ(xj , σ̂; α̂n, γ)}2+ .

Using this criterion function and given a sequence {ε̂n}, the second-stage estimator for ΘI,2

is Θ̂2n = {γ : nQn(α̂n, γ) ≤ ε̂n}.
BBL focus on how dynamic models of imperfect competition can be estimated, allowing

the possibility that the second stage parameter is only partially identified. They implicitly

assume measurability, prove the consistency of the second-stage estimator using Manski and

Tamer’s (2002) result, and describe the construction of a confidence set based on Romano and

Shaikh (2010). Our analysis ensures the measurability of BBL’s set estimator and extends

the consistency of the two-stage set estimator to cases where α is only partially identified.

3.2 Market Price of Risk in Incomplete Markets

The second example is Kaido and White’s (2009) study of the market price of risk in incom-

plete markets. We present one of their main cases. Let (Ω,F, {Ft}, P ) be a filtered probability

space. Suppose that there are d ∈ N risky assets and that the Rd−valued asset price process

{St} solves the stochastic differential equation

dSjt = µj0S
j
t dt+ σj0S

j
t dWt, t ∈ [0, T ], j = 1, ..., d,

where {Wt} is a vector of N ∈ N independent standard Brownian motions under P adapted

to the filtration {Ft}, µ0 ∈ Rd has elements µj0, j = 1, ..., d, and σ0 ∈ Rd×N has 1×N rows

σj0, j = 1, ..., d. Let S0
t denote the price of the risk-free bond with known rate of return r.

Suppose (i) {St} does not admit arbitrage; and (ii) extremely good deals (returns with

high Sharpe ratios) are not available3. The first assumption ensures the existence of a risk-

neutral measure and an associated market price of risk λ satisfying σ0λ = µ0− rι, where ι is

a vector of ones. The second ensures that the true market price of risk λ0 has a finite upper

2BBL propose drawing the x-values independently from H.
3See Cochrane and Saá-Requejo (2000) for example.
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bound M on its norm. Thus, they define the parameter space Θ2 for λ to be Θ2 = {λ : ‖λ‖ ≤
M}.

In this example, the diffusion coefficient σ0 can be (partially or fully) identified and

estimated separately from the market price of risk λ0. The covariance matrix Σ0 of asset

returns satisfies Σ0 = σ0σ
′
0. This is an example of the restriction described in Restriction 2.1.

The restricted first-stage identified set is

ΘI,1 = Θr
I,1 = {σ : s1(σ,Σ0) = 0},

where s1(x,A) = vec(A − xx′) for x ∈ Rd×N and A ∈ Rd×d. It can be shown that

‖s1(σ, Σ̂n)‖2 = Op(n
−1) on ΘI,1. Then, a first-stage estimator for ΘI,1 can be defined by

Θ̂1n := {σ : n‖s1(σ, Σ̂n)‖2 ≤ ηn}, where Σ̂n is the sample covariance matrix of asset returns,

and {ηn} is a non-negative sequence such that supσ∈ΘI,1 ‖s1(σ, Σ̂n)‖2 ≤ ηn/n with probabil-

ity approaching 1. Such a sequence can be constructed by setting ηn = cκn, where c > 0

and κn is a slowly diverging sequence, e.g., κn = log log n. Kaido and White (2009) use the

population criterion function

Q̄n(σ, λ) := −E

[
1

n

n∑
i=1

ln f(Rti ;σ, λ)

]
− q̄n,

where for each ti in the partition {t0, t1, · · · , tn} with t0 = 0 and tn = T , Rti ∈ Rd is the

vector of returns over the interval [ti, ti−1], f is the the multivariate Gaussian density with

mean σλ− rι and covariance Σ, and q̄n := infσ,λ−E[n−1
∑n

i=1 ln f(Rti ; σ, λ)]. The identified

set for (σ, λ) is defined by ΘI := {(σ, λ) : Q̄n(σ, λ) = 0, almost all n (a.a.n), and σ ∈ ΘI,1}.
The sample criterion function is defined by

Qn(σ, λ) = − 1

n

n∑
i=1

ln f(Rti ;σ, λ)− qn,

where qn := infσ,λ−n−1
∑n

i=1 ln f(Rti ;σ, λ). Given Θ̂1n and a sequence {ε̂n}, the two-stage

set estimator is defined by Θ̂n := {(σ, λ) : nQn(σ, λ) ≤ ε̂n, σ ∈ Θ̂1n}.
Under additional assumptions, the diffusion coefficient can be fully identified. Kaido and

White (2009) consider examples that satisfy additional restrictions. For example, assuming

that each asset is exposed to its own idiosyncratic risk and n−d common risk factors implies

that there exists a function s2 : Rd×N → Rm such that s2(σ0) = 0 for some m ∈ N. In this

case, the first-stage identified set is

ΘI,1 = Θr
I,1 = {σ : s1(σ,Σ0) = 0 and s2(σ) = 0}.

Kaido and White (2009) show that these restrictions may fully identify σ0 in some cases,
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enabling them to estimate σ0 using a point estimator σ̂n. If σ0 is fully identified, the second-

stage identified set for the market price of risk is simply ΘI,2 = {λ : Q̄n(σ0, λ) = 0, a.a.n}.
This set is shown to be a bounded subset of an affine space. The second-stage set estimator

is Θ̂2n = {λ : nQn(σ̂n, λ) ≤ ε̂n}.

4 Measurability and Consistency of the Two-Stage Estimator

In this section, we establish the measurability and consistency of the two-stage set estimator.

We first show that our estimator is a set-valued random element that is measurable in an

appropriate sense. This ensures that various functionals, including the distance between the

set estimator and the identified set, are measurable, which in turn implies that standard

asymptotic theory can be used to establish consistency. An alternative to our approach here

would be to work with outer probability and modified definitions of convergence (van der

Vaart and Wellner, 2000). The consistency result is a straightforward extension of CHT.

4.1 Effros-measurability

The measurability of set estimators is defined for mappings from Ω to the space of closed

subsets of a Euclidean space. We first briefly review useful concepts and results in the theory

of random sets. Details can be found in Molchanov (2005).

For A ⊂ Rd, let F(A) denote the collection of all closed subsets of A. A useful measura-

bility concept for set-valued functions is Effros-measurability.

Definition 4.1 (Effros-measurability): A map X : Ω→ F(A) is Effros-measurable with

respect to F if for each closed set F ∈ F(A)

X−(F ) := {ω : X(ω) ∩ F 6= ∅} ∈ F. (4.1)

Effros-measurability ensures that many functionals of interest, such as the distance be-

tween random sets, become random variables; it is also flexible, handling as many random

elements as one typically requires4. To show the measurability of the set estimators defined

in Definition 2.4, we impose mild conditions on the sample criterion function. For this, we

require the criterion function to be a proper normal integrand, defined below. Recall that a

function f : Rd → R̄ is lower semicontinuous (lsc) if lim infx→x̄ f(x) ≥ f(x̄) for every x̄ ∈ Rd.

Definition 4.2 (Epigraph and Proper Normal Integrand): If f : Rd → R̄ is lsc, then

epi f = {(x, α) ∈ Rd × R : f(x) ≤ α}
4Molchanov (2005) defines an Effros-measurable map as one such that X−(G) ∈ F for each open set G ⊂ A.

When A is a Polish space and (Ω,F, P 0) is complete, this is equivalent to our definition (Theorem 2.2.3. in
Molchanov, 2005).
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is called the epigraph of f .

A function ζ : Ω×Rd → R̄, is called a normal integrand if its epigraph X(ω) = epi ζ(ω, ·)
defines a closed set that is Effros-measurable with respect to F. A normal integrand is said

to be proper if it does not take the value −∞ and is not identically equal to +∞.

The following are useful facts about normal integrands.

Fact 4.1 (Proposition 3.6 in Molchanov, 2005): Let ζ : Ω×Rd → R̄ be such that ζ(ω, ·) is

lsc on Rd for each ω ∈ Ω. If ζ is jointly measurable on Ω×Rd, then ζ is a normal integrand.

Fact 4.2 (Proposition 3.10 (i) in Molchanov, 2005): If ζ is a normal integrand, then for

every random variable α̂ : Ω → R̄, {ζ ≤ α̂} = {x ∈ Rd : ζ(·, x) ≤ α̂(·)} is a random closed

set, i.e. it is Effros-measurable.

Recall that when the first-stage parameter is fully identified, the second-stage set esti-

mator Θ̂2n is defined as a level set of a random continuous function. Therefore, to ensure

the measurability of the second-stage set estimator, it suffices to require that the criterion

function is jointly measurable in (ω, θ).

For the two-stage set estimator Θ̂n, however, we need a somewhat more careful treatment.

Θ̂n is a level set of a random criterion function whose first argument is restricted to the first-

stage set estimator Θ̂1n. As Θ̂1n is also a random set, this introduces some complications.

As we show below, the measurability of Θ̂n is related to the Effros-measurability of the

first-stage set estimator and the measurability of the criterion function over random sets. For

this, we make use of results from Stinchcombe and White (1992) (SW)5. We can now state a

general result for Effros-measurability of two-stage set estimators:

Theorem 4.1: (i) Let (Ω,F, P ) be a complete probability space, and let Θ = Θ1 × Θ2

where Θ1 and Θ2 are nonempty compact subsets of finite-dimensional Euclidean space; (ii)

Let ζ : Ω×Θ1 ×Θ2 → R̄+ be such that ζ(·, θ1, θ2) is measurable for each (θ1, θ2) in Θ1 ×Θ2

and ζ(ω, ·, ·) is continuous on Θ1 × Θ2 for each ω in F ∈ F with P (F ) = 1; (iii) Let

Θ̂1 : Ω→ F(Θ1) be Effros-measurable.

Then, for any measurable ε̂ : Ω→ R+, the ε̂-level set Θ̂ : Ω→ F(Θ), defined by

Θ̂(ω, ε̂(ω)) = {θ : ζ(ω, θ1, θ2) ≤ ε̂(ω), θ1 ∈ Θ̂1(ω)}.

is Effros-measurable with respect to F.

Suppose instead (iii′) θ̂1 : Ω→ Θ1 is measurable. Then

(a) For each θ2 ∈ Θ2, ζ̃(·, θ2) := ζ(·, θ̂1(·), θ2) is a measurable function on Ω and for each

ω ∈ F , ζ̃(ω, ·) is a continuous function on Θ2;

5Details on the results of SW are given in the appendix.
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(b) For any measurable ε̂ : Ω→ R+, the ε̂-level set Θ̂2 : Ω→ F(Θ2), defined by

Θ̂2(ω, ε̂(ω)) = {θ2 : ζ(ω, θ̂1(ω), θ2) ≤ ε̂(ω)}

is Effros-measurable with respect to F.

These results yield Effros-measurability for our two- and second-stage estimators.

Corollary 4.1: Suppose Assumptions 2.1 and 2.3 (Effros-measurability of Θ̂1n) hold.

Then for any measurable ε̂n : Ω → R+, the two-stage estimator Θ̂n and the second-stage

estimator Θ̂2n of Definition 2.4 are Effros-measurable.

4.2 Consistency

In this section, we show that the two-stage set estimators of Definition 2.4 converge in prob-

ability to the identified set. The consistency is in terms of Hausdorff metric. For two closed

sets A and B in F(Θ), the Hausdorff metric is defined as

dH(A,B) = max

[
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

]
,

where d(b, A) := infa∈A ‖b− a‖ and dH(A,B) :=∞ if either A or B is empty. The Hausdorff

metric is standard in this context. The following theorem establishes the consistency of

two-stage set estimators generally. For this, recall that {x}+ := max{x, 0} for any x ∈ R.

Theorem 4.2: (i) Let (Ω,F, P ) and Θ = Θ1 × Θ2 satisfy the conditions of Theorem

4.1, and suppose that for n = 1, 2, · · · , Qn and Θ̂1n satisfy the conditions on ζ and Θ̂1 in

Theorem 4.1; (ii) Suppose there exists Q̄ : Θ→ R̄+ such that supΘ{Q̄(θ)−Qn(θ)}+ = op(1).

Let ΘI,1 ∈ F(Θ1) and define

Θ̄I := arg min
ΘI,1×Θ2

Q̄(θ).

(iii) Let {an} be a sequence of normalizing constants such that an →∞; (iv) Let ε̂n be such

that ε̂n/an = op(1) and

lim
n→∞

P

(
ω : sup

θ∈Θ̄I

Qn(ω, θ) ≤ ε̂n(ω)/an

)
= 1.

(v) Suppose further that dH(Θ̂1n,ΘI,1) = op(1), P (ΘI,1 ⊆ Θ̂1n)→ 1, and let

Θ̂n(ω) = {θ : anQn(ω, θ1, θ2) ≤ ε̂n(ω), θ1 ∈ Θ̂1n(ω)}.

Then Θ̂n is Effros-measurable with respect to F, and dH(Θ̂n, Θ̄I) = op(1).
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Note that the estimated set Θ̄I need not correspond to the identified set ΘI , as this result

does not assume two-stage structure. Nevertheless, Θ̄I = ΘI when Q̄ does have two-stage

structure. In the absence of two-stage structure, the result above could be useful for partial

identification analysis of profile estimators, like the EM algorithm (Dempster, Laird, Rubin,

et al., 1977), which iterate between estimating one subset of parameters and another.

When θ0
1 is point identified, the second-stage set estimator Θ̂2n is consistent for the

identified set ΘI,2:

Corollary 4.2: (i) Let the conditions of Theorem 4.2 hold, and suppose that ΘI,1 is a

singleton, ΘI,1 = {θ0
1}; (ii) Let

ΘI,2 := arg min
θ2∈Θ2

Q̄(θ0
1, θ2);

(iii) Let θ̂1n : Ω→ Θ1 be F-measurable such that θ̂1n − θ0
1 = op(1), and let

Θ̂2n(ω) :=
{
θ2 : anQn(ω, θ̂1n(ω), θ2) ≤ ε̂n(ω)

}
.

Then Θ̂2n is Effros-measurable with respect to F, and dH(Θ̂2n,ΘI,2) = op(1).

To apply these results, we add a one-sided uniform convergence assumption.

Assumption 4.1: supΘ{Q̄(θ)−Qn(θ)}+ = op(1).

This assumption holds by any of a variety of uniform laws of large numbers. We can now

obtain the Hausdorff consistency of our two- and second-stage estimators.

Corollary 4.3: Suppose Assumptions 2.1 (i) and 2.2 hold. Then Θ̄I = ΘI . If Assump-

tions 2.1 (ii), 2.3, and 4.1 also hold and dH(Θ̂1n,ΘI,1) = op(1), then for any measurable

ε̂n : Ω → R+ such that ε̂n/an = op(1) and limn→∞ P (supΘI Qn(θ) ≤ ε̂n/an) = 1, the two-

stage estimator Θ̂n of Definition 2.4 is consistent: dH(Θ̂n,ΘI) = op(1). If ΘI,1 = {θ0
1} and

θ̂1n : Ω → Θ1 is F-measurable such that θ̂1n − θ0
1 = op(1), then the second-stage estimator

Θ̂2n of Definition 2.4 is consistent: dH(Θ̂2n,Θ2,I) = op(1).

4.3 First-Stage Set Estimation

In this section, we explicitly consider the estimation of ΘI,1. If ΘI,1 = Θu
I,1, then one

can estimate the first-stage identified set using existing set-estimation techniques such as

that of CHT. It remains, however, to study set estimation with the a priori restrictions

considered in Section 2. We therefore take an estimator Θ̂u
1n of Θu

I,1 as given and show that

the restrictions can be also incorporated into the extremum estimation framework. The next

theorem establishes the Effros-measurability and consistency of the first-stage set estimator.
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Theorem 4.3: (i) Let (Ω,F, P ) be a complete probability space, and let Θ1 be a nonempty

compact subset of finite-dimensional Euclidean space; (ii) s : Θ1 × Ψ → Rm2 is a con-

tinuous function; (iii) Θr
1 = {θ1 ∈ Θ1 : s(θ1, ψ0) = 0}; (iv) there is a point estimator

ψ̂n : Ω → Ψ that is F-measurable; (v) For a positive sequence {αn} and a non-negative

sequence {ηn}, Θ̂r
1n = {θ1 ∈ Θ1 : ‖s(θ1, ψ̂n)‖2 ≤ ηn/αn}; (vi) Θ̂u

1n is Effros-measurable;

(vii) Restriction 2.1 holds; (viii) {αn} and {ηn} satisfy supθ1∈Θ1
‖s(θ1, ψ̂n)‖2 = Op(1/αn)

and P (supθ1∈Θ1
αn‖s(θ1, ψ̂n)‖2 ≤ ηn) → 1; (ix) supθ1∈Θ1

‖s(θ1, ψ̂n) − s(θ1, ψ0)‖ = op(1); (x)

dH(Θ̂u
1n,Θ

u
I,1) = op(1) and P (Θu

I,1 ⊆ Θ̂u
1n)→ 1. Then

(a) If conditions (i)-(vi) hold, Θ̂1n := Θ̂u
1n ∩ Θ̂r

1n is Effros-measurable, i.e. Assumption

2.3 holds.

(b) If conditions (i)-(x) hold, dH(Θ̂1n,ΘI,1) = op(1) and P (ΘI,1 ⊆ Θ̂1n)→ 1.

Here, we also employ CHT’s framework to construct the set estimator Θ̂r
1n. Conditions

(vii)-(ix) are imposed so that Θ̂r
1n is consistent in Hausdorff metric to Θr

1. Condition (ix)

is satisfied, for example, if ψ̂n is a consistent estimator of ψ0 and s is Lipschitz continuous

in ψ, i.e., for each θ1 ∈ Θ1, |s(θ1, ψ) − s(θ1, ψ
′)| ≤ M(θ1)‖ψ − ψ′‖ for a bounded function

M : Θ1 → R.

5 Two-Stage Inference using the Quasi-Likelihood Ratio Statis-

tic

Set estimation is useful when interest focuses on the properties of the identified set. If instead

one wishes to test hypotheses regarding the identified set, it is not necessary to estimate it.

In this section, we discuss hypothesis testing based on a quasi-likelihood ratio statistic when

the first-stage parameter is point identified6.

Let R be a closed subset of Θ2, where R is a set of parameter values that satisfy the

restrictions of interest. As the true second-stage parameter value θ0
2 is in the identified set,

if θ0
2 satisfies the given restrictions, the identified set has nonempty intersection with R. We

can thus consider the hypothesis

HΘ2
0 : ΘI,2 ∩R 6= ∅ versus ΘI,2 ∩R = ∅. (5.1)

Because R is a closed subset of the compact parameter space, this null hypothesis is equivalent

to

HΘ2
0 : inf

θ2∈Θ2∩R
Q̄n(θ0

1, θ2) = 0.

Such hypothesis is considered for the partially identified case in the single-stage context by

Romano and Shaikh (2010) for parametric inference and by Santos (2012) for nonparametric

6More detailed discussion of the results in this section is available from the authors upon request.
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inference.

To test the hypothesis in our two-stage framework, we replace Q̄n and θ1
0 with their sample

analogs Qn and θ̂1n, which leads to the test statistic

T̂n(Θ2, R) = inf
θ2∈Θ2∩R

anQn(θ̂1n, θ2).

Below, we focus on the cases where Qn takes the quasi-maximum likelihood form:

Qn(ω, θ) = n−1
n∑
i=1

q(Xi(ω), θ)− inf
θ∈Θ

n−1
n∑
i=1

q(Xi(ω), θ). (5.2)

When q(x, θ) = − ln f(x, θ), where f(·, θ) is a probability density function for each θ, T̂n(Θ2, R)

can be viewed as a quasi-likelihood ratio statistic. We note here that this statistic can be

used to conduct inference for both correctly specified and misspecified parametric models.

Let P = {P : dP/dµ = f(·, θ), θ ∈ Θ} be a parametric model, where µ is a σ-finite measure

on X . If the model is correctly specified, i.e., P 0 ∈ P, the problem then reduces to inference

based on a likelihood-ratio statistic with a partially identified parameter. When the first-

stage parameter is not present, this type of problem has been studied in Liu and Shao (2003).

Recently, Chen, Tamer, and Torgovitsky (2011) have further extended the framework of Liu

and Shao (2003) to account for infinite dimensional parameters. On the other hand, if the

model is misspecified, the set of minimizers of Q̄ should be interpreted as the set of points

that have the best approximation property to P 0 as discussed in Ponomareva and Tamer

(2010). Here, the approximation is in terms of the Kullback-Leibler divergence (see White,

1994). Although we do not explicitly study here, another type of misspecification, namely

local violations of model restrictions, may have impacts on inference. The asymptotic dis-

tortion of inference methods for partially identified models under such local misspecification

has been studied in Bugni, Canay, and Guggenberger (2012).

Let an = n, a typical case. Then the statistic can be written as

T̂n(Θ2, R) = inf
θ2∈R

n∑
i=1

q(Xi(ω), θ̂1n, θ2)− inf
θ2∈Θ2

n∑
i=1

q(Xi(ω), θ̂1n, θ2). (5.3)

When the first-stage parameter is not point identified, we may still be able to define a qusi-

likelihood ratio statistic using a first-stage set estimator Θ̂1n. However, the impact of the

first-stage set estimation on the distribution of the test statistic is complicated for this general

case, and its analysis is beyond the scope of this paper. This is why we focus on the statistic

T̂n(Θ2, R), where the first-stage parameter is fully identified. In this setting, we can often

exploit a two-term mean-value expansion of the test statistic and write it as

T̂n(Θ2, R) = Tn(Θ2, R; θ0
1) + ng′n

(
θ̂1n − θ1

0

)
+ n

(
θ̂1n − θ1

0

)′
Hn

(
θ̂1n − θ1

0

)
/2 + op(1),

[15]



where Tn(Θ2, R; θ0
1) replaces θ̂1n in T̂n(Θ2, R) with θ1

0, gn = n−1(∂/∂θ1)Tn(Θ2, R; θ0
1), and

Hn = n−1(∂2/∂θ1∂θ
′
1)Tn(Θ2, R; θ0

1)7. Then, T̂n(Θ2, R) converges weakly to a non-degenerate

random variable T under regularity conditions.

Subsampling can be then used to estimate an appropriate critical value. For each x ∈ R,

let F (x) := P (T ≤ x) and let c1−α := inf{x : F (x) ≥ 1 − α}. Let b := bn < n be a positive

integer. Let Nn,b =
(
n
b

)
denote the number of subsamples of size b from a sample of size n.

For each 1 ≤ k ≤ Nn,b, let T̂b,k(Θ2, R) be the statistic computed from the k-th subsample of

size b. The subsampling estimator ĉn,b,1−α of c1−α is defined by

ĉn,b,1−α := inf
{
x : F̂n,b(x) ≥ 1− α

}
,

where F̂n,b(x) := N−1
n,b

∑
1≤k≤Nn,b 1{T̂b,k(Θ2, R) ≤ x}. If the distribution of T is continuous

at c1−α and b→∞ and b/n→ 0 as n→∞, then ĉn,b,1−α can be shown to be consistent for

c1−α, which ensures asymptotic validity of the test. Specifically, one can show that, under

the null hypothesis,

lim sup
n→∞

P (T̂n(Θ2, R) > ĉn,b,1−α) ≤ α;

and the test is also consistent against any fixed alternative.

It should be noted, however, that this asymptotic validity is ensured only pointwise but

not uniformly in the underlying distributions. Uniform validity of inference would be a

desirable property in this context because the limiting distribution of T̂n(Θ2, R) may be

discontinuous in the underlying distribution. In some examples, the quasi-likelihood ratio

statistic can be reduced to a statistic based on moment inequalities. In such a setting, it is

well-known that inference procedures based on pointwise asymptotics are not guaranteed to

provide a good approximation to the finite sample distribution of the test statistic. For this

class of models, uniformly valid procedures have been recently developed; see Andrews and

Soares (2010), Bugni (2010), and Andrews and Barwick (2012) among others. Further, our

simulation results (not reported here) suggest that the test based on the subsampling critical

value has severe size distortion when the identified set is close to a singleton. Therefore, care

must be taken in applying our testing procedure. An important avenue for future work is to

extend our inference framework and develop a uniformly valid procedure.

6 Concluding Remarks

This paper studies estimation and inference for a parameter vector that has a two-stage

structure. Our procedure constructs a two-stage set estimator by taking an appropriate level

7This expansion is valid when ΘI,1 = {θ10}, in which case the identified set ΘI = {θ01} × ΘI,2 does not
have non-empty interior. This implies that our setting may not belong to the class of problems where CHT’s
degeneracy condition (Condition C.3) holds.
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set of a criterion function, using a first-stage estimator to impose restrictions on the parameter

of interest. A special case of this estimator where the first-stage parameter is fully identified

was considered, for example, in Bajari, Benkard, and Levin (2007), but its measurability

has not been previously studied. We give conditions for the measurability of the two-stage

set estimator and establish consistency of the two-stage estimator based on the results of

Chernozhukov, Hong, and Tamer (2007).
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A Mathematical Appendix

This appendix collects proofs for Theorems 4.1, 4.2, and 4.3. The proofs for Corollaries 4.1,

4.2, and 4.3 are omitted for brevity.

A.1 Proof of Theorem 4.1

To prove Theorem 4.1, we make use of some results from SW. We therefore introduce some

of the concepts used in SW and give two lemmas for easy reference.

Let (Ω,F) be a measurable space. A set A ⊂ Ω is said to be an analytic subset of Ω if

there exists a compact metric space E, with its Borel σ-field E, such that A is the projection

of some B ∈ F⊗E. The collection of all analytic subsets of Ω is denoted by A(F). A function

f : Ω → R̄ is said to be analytic if for all r ∈ R, {ω|f(ω) > r} ∈ A(F). By Fact 2.9 in SW,

all measurable functions are analytic. Conversely, all analytic functions are measurable with

respect to every completion of F.

Lemma A.1 (Lemma 2.15 in SW): Let (Ω,F) be a measurable space and (H, d) a separable

metric space with its Borel σ-algebra H. If ζ is measurable on Ω and continuous on H, that

is, for every ω ∈ Ω, ζ(ω, ·) : H → R̄ is continuous and for every h ∈ H, ζ(·, h) : Ω → R̄ is

measurable, then ζ : Ω×H → R̄ is F⊗H-measurable.

Lemma A.2 (Theorem 2.17, a in SW): (i) Let (Ω,F) be a measurable space; (ii) Let (H,H)

be a Souslin measurable space, i.e. a space that is measurably isomorphic to an analytic subset

of a compact metric space. (iii) Suppose ζ : Ω×H → R̄ is F⊗H-measurable; (iv) S : Ω⇒ H

is a correspondence from Ω to H with grS ∈ F⊗H, where grS is the graph of S8. Then the

function ζ∗ : Ω→ R̄ defined by

ζ∗(ω) := sup
h∈S(ω)

ζ(ω, h)

is analytic.

The result of Lemma A.2 is a bit more general than strictly necessary for our purposes.

If F is completed with respect to the probability measure P , then the results above imply

the measurability of ζ∗ with respect to the completed σ-algebra. This is the result we exploit

to establish Effros-measurability. A closely related result was established by Debreu (1967)

for mappings S that are non-empty and compact for all ω ∈ Ω and for functions ζ such that

ζ(ω, ·) is lower semicontinuous for all ω ∈ Ω. Therefore, if the first stage set estimator is

almost surely non-empty and if a criterion function Qn is jointly measurable, we can relax

the continuity assumption on Qn and allow Qn to be only lower semicontinuous.

8This condition is equivalent to the Effros-measurability of S when the parameter space H is a Polish space
and the probability space is complete. See Theorem 1.2.3 in Molchanov (2005).
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Proof of Theorem 4.1. For any E ⊆ Θ, let Θ̂−1(E) := {ω : Θ̂(ω, ε̂(ω)) ∩E 6= ∅}. Recall that

F(Θ) is the collection of all closed subsets of Θ. Below, we establish the Effros-measurability

of Θ̂ by showing

Θ̂−1(F ) ∈ F, ∀F ∈ F(Θ). (A.1)

Let F ∈ F(Θ). If F = ∅, then trivially Θ̂−1(F ) = ∅ ∈ F. Now suppose F 6= ∅. For any

ω ∈ Ω, it follows that

Θ̂(ω, ε̂(ω)) ∩ F 6= ∅

⇔ (Θ̂1(ω)×Θ2) ∩ F 6= ∅

and ∃(θ1, θ2) ∈ (Θ̂1(ω)×Θ2) ∩ F such that ζ(ω, θ1, θ2) ≤ ε̂(ω)

⇔ inf
(Θ̂1(ω)×Θ2)∩F

ζ(ω, θ1, θ2) ≤ ε̂(ω),

where the second equivalence follows from the compactness of (Θ̂1×Θ2)∩F and the continuity

of ζ(ω, ·, ·). For each ω ∈ Ω, let R(ω) := Θ̂1(ω)×Θ2 and RF (ω) := R(ω)∩ F . Thus, we may

write

Θ̂−1(F ) =

{
ω : inf

RF (ω)
ζ(ω, θ1, θ2) ≤ ε̂(ω)

}
. (A.2)

Therefore, it suffices to show that the infimum of the random function ζ over the random

closed set RF is measurable in usual sense. For this, we first show that R is Effros-measurable.

Let F1 := {θ1 ∈ Θ1 : (θ1, θ2) ∈ F for some θ2 ∈ Θ2} and note that F1 is closed. Then, it

follows that

{ω : R(ω) ∩ F 6= ∅} = {ω : Θ̂1(ω) ∩ F1 6= ∅} ∈ F, (A.3)

where the last inclusion holds because Θ̂1 is Effros-measurable by assumption and the fact

that the projection F1 of F is also closed. This ensures that R is Effros-measurable. A similar

argument shows RF is also Effros-measurable.

For the measurability of infRF (ω) ζ(ω, θ1, θ2), we apply Lemma A.2. Condition (i) of

Lemma A.2 is satisfied by our hypotheses. By assumption, Θ is a compact subset of a finite

dimensional Euclidean space. Hence, it is closed and is therefore Borel measurable. This

implies that Θ is a Lusin space. Since every Lusin space is also a Souslin space (p.498 in

SW), Condition (ii) of Lemma A.2 is also satisfied. Assumption (ii) of Theorem 4.1 ensures

that ζ is jointly measurable by Lemma A.1, which ensures condition (iii) of Lemma A.2.

Condition (iv) of Lemma A.2 is equivalent to Effros-measurability of S by Theorem 1.2.3 in

Molchanov (2005). Thus, for any F ∈ F(Θ), RF satisfies this condition. Lemma A.2 then

implies the measurability of infRF (·) ζ(·, θ1, θ2).
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For (a), this is immediate from Theorem 2.14 (i) in White (1994). Given this result, we

can apply Lemma A.1 to establish the jointly measurability of ζ̃. By Fact 4.1, ζ̃ is a normal in-

tegrand. This ensures the measurability of its level sets. Therefore {ω : infRF (ω) ζ(ω, θ1, θ2) ≤
ε̂(ω)} 6= ∅. This and Eq. (A.3) imply that the right hand side of (A.2) is an element of F.

Since F was arbitrary, the conclusion follows.

A.2 Proof of Theorem 4.2

Proof of Theorem 4.2. To show dH(Θ̂n, Θ̄I) = op(1), we need both (a) supθ∈Θ̄I
d(θ, Θ̂n) =

op(1) and (b) supθ∈Θ̂n
d(θ, Θ̄I) = op(1).

We first show (a). By the definition of Θ̂n, it follows that

P (Θ̄I 6⊆ Θ̂n) ≤ P ( sup
θ∈Θ̄I

anQn(θ) > ε̂n) + P (ΘI,1 6⊆ Θ̂1n). (A.4)

Conditions (iv) and (v) ensure that the probabilities on the right hand side of (A.4) tend

to 0 as n → ∞. Thus, Θ̄I ⊆ Θ̂n with probability approaching 1. This ensures that

supθ∈Θ̄I
d(θ, Θ̂n) = op(1).

For (b), we need to show that for any ε > 0, supθ∈Θ̂n
d(θ, Θ̄I) ≤ ε with probability

approaching 1. This can be established by the uniform convergence of Qn and the convergence

of the first stage set estimator in Hausdorff metric. For this, let

ζ̄(θ) := Q̄(θ) + d(θ1,ΘI,1),

where the second term takes a positive value if the first stage restriction θ1 ∈ ΘI,1 is violated.

Note that Θ̄I = arg min
θ∈Θ

ζ̄(θ). Let

ζn(θ) := Qn(θ) + d(θ1, Θ̂1n).

Define the ε̂n-level set Θ̃n = {θ : anζn(θ) ≤ ε̂n}. We first show that supΘ̃n
d(θ, Θ̄I) ≤ ε.

Note that for any x, y ∈ R, {x+ y}+ ≤ {x}+ + {y}+. This implies

sup
θ∈Θ

{
ζ̄(θ)− ζn(θ)

}
+
≤ sup

θ∈Θ

{
Q̄(θ)−Qn(θ)

}
+

+ sup
θ1∈Θ1

{d(θ1,ΘI,1)− d(θ1, Θ̂1n)}+

≤ sup
θ∈Θ

{
Q̄(θ)−Qn(θ)

}
+

+ dH(ΘI,1, Θ̂1n) = op(1),

where the second inequality holds since ΘI,1 and Θ̂1n are closed under our assumptions and

by Proposition C.7 of Molchanov (2005).

Let δ > 0 and An := {ω : supθ∈Θ{ζ̄(θ) − ζn(θ)}+ < δ/2, and ε̂n/an < δ/2}. Note that

P (An)→ 1 as n→∞. Let ω ∈ An. Then, for any θ ∈ Θ, ζ̄(θ) < ζn(ω, θ) + δ/2. Taking the
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supremum over Θ̃n(ω), we obtain

sup
θ∈Θ̃n(ω)

ζ̄(θ) < sup
θ∈Θ̃n(ω)

ζn(ω, θ) + δ/2

≤ ε̂n/an + δ/2

≤ δ.

Recall that ζ̄ > 0 outside Θ̄I . Therefore, for any ε > 0, there exists Nε such that

P
(

sup
Θ̃n(ω)

ζ̄(θ) < δ < inf
Θ\Θ̄εI

ζ̄(θ)
)
≥ 1− ε, ∀n ≥ Nε.

This implies Θ̃n ∩ (Θ \ Θ̄ε
I) = ∅ with probability approaching 1. Therefore, for any ε > 0,

supθ∈Θ̃n
d(θ, Θ̄I) ≤ ε with probability approaching 1. Note that for each θ ∈ Θ̂n, d(θ1, Θ̂1n) =

0, which implies Θ̂n ⊆ Θ̃n for any ω ∈ Ω. Therefore, supθ∈Θ̂n
d(θ, Θ̄I) ≤ ε with probability

approaching 1.

Combining steps (a) and (b), we conclude that dH(Θ̂n, Θ̄I) = op(1).

A.3 Proof of Theorem 4.3

In order to prove Theorem 4.3 (ii), we use the fact that convergence in Hausdorff metric is

equivalent to the general notion of set convergence called Painlevé-Kuratowski convergence

(PK-convergence) when the parameter space is bounded. We also use a lemma that is instru-

mental for checking whether a given sequence of sets converges in the Painlevé-Kuratowski

sense. For easy reference we give the definition of PK-convergence and the lemma below.

Please see section 4.C in Rockafellar and Wets (2005) (RW) for details.

Definition A.1 (PK convergence): A sequence {Fn, n ≥ 1} of subsets of E is said to

converge to F in the Painlevé-Kuratowski sense if

lim inf
n→∞

Fn = lim sup
n→∞

Fn = F,

where

lim inf
n→∞

Fn := {x ∈ E : ∃{xn}, xn → x and xn ∈ Fn,∀n}

lim sup
n→∞

Fn := {x ∈ E : ∃{xnk , Fnk}, xnk → x and xnk ∈ Fnk , ∀k}.

We write9 Fn
PK→ F or PK − limFn = F .

9Since we always have lim inf Fn ⊆ lim supFn, the condition for PK convergence can be restated as
lim supn→∞ Fn ⊆ A ⊆ lim infn→∞ Fn
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Lemma A.3 (Hit or miss criteria: Theorem 4.5 in RW): Let E be a locally compact

Hausdorff second countable space. For Fn, F ⊆ E with F ∈ F(E), one has

1. F ⊆ lim infn→∞ Fn iff for every open set G with F ∩G 6= ∅, one has Fn ∩G 6= ∅ for

all sufficiently large n.

2. lim supn→∞ Fn ⊆ F iff for every compact set K with F ∩K = ∅, one has Fn ∩K = ∅
for all sufficiently large n.

Proof of Theorem 4.3. For (a), we again consider intersections with closed sets. Let ω be

given. For each c ≥ 0 and F ∈ F(Θ1), let

Gc,F (ω) := {θ1 ∈ Θ1 : ‖s(θ1, ψ̂n(ω))‖2 ≤ c} ∩ F.

Let Qn : Ω×Θ1 → R be the measurable map defined by (ω, θ1) 7→ ‖s(θ1, ψ̂n(ω))‖2. By condi-

tions (i), (ii), (iv), and Lemma A.1, Qn is jointly measurable; following the proof of Example

3.1 in Stinchcombe and White (1992), we can show gr(Gηn/αn,F ) = Q−1
n ((−∞, ηn/αn]) ∩

(Ω × F ). Therefore, gr(Gηn/αn,F ) ∈ F ⊗ BΘ1 for any F ∈ F(Θ1). This is equivalent to

the Effros-measurability of Θ̂r
1n by Theorem 1.2.3 in Molchanov (2005). This implies the

Effros-measurability of Θ̂1n.

We now show (b). For Hausdorff consistency of Θ̂1n, we first show that dH(Θ̂r
1n,Θ

r
1) =

op(1) and P (Θ̂r
1n ⊆ Θr

1) → 1. For this, we invoke Theorem 3.1 in CHT. Let Q : Θ1 →
R be defined by Q(θ1) := ‖s(θ1, ψ0)‖2. Conditions (i)-(iii) ensure that Θ1 is compact, Q
is lower semicontinuous, and Θr

1 is the set of minimizers of Q. The joint measurability

of Qn is established above. Condition (ix) implies supθ1∈Θ1
{Q(θ1) − Qn(θ1)}+ = op(1).

Condition (viii) then ensures the rest of conditions required by Theorem 3.1 (1) in CHT.

Hence, dH(Θ̂r
1n,Θ

r
1) = op(1) and P (Θ̂r

1n ⊆ Θr
1)→ 1.

We now show that Θ̂1n is Hausdorff consistent using Definition A.1 and Lemma A.3. Let

{n′} be a subsequence of {n}. Since Θ̂u
1n is Hausdorff consistent for Θu

I,1, there is a further

subsequence {n′′} of {n′} such that Θ̂u
1n′′

PK→ Θu
I,1 almost surely. By Lemma A.3, for every

open set G with Θu
I,1 ∩ G 6= ∅, it then holds that Θ̂u

1n′′ ∩ G 6= ∅ for n′′ sufficiently large

with probability 1. Similarly, by Hausdorff consistency of Θ̂r
1n established above and Lemma

A.3, we can then find a further subsequence {n′′′} of {n′′} such that for every open set G

with Θr
1 ∩ G 6= ∅, Θ̂r

1n′′′ ∩ G 6= ∅ for n′′′ sufficiently large. Then along this subsequence,

for every open set G with (Θu
I,1 ∩ Θr

1) ∩ G 6= ∅, we have Θ̂u
1n′′′ ∩ Θ̂r

1n′′′ ∩ G 6= ∅ for n′′′

sufficiently large with probability 1. A similar argument ensures that there is a further

subsequence {n′′′} of {n′} such that, for every compact set K with (Θu
I,1 ∩Θr

1) ∩K = ∅, we

have (Θ̂u
1n′′′ ∩ Θ̂r

1n′′′) ∩K = ∅ for n′′′ sufficiently large with probability 1.

Now we have shown that every subsequence of Θ̂1n has a further subsequence {Θ̂1n′′′},
which satisfies the hit-or-miss criteria almost surely. Therefore dH(Θ̂1n′′′ ,ΘI,1) = oas(1); but

this also implies dH(Θ̂1n,ΘI,1) = op(1), see e.g. Lukacs (1975) Theorem 2.4.4.
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The claim P (Θ̂I,1 ⊆ Θ̂1n) → 1 follows from condition (x), P (Θ̂r
1n ⊆ Θr

1) → 1 established

above, and Bonferroni’s inequality.
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