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Abstract

This paper examines the efficient estimation of partially identified models defined by mo-

ment inequalities that are convex in the parameter of interest. In such a setting, the identified

set is itself convex and hence fully characterized by its support function. We provide conditions

under which, despite being an infinite dimensional parameter, the support function admits for
√
n-consistent regular estimators. A semiparametric efficiency bound is then derived for its

estimation, and it is shown that any regular estimator attaining it must also minimize a wide

class of asymptotic loss functions. In addition, we show the “plug-in” estimator is efficient,

and devise a consistent bootstrap procedure for estimating its limiting distribution. The set-

ting we examine is related to an incomplete linear model studied in Beresteanu and Molinari

(2008) and Bontemps et al. (2012), which further enables us to establish the semiparametric

efficiency of their proposed estimators for that problem.
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1 Introduction

In a large number of estimation problems, the data available to the researcher fails to point identify

the parameter of interest but is still able to bound it in a potentially informative way (Manski,

2003). This phenomenon has been shown to be common in economics, where partial identification

arises naturally as the result of equilibrium behavior in game theoretic contexts (Ciliberto and

Tamer, 2009; Beresteanu et al., 2011), certain forms of censoring (Manski and Tamer, 2002) and

optimal behavior by agents in discrete choice problems (Pakes et al., 2006; Pakes, 2010).

A common feature of many of these settings is that the bounds on the parameter of interest

are implicitly determined by moment inequalities. Specifically, let Xi ∈ X ⊆ RdX be a random

vector with distribution P , Θ ⊂ Rdθ denote the parameter space and m : X × Θ → Rdm and

F : Rdm → RdF be known functions. In many models, the identified set is of the general form

Θ0(P ) ≡ {θ ∈ Θ : F (

∫
m(x, θ)dP (x)) ≤ 0} . (1)

A prevalent specification is one in which F is the identity mapping, in which case (1) reduces to the

moment inequalities model studied in Chernozhukov et al. (2007), Romano and Shaikh (2010) and

Andrews and Soares (2010) among others. Examples where F is not the identity include binary

choice models with misclassified or endogenous regressors (Mahajan, 2003; Chesher, 2009).

We contribute to the existing literature by developing an asymptotic efficiency concept for

estimating an important subset of these models. Heuristically, estimation of the identified set

is tantamount to estimation of its boundary. In obtaining an asymptotic efficiency result, it is

therefore instrumental to characterize the boundary of the identified set as a function of the unknown

distribution P . We obtain such a characterization in the special, yet widely applicable, setting in

which the constraint functions are convex, for example linear, in θ. In such instances, the identified

set is itself convex and its boundary is determined by the hyperplanes that are tangent to it. The

set of tangent, or supporting, hyperplanes can in turn be identified with a unique function on the

unit sphere called the support function of the identified set. As a result, estimation of the identified

set may be accomplished through the estimation of its support function – an insight previously

exploited by Bontemps et al. (2012), Beresteanu and Molinari (2008) and Kaido (2010).

We provide conditions under which, despite being an infinite dimensional parameter, the support

function of the identified set admits for
√
n-consistent regular estimators. By way of the convolution

theorem, we further establish that any regular estimator of the support function must converge in

distribution to the sum of an “efficient” mean zero Gaussian process G0 and an independent “noise”

process ∆0. In accord to finite dimensional problems, an estimator is therefore considered to be

semiparametrically efficient if it is regular and its asymptotic distribution equals that of G0 – i.e.

its corresponding noise process ∆0 equals zero almost surely. Obtaining a semiparametric efficiency

bound then amounts to characterizing the distribution of G0, which in finite dimensional problems is

equivalent to reporting its covariance matrix. In the present context, we obtain the semiparametric
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efficiency bound by deriving the covariance kernel of the Gaussian process G0. These insights are

readily applicable to other convex partially identified models; a point we illustrate by showing

estimators proposed in Beresteanu and Molinari (2008) and Bontemps et al. (2012) are efficient.

Among the implications of semiparametric efficiency, is that an efficient estimator minimizes

diverse measures of asymptotic risk among regular estimators. Due to the close link between convex

sets and their support functions, optimality in estimating the support function of the identified set

further leads to optimality in estimating the identified set itself. Specifically, we show that, among

regular convex set estimators, the set associated with the efficient estimator for the support function

minimizes asymptotic risk for a wide class of loss functions based on Hausdorff distance. These

results complement Song (2012), who employs semiparametric efficient estimators of interval valued

identified sets to construct an optimal statistic for researchers that must make a point decision.

Having characterized the semiparametric efficiency bound, we establish that the support function

of the sample analogue to (1) is the efficient estimator. A consequence of this result is that the sample

analogue is also efficient for estimating the “marginal” identified set of any particular coordinate of

the vector θ. Interestingly, regular estimation of the support function of these marginal identified

sets requires weaker assumptions than those needed to obtain a regular estimator of the support

function of Θ0(P ). Finally, we conclude by constructing a bootstrap procedure for consistently

estimating the distribution of the efficient limiting process G0. We illustrate the applicability of

this result by constructing inferential procedures that are pointwise (in P ) consistent in level.

In related work, Beresteanu and Molinari (2008) first employ support functions in the study of

partially identified models. The authors derive methods for conducting inference on the identified

set through its support function, providing insights we rely upon in our analysis. The use of

support functions to characterize semiparametric efficiency, however, is novel to this paper. Other

work on estimation includes Hirano and Porter (2012), who establish no regular estimators exist

in intersection bounds models for scalar valued parameters, and Song (2010), who proposes robust

estimators for such problems. Our results complement theirs by clarifying what the sources of

irregularity are in setting where the parameter of interest has dimension greater than one.

A large literature on the moment inequalities model has focused on the complementary problem

of inference. The framework we employ is not as general as the one pursued in these papers which,

for example, do not impose convexity; see Romano and Shaikh (2008), Andrews and Guggenberger

(2009), Rosen (2009), Menzel (2009), Bugni (2010), Canay (2010) and Andrews and Barwick (2012)

among others. This paper is also part of the literature on efficient estimation in econometrics, which

has primarily studied finite dimensional parameters identified by moment equality restrictions; see

Chamberlain (1987, 1992), Brown and Newey (1998), Ai and Chen (2009) and references therein.

The remainder of the paper is organized as follows. Section 2 introduces the moment inequalities

we study and examples of models that fall within its scope. In Section 3 we characterize the efficiency

bound, while in Section 4 we show the plug-in estimator is efficient. Section 5 derives the consistent

bootstrap procedure. A Supplemental Appendix contains all proofs and a Monte Claro study.
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2 General Setup

It will prove helpful to consider the identified set as a function of the unknown distribution of Xi.

For this reason, we make such dependence explicit by defining the identified set under Q to be

Θ0(Q) ≡ {θ ∈ Θ : F (

∫
m(x, θ)dQ(x)) ≤ 0} .

Thus, Θ0(Q) is the set of parameter values that is identified by the moment restrictions when data

are generated according to the probability measure Q. We may then interpret the actual identified

set Θ0(P ) as the value the known mapping Q 7→ Θ0(Q) takes at the unknown distribution P .

Our analysis focuses on settings where the identified set is convex, which we ensure by requiring

that the functions θ 7→ F (i)(
∫
m(x, θ)dP (x)) be themselves convex for all 1 ≤ i ≤ dF – here and

throughout, w(i) denotes the ith coordinate of a vector w. Unfortunately, convexity is not sufficient

for establishing that Θ0(P ) admits for a regular estimator. In particular, special care must be taken

when a constraint function is linear in θ leading to a “flat face” in the boundary of the identified

set. We will show by example that when the slope of a linear constraint depends on the underlying

distribution, a small perturbation of P may lead to a non-differentiable change in the identified

set. This lack of differentiability in turn implies that there exist no asymptotically linear regular

estimators (van der Vaart, 1991; Hirano and Porter, 2012).

For this reason, we assume that the slope of any linear constraint is known. Specifically, we let

m(x, θ) ≡ (mS(x, θ)′, θ′A′)′ , (2)

where mS : X ×Θ→ RdmS is a known measurable function, and A is a known dF × dθ matrix. For

an also known function FS : RdmS → RdF , we then assume F : Rdm → RdF satisfies

F (

∫
m(x, θ)dP (x)) = Aθ + FS(

∫
mS(x, θ)dP (x)) , (3)

where for each 1 ≤ i ≤ dF , the function θ 7→ F
(i)
S (
∫
mS(x, θ)dP (x)) may only depend on a subvector

of θ, but is required to be strictly convex in this subvector. Formally, let Si ⊆ {1, . . . , dθ} denote

the smallest set such that if θ1, θ2 ∈ Θ satisfy θ
(j)
1 = θ

(j)
2 for all j ∈ Si, then

F
(i)
S (

∫
mS(x, θ1)dQ(x)) = F

(i)
S (

∫
mS(x, θ2)dQ(x)) (4)

for all Borel measures Q on X .1 We then refer to the arguments of θ 7→ F
(i)
S (
∫
mS(x, θ)dP (x)) as

the coordinates of θ corresponding to indices in Si, and require that for all λ ∈ (0, 1)

F
(i)
S (

∫
mS(x, λθ1 + (1− λ)θ2)dP (x)) < λF

(i)
S (

∫
mS(x, θ1)dP (x)) + (1− λ)F

(i)
S (

∫
mS(x, θ2)dP (x))

whenever θ
(j)
1 6= θ

(j)
2 for some j ∈ Si. For instance, if Si = ∅ then by (3), constraint i is linear in

θ with known slope but intercept potentially depending on P . Similarly, if Si = {1, . . . , dθ}, then

1If A ⊆ {1, . . . , dθ} and B ⊆ {1, . . . , dθ} satisfy (4) then so does A ∩B, implying Si is well defined.
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constraint i is strictly convex in θ. In between these cases are specifications of the constraints that

are linear in some parameters and strictly convex in others.

As a final piece of notation, it will prove helpful to index the constraints that are active at each

point θ in an identified set Θ0(Q). Towards this end, for each θ ∈ Θ0(Q), we define

A(θ,Q) ≡ {i ∈ {1, . . . , dF} : F (i)(

∫
m(x, θ)dQ(x)) = 0} .

2.1 Examples

In order to fix ideas, we briefly discuss applications of the general framework and refer the reader to

the Supplemental Appendix for a more detailed analysis of these examples. For ease of exposition,

we base our discussion on simplifications of well known models.

Our first example is a special case of the analysis in Manski and Tamer (2002).

Example 2.1 (Interval censored outcome). An outcome variable Y is generated according to

Y = Z ′θ0 + ε ,

where Z ∈ Rdθ is a regressor with discrete support Z ≡ {z1, . . . , zK} and ε satisfies E[ε|Z] = 0.

Suppose Y is unobservable, but there exist (YL, YU) such that YL ≤ Y ≤ YU almost surely. The

identified set for θ0 then consists of all parameters θ ∈ Θ satisfying the inequalities

E[YL|Z = zk]− z′kθ ≤ 0, k = 1, . . . , K

z′kθ − E[YU |Z = zk] ≤ 0, k = 1, . . . , K .

These inequalities can be written as in (3) with F
(i)
S (
∫
mS(x, θ)dP (x)) equal to E[YL|Z = zk] or

−E[YU |Z = zk] for some k. Note that Si = ∅ for all i, and hence all constraints are linear.

Another prominent application of moment inequality models is in the context of discrete choice.

Example 2.2 (Discrete choice). Suppose an agent chooses z ∈ RdZ from a set Z ≡ {z1, . . . , zK} in

order to maximize his expected payoff E[π(Y, Z, θ0)|F ], where Y is a vector of observable random

variables and F is the agent’s information set. Letting z∗ ∈ Z denote the optimal choice, we obtain

E[π(Y, z, θ0)− π(Y, z∗, θ0)|F ] ≤ 0 (5)

for all z ∈ Z. A common specification is that π(y, z, θ0) = ψ(y, z) + z′θ0 + ν for some unobservable

error ν; see Pakes et al. (2006) and Pakes (2010). Therefore, under suitable assumptions on the

agent’s beliefs, the optimality conditions in (5) then imply θ0 must satisfy the moment inequalities

E[((ψ(Y, zj)− ψ(Y, zk)) + (zj − zk)′θ0)1{Z∗ = zk}] ≤ 0 (6)

for any zj, zk ∈ Z. As in Example 2.1, the restrictions in (6) may be expressed in the form of (3).
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Strictly convex moment inequalities arise in asset pricing (Hansen et al., 1995).2

Example 2.3 (Pricing kernel). Let Z ∈ RdZ denote the payoffs of dZ securities which are traded at

a price of U ∈ RdZ . If short sales are not allowed for any securities, then the feasible set of portfolio

weights is restricted to RdZ
+ and the standard Euler equation does not hold. Instead, under power

utility, Luttmer (1996) derived a modified (unconditional) Euler equation of the form

E[
1

1 + ρ
Y −γZ − U ] ≤ 0 , (7)

where Y is the ratio of future over present consumption, ρ is the investor’s subjective discount rate

and γ is the relative risk aversion coefficient. If Z(i) ≥ 0 almost surely and Z(i) > 0 with positive

probability, then the constraints in (7) are strictly convex in θ = (ρ, γ)′ ∈ R2. To map (7) into (3),

we let A = 0 and F
(i)
S (
∫
mS(x, θ)dP (x)) = E[ 1

1+ρ
Y −γZ(i) − U ], implying Si = {1, 2} for all i.

The following example is based on the discussion in Blundell and Macurdy (1999).

Example 2.4 (Participation Constraint). Consider an agent with Stone-Geary preferences over

consumption C ∈ R+ and leisure L ∈ [0, T ] parametrized by

u(C,L) = log(C − α) + β log(L) .

Given wage W and non-labor income Y ∈ R+, the agent maximizes expected utility subject to the

budget constraint C = Y +W (T −L) and the constraint 0 ≤ L ≤ T . If Y is unknown to the agent

when the labor decision is made, then her first order conditions imply

E[(
W

C − α
− β

L
)Z] = E[E[

W

C − α
− β

L
|F ]Z] ≤ 0 , (8)

where F is the information available to the agent when choosing L, and Z is any positive F -

measurable random vector. For θ = (α, β)′, in this example Si = {1} for all i.

3 Semiparametric Efficiency

3.1 Preliminaries

Throughout, we let 〈p, q〉 = p′q denote the Euclidean inner product of two vectors p, q ∈ Rdθ and

‖p‖ = 〈p, p〉 12 be the Euclidean norm. Following the literature, we employ the Hausdorff metric to

evaluate distance between sets in Rdθ . Hence, for any closed sets A and B we let

dH(A,B) ≡ max{~dH(A,B), ~dH(B,A)} ~dH(A,B) ≡ sup
a∈A

inf
b∈B
‖a− b‖ ,

where dH and ~dH are the Hausdorff and directed Hausdorff distances respectively.

2We note our semiparametric efficiency bound is for iid data and requires an extension to time series for its
applicability to asset pricing. Example 2.3 is nonetheless introduced to illustrate the role of strictly convex constraints.
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For Sdθ ≡ {p ∈ Rdθ : ‖p‖ = 1} the unit sphere in Rdθ , we denote by C(Sdθ) the space of bounded

continuous functions on Sdθ and equip C(Sdθ) with the supremum norm ‖f‖∞ ≡ supp∈Sdθ |f(p)|.
The support function of a compact convex set K ⊂ Rdθ is then pointwise defined by

ν(p,K) ≡ sup
k∈K
〈p, k〉 .

Heuristically, the support function assigns to each vector p the signed distance between the origin

and the hyperplane orthogonal to p that is tangent to K. By Hörmander’s embedding theorem, the

support functions of any two compact convex sets K1 and K2 belong to C(Sdθ) and in addition

dH(K1, K2) = sup
p∈Sdθ

|ν(p,K1)− ν(p,K2)| . (9)

Therefore, convex compact sets can be identified in a precise sense with a unique element of C(Sdθ)
in a way that preserves distances – i.e. there exists an isometry between them.

In our analysis, we study the identified set Θ0(P ) which we characterize by its support function

ν(p,Θ0(Q)) = sup
θ∈Θ0(Q)

〈p, θ〉 .

As P is unknown, we view ν(·,Θ0(P )) as an infinite dimensional parameter defined on C(Sdθ) and

aim to characterize the semiparametric efficiency bound for its estimation.

3.1.1 Efficiency in C(Sdθ)

We briefly review the concept of semiparametric efficiency as applied to regular infinite dimensional

parameters defined on C(Sdθ); please refer to chapter 5 in Bickel et al. (1993) for a full discussion.

Our analysis is done under the assumption that the data is i.i.d., and hence we start by imposing

Assumption 3.1. (i) {Xi}ni=1 is an i.i.d. sample with each Xi distributed according to P .

We let M denote the set of Borel probability measures on X , endowed with the τ -topology,3 and

µ be a positive σ-finite measure such that P is absolutely continuous with respect to µ (denoted

P � µ). Of particular interest is the set Mµ ≡ {P ∈M : P � µ}, which may be embedded in

L2
µ ≡ {f : X → R : ‖f‖L2

µ
<∞} ‖f‖2

L2
µ
≡
∫
f 2(x)dµ(x)

via the mapping Q 7→
√
dQ/dµ. A model P ⊆ Mµ is then a collection of probability measures,

which can be identified with a subset S of L2
µ that is given by

S ≡ {h ∈ L2
µ : h =

√
dQ/dµ for some Q ∈ P} . (10)

Employing the introduced notation we then define curves and tangent sets in the usual manner.

3The τ -topology is the coarsest topology on M under which the mappings Q 7→
∫
f(x)dQ(x) are continuous for all

measurable and bounded functions f : X → R. Note that unlike the weak topology, continuity of f is not required.
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Definition 3.1. A function h : N → L2
µ is a curve in L2

µ if N ⊆ R is a neighborhood of zero and

η 7→ h(η) is continuously Fréchet differentiable on N . For notational simplicity, we write hη for

h(η) and let ḣη denote its Fréchet derivative at any point η ∈ N .

Definition 3.2. For S ⊆ L2
µ and a function s ∈ S, the tangent set of S at s is defined as

Ṡ0 ≡ {ḣ0 : hη is a curve in L2
µ with h0 = s and hη ∈ S for all η} .

The tangent space of S at s, denoted by Ṡ, is the closure of the linear span of Ṡ0 (in L2
µ).

Each curve η 7→ hη with hη ∈ S can be associated with a quadratic mean differentiable submodel

η 7→ Pη ∈ P by the relation hη =
√
dPη/dµ. The main difference between the efficiency analysis of

finite and infinite dimensional parameters is in the appropriate notion of differentiability. Formally,

a parameter defined on C(Sdθ) is a mapping ρ : P→ C(Sdθ) that assigns to each Q ∈ P a function

in C(Sdθ). In our context, ρ assigns to Q the support function of its identified set – i.e. ρ(Q) =

ν(·,Θ0(Q)). In order to derive a semiparametric efficiency bound for estimating ρ(P ), we require

ρ : P→ C(Sdθ) to be smooth in the sense of being pathwise weak-differentiable.

Definition 3.3. For a model P ⊆ Mµ and a parameter ρ : P → C(Sdθ) we say ρ is pathwise

weak-differentiable at s =
√
dP/dµ if there is a continuous linear operator ρ̇ : Ṡ→ C(Sdθ) such that

lim
η→0
|
∫

Sdθ
{ρ(hη)(p)− ρ(h0)(p)

η
− ρ̇(ḣ0)(p)}dB(p)| = 0 ,

for any finite Borel measure B on Sdθ and any curve η 7→ hη with hη ∈ S for all η and h0 = s.

Given these definitions, we can state a precise notion of semiparametric efficiency for estimating

ρ(P ) in terms of the convolution theorem. We refer the reader to Theorem 5.2.1 in Bickel et al.

(1993) for a more general statement of the convolution theorem and a proof of this result.

Theorem 3.1. (Convolution Theorem) Suppose: (i) Assumption 3.1 holds, (ii) P ∈ P, (iii) Ṡ0

is linear, and (iv) ρ : P → C(Sdθ) is pathwise weak-differentiable at P . Then, there exists a tight

mean zero Gaussian process G0 in C(Sdθ) such that any regular estimator {Tn} of ρ(P ) must satisfy

√
n(Tn − ρ(P ))

L→ G0 + ∆0 ,

where
L→ denotes convergence in law, and ∆0 is some tight random element independent of G0.4

In complete accord with the finite dimensional setting, the asymptotic distribution of any regular

estimator can be characterized as that of a Gaussian process G0 plus an independent term ∆0. Thus,

a regular estimator may be considered efficient if its asymptotic distribution equals that of G0.

Heuristically, the asymptotic distribution of any competing regular estimator must then equal that

of the efficient estimator plus an independent “noise” term. Computing a semiparametric efficiency

4{Tn} is regular if there is a tight Borel measurable G on C(Sdθ ) such that for every curve η 7→ hη in P passing

through s ≡
√
dP/dµ and every {ηn} with ηn = O(n−

1
2 ),
√
n(Tn − ρ(hηn)) Ln→ G where Ln is the law under Pnηn .
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bound is then equivalent to characterizing the distribution of G0. In finite dimensional problems,

this amounts to computing the covariance matrix of the distributional limit. In the present context,

we instead aim to obtain the covariance kernel for the Gaussian process G0, denoted

I−1(p1, p2) ≡ Cov(G0(p1),G0(p2)) ,

and usually termed the inverse information covariance functional for ρ in the model P.

Remark 3.1. More generally, if a possibly nonconvex identified set Θ0(P ) is an element of a metric

space B1, then we can consider estimation of the parameter ρ1 : P→ B1 given by ρ1(P ) = Θ0(P ).

However, a key complication in this approach is that B1 is often not a vector space – a crucial

requirement in the theory of semiparametric efficiency. For this reason, in our setting we instead

employ an isometry ρ2 : B1 → B2 into a Banach space B2, and examine estimation of ρ(P ) ≡
ρ2 ◦ ρ1(P ).5 This insight is applicable to other partially identified models – e.g. a bounded set K

can be embedded in L1
µ through its indicator function. Establishing pathwise weak differentiability

in these contexts, however, will require substantially different arguments to ours.

3.2 Efficiency Bound

3.2.1 Assumptions

We require the following assumptions to derive the distribution of the efficient limiting process G0.6

Assumption 3.2. (i) Θ ⊂ Rdθ is convex, compact and has nonempty interior Θo (relative to Rdθ).

Assumption 3.3. (i) The functions m : X ×Θ→ Rdm and F : Rdm → RdF satisfy (2) and (3).

Assumption 3.4. (i) m : X ×Θ→ Rdm is bounded, (ii) θ 7→ m(x, θ) is differentiable at all x ∈ X
with ∇θm(x, θ) bounded in (x, θ) ∈ X ×Θ; (iii) θ 7→ ∇θm(x, θ) is equicontinuous in x ∈ X .

Assumption 3.5. There is an open set V0 ⊆ Rdm such that: (i) v 7→ F (v) is differentiable on

v ∈ V0, and (ii) v 7→ ∇F (v) is uniformly continuous and bounded on v ∈ V0.

The convexity of Θ can be relaxed provided m(x, ·) is well defined on the convex hull of Θ.

Assumption 3.4 requires m(x, θ) and ∇θm(x, θ) to be bounded on ∈ X ×Θ, which for some param-

eterizations implies X is compact. Similar requirements on F are imposed in Assumption 3.5.

In addition to Assumptions 3.1-3.5 we need to impose the following requirements on P .

Assumption 3.6. (i) Θ0(P ) 6= ∅ and Θ0(P ) ⊂ Θo; (ii) There is a neighborhood N(P ) ⊆M such

that for all Q ∈ N(P ) and 1 ≤ i ≤ dF , the function θ 7→ F
(i)
S (
∫
mS(x, θ)dQ(x)) is strictly convex

in its arguments; (iii)
∫
m(x, θ)dP (x) ∈ V0 for all θ ∈ Θ; (iv) For all θ ∈ Θ0(P ), the vectors

{∇F (i)(
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x)}i∈A(θ,P ) are linearly independent.

5Concretely, in our framework B1 corresponds to the space of convex compact sets endowed with the Hausdorff
metric, B2 = C(Sdθ ) and ρ2(K) = ν(·,K) for any K ∈ B1.

6We discuss the verification and implications of these assumptions for Examples 2.1-2.4 in the Appendix.
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Assumption 3.6(i) implies Θ0(P ) is characterized by the inequality constraints and not by the

parameter space. Certain parameter constraints, however, may be imposed through the moment

restrictions; see Remark 3.4. In Assumption 3.6(ii), convexity of the constraints is required at all Q

near P (in the τ -topology), which implies Θ0(Q) is also convex. Assumptions 3.6(iii), together with

Assumptions 3.4(ii) and 3.5(ii), ensure the constraints are differentiable in θ. Finally, Assumption

3.6(iv) is the key requirement ensuring ν(·,Θ0(P )) is a regular parameter at P . This assumption

implies Θ0(P ) has a nonempty interior, which both rules out identification and enables us to obtain

a Lagrangian representation for ν(·,Θ0(P )). Additionally, Assumption 3.6(iv) rules out moment

equalities, though we note strictly convex moment equalities would imply the model is either iden-

tified or the identified set is nonconvex. Interestingly, a violation of Assumption 3.6(iv) is also the

condition under which Hirano and Porter (2012) show irregularity in the problem they study.

Finally, we define the model P ⊂ M to be the set of probability measures that are dominated

by common measure µ, and in addition satisfy Assumption 3.6,

P ≡ {P ∈M : P � µ and Assumptions 3.6(i)-(iv) hold} .

Remark 3.2. Requiring the slope of linear constraints to be known is demanding but, as we now

show, crucial for the support function to be pathwise weak-differentiable. Let X ⊂ R2 be compact,

Θ ≡ {θ ∈ R2 : ‖θ‖ ≤ B}, and denote x = (x(1), x(2))′, θ = (θ(1), θ(2))′. Suppose that in (1)

F : R3 → R3 is the identity, and that for some K > 0, the function m : X ×Θ→ R3 is given by

m(1)(x, θ) ≡ x(1)θ(1) + x(2)θ(2) −K m(2)(x, θ) ≡ −θ(2) m(3)(x, θ) ≡ −θ(1) .

We note that Assumptions 3.2, 3.4, 3.5 and 3.6 then hold provided E[X(1)] > 0, E[X(2)] > 0, and

B > K/min{E[X(1)], E[X(2)]}. Further suppose P � µ, and η 7→ hη is a curve in L2
µ with∫

h2
η(x)dµ(x) = 1

∫
x(1)h2

η(x)dµ(x) = E[X(1)](1 + η)

∫
x(2)h2

η(x)dµ(x) = E[X(2)] ,

and h0 =
√
dP/dµ. If Pη satisfies

√
dPη/dµ = hη, then it follows that Pη ∈ P for η in a neighbor-

hood of zero. However, at the point p̄ ≡ v̄/‖v̄‖ with v̄ ≡ (E[X(1)], E[X(2)])′, we obtain that

ν(p̄,Θ0(Pη)) =

{
K
‖s̄‖ if η ≥ 0
K
‖s̄‖

E[X(1)]

(E[X(1)]+η)
if η < 0

,

which implies the support function is not pathwise weak-differentiable at η = 0.7

Remark 3.3. The null hypothesis that Assumption 3.6(iv) fails to hold can be recast as a null

hypothesis concerning moment inequalities. Specifically, let d ∈ {0, 1}dF , α ∈ RdF , and

T1(θ, d, P ) ≡
dF∑
i=1

{
d(i)(F (i)(

∫
m(x, θ)dP (x)))2 + (1− d(i))(F (i)(

∫
m(x, θ)dP (x)))2

+

}
T2(θ, α, d, P ) ≡

dθ∑
j=1

( dF∑
i=1

d(i)α(i)∇F (i)(

∫
m(x, θ)dP (x))

∫
∂

∂θ(j)
m(x, θ)dP (x)

)2

,

7We are indebted to Mark Machina for this example.
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where (a)+ ≡ max{a, 0}. It follows that P does not satisfy Assumption 3.6(iv) if and only if there is

a θ ∈ Θ, d ∈ {0, 1}dF and α ∈ RdF satisfying
∑

i d
(i)(α(i))2 = 1 such that T1(θ, d, P )+T2(θ, α, d, P ) =

0. Though the derivation of a test of this null hypothesis is beyond the scope of this paper, we note

that it is closely related to the specification testing problem examined in Bugni et al. (2012).

Remark 3.4. Norm constraints such as ‖θ‖2 ≤ B can be accommodated by setting, for example,

F (i)(
∫
m(X, θ)dQ(x)) ≡ ‖θ‖2−B for some 1 ≤ i ≤ dF and all Q. Upper or lower bound constraints

on individual elements θ(i) of the vector θ may be similarly imposed.

3.2.2 Inverse Information Covariance Functional

Before characterizing the covariance kernel of the limiting efficient process G0, we first introduce

some additional notation. Since the moment restrictions are convex in θ, the support function

ν(p,Θ0(P )) = sup
θ∈Θ
{〈p, θ〉 s.t. F (

∫
m(x, θ)dP (x)) ≤ 0} (11)

is the maximum of a convex program. Hence, ν(p,Θ0(P )) also admits a Lagrangian representation

ν(p,Θ0(P )) = sup
θ∈Θ
{〈p, θ〉+ λ(p, P )′F (

∫
m(x, θ)dP (x))} , (12)

where, under our assumptions, the Lagrange multipliers are unique. Moreover, the maximizers of

(11) also solve (12), and consist of the boundary points of Θ0(P ) at which Θ0(P ) is tangent to the

hyperplane {θ ∈ Rdθ : 〈p, θ〉 = ν(p,Θ0(P ))}. These boundary points, together with their associated

Lagrange multipliers, are instrumental in characterizing the semiparametric efficiency bound.

Theorem 3.2. Let Assumptions 3.1-3.5 hold, define H(θ) ≡ ∇F (E[m(Xi, θ)]), and for each θ1, θ2 ∈
Θ, let Ω(θ1, θ2) ≡ E[(m(Xi, θ1)− E[m(Xi, θ1)])(m(Xi, θ2)− E[m(Xi, θ2)])′]. If P ∈ P, then

I−1(p1, p2) = λ(p1, P )′H(θ∗(p1))Ω(θ∗(p1), θ∗(p2))H(θ∗(p2))′λ(p2, P ) ,

for any θ∗(p1) ∈ arg maxθ∈Θ0(P )〈p1, θ〉 and any θ∗(p2) ∈ arg maxθ∈Θ0(P )〈p2, θ〉.

An important implication of Theorem 3.2 is that the semiparametric efficiency bound for esti-

mating the support function at a particular point p̄ ∈ Sdθ (a scalar parameter) is

Var{λ(p̄, P )′∇F (E[m(Xi, θ
∗(p̄))])m(Xi, θ

∗(p̄))} ,

for any θ∗(p̄) ∈ arg maxθ∈Θ0(P )〈p̄, θ〉. Hence, since Lagrange multipliers corresponding to non-

binding moment inequalities are zero, the semiparametric efficiency bound for ν(p̄,Θ0(P )) is the

variance of a linear combination of the binding constraints at the boundary point θ∗(p̄) ∈ ∂Θ0(P ).

Heuristically, the Lagrange multipliers represent the marginal value of relaxing the constraints in

expanding the boundary of the identified set outwards in the direction p̄ – i.e. in increasing the

value of the support function at p̄. Thus, the semiparametric efficiency bound is the variance of a

linear combination of binding constraints, where the weight each constraint receives is determined

by its importance in shaping the boundary of the identified set at the point θ∗(p̄) ∈ ∂Θ0(P ).
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3.3 Related Model

Our results are most easily extendable to settings where the identified set is also convex. To illustrate

this point, we now highlight a close connection of the problem we study with an incomplete linear

model previously examined in Beresteanu and Molinari (2008) and Bontemps et al. (2012).

For Z ∈ RdZ , Y ∈ R and V ∈ RdZ we consider the identified set for the parameter θ0 satisfying

E[V (Y − Z ′θ0)] = 0 , (13)

when Y is not observed but is instead known to satisfy YL ≤ Y ≤ YU , with (YL, YU) observable.

Letting X ≡ (YL, YU , V
′, Z ′)′ and P denote its distribution, the identified set for θ0 is then

Θ0,I(P ) ≡ {θ ∈ RdZ : E[V (Ỹ − Z ′θ)] = 0 for some r.v. Ỹ s.t. YL ≤ Ỹ ≤ YU a.s.} .

If Σ(P ) ≡
∫
vz′dP (x) is invertible, then Θ0,I(P ) is bounded and convex with support function

ν(p,Θ0,I(P )) =

∫
p′Σ(P )−1v(yL + 1{p′Σ(P )−1v > 0}(yU − yL))dP (x) , (14)

see Bontemps et al. (2012). We impose that Z and V be of equal dimension because it is only in

this instance that (14) holds, which greatly simplifies verifying weak-pathwise differentiability.

In order to derive an efficiency bound for estimating ν(·,Θ0,I(P )) we assume P ∈ PI, where

PI ≡ {P � µ :

∫
vz′dP (x) is invertible}

for some µ ∈M. Unlike in Theorem 3.2, however, additional requirements are imposed on µ.

Assumption 3.7. (i) X ⊂ RdX is compact; (ii) µ ∈M satisfies µ((yL, yU , v
′, z′)′ : yL ≤ yU) = 1;

and (iii) µ((yL, yU , v
′, z′)′ : c′v = 0) = 0 for any vector c ∈ RdZ with c 6= 0.

Since P � µ for all P ∈ PI, we note that Assumptions 3.7(i)-(ii) imply X is bounded and

YL ≤ YU P -a.s. Similarly, P � µ and Assumption 3.7(iii) ensure P (c′V = 0) = 0 for all c 6= 0.

Beresteanu and Molinari (2008) first establish the importance of this requirement, showing that

Θ0,I(P ) is strictly convex if P satisfies it, but has “flat faces” otherwise. Interestingly, in close

connection to Remark 3.2, Q 7→ ν(p,Θ0,I(Q)) is not weak-pathwise differentiable when Assumption

3.7(iii) fails to hold because the slopes of the resulting “flat faces” depend on P .8

Theorem 3.3. Let Assumptions 3.1, 3.7 hold, and define ψν : Sdθ ×X → R, ψΣ : Sdθ ×X → R by

ψν(p, x, P ) ≡ {yL + 1{p′Σ(P )−1v > 0}(yU − yL)}v′Σ(P )−1p (15)

ψΣ(p, x, P ) ≡ p′Σ(P )−1zv′Σ(P )−1{
∫
v(yL + 1{p′Σ(P )−1v > 0}(yU − yL))dP (x)} . (16)

If P ∈ PI and ψ ≡ ψν − ψΣ, then the semiparametric efficiency bound for ν(·,Θ0,I(P )) satisfies

I−1(p1, p2) = E[(ψ(p1, Xi, P )− E[ψ(p1, Xi, P )])(ψ(p2, Xi, P )− E[ψ(p2, Xi, P )])] .

8We thank an anonymous referee for this insight; see the Supplemental Appendix for a more detailed discussion.
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The semiparametric efficiency bound of Theorem 3.3 coincides with the asymptotic distribution

of the estimators studied in Beresteanu and Molinari (2008) and Bontemps et al. (2012), thus

verifying their efficiency. We also note that if P (YL = YU) = 1, so that the model is identified, then

Theorem 3.3 implies the efficient estimator is p 7→ 〈p, θ̂〉 for θ̂ the GMM estimator of (13).

4 Efficient Estimation

4.1 The Estimator

Given a sample {Xi}ni=1, we let P̂n denote the empirical measure – i.e. P̂n(A) ≡ 1
n

∑
i 1{Xi ∈ A}

for any Borel set A ⊆ X . Under Assumption 3.1, P̂n is consistent for P under the τ -topology.

Therefore, a natural estimator for the support function ν(·,Θ0(P )) is its sample analogue

ν(p,Θ0(P̂n)) = sup
θ∈Θ
{〈p, θ〉 s.t. F (

1

n

n∑
i=1

m(Xi, θ)) ≤ 0} . (17)

It is useful to note Assumption 3.6(ii) implies the constraints in (17) are convex in θ ∈ Θ with

probability tending to one. As a result, ν(p,Θ0(P̂n)) also admits a characterization as a Lagrangian

ν(p,Θ0(P̂n)) = sup
θ∈Θ
{〈p, θ〉+ λ(p, P̂n)′F (

1

n

n∑
i=1

m(Xi, θ))} . (18)

This dual representation, together with the envelope theorem of Milgrom and Segal (2002), enables

us to conduct a Taylor expansion of ν(·,Θ0(P̂n)) around ν(·,Θ0(P )). In this manner, we are able

to characterize the influence function of {ν(·,Θ0(P̂n))} (in C(Sdθ)), and establish its efficiency.

Theorem 4.1. If Assumptions 3.1, 3.2, 3.3, 3.4 and 3.5 hold and P ∈ P, then it follows that: (i)

{ν(·,Θ0(P̂n))} is a regular estimator for ν(·,Θ0(P )); (ii) Uniformly in p ∈ Sdθ ,

√
n{ν(p,Θ0(P̂n))−ν(p,Θ0(P ))} = λ(p, P )′

1√
n

n∑
i=1

H(θ∗(p)){m(Xi, θ
∗(p))−E[m(Xi, θ

∗(p))]}+op(1) ,

where θ∗(p) ∈ arg maxθ∈Θ0(p)〈p, θ〉 for all p ∈ Sdθ ; (iii) As a process in C(Sdθ),

√
n{ν(·,Θ0(P̂n))− ν(·,Θ0(P ))} L→ G0 ,

where G0 is a mean zero tight Gaussian process on C(Sdθ) with Cov(G0(p1),G0(p2)) = I−1(p1, p2).

In moment inequality models, it is common for the limiting distribution of statistics {Tn(θ)} to

be discontinuous in θ ∈ Θ0(P ). It is interesting to note that, in contrast, in Theorem 4.1 G0 is

continuous in p ∈ Sdθ almost surely.9 Heuristically, the continuity of G0 results from the Lagrange

multipliers determining the weight a binding constraint receives at each p ∈ Sdθ . Hence, if p1 and

p2 are close, then the complementary slackness condition and continuity of p 7→ λ(p, P ) imply that

9A key difference being G0 has domain Sdθ , while test statistics {Tn(θ)} often have domain Θ.
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constraints that are binding at p1 but not p2 must have a correspondingly small weight. As a result,

the empirical process is continuous despite different constraints being binding at different p ∈ Sdθ .

4.2 Asymptotic Risk

Theorem 4.1 implies {ν(·,Θ0(P̂n))} is asymptotically optimal for a wide class of loss functions.

Theorem 4.2. Let Assumption 3.1-3.5 hold, P ∈ P and L : C(Sdθ)→ R+ be a subconvex function10

such that for all f ∈ C(Sdθ), L(f) ≤M0 +M1‖f‖κ∞ for some M0,M1 > 0 and κ <∞. If D0 are the

continuity points of L and P (G0 ∈ D0) = 1, then for any regular estimator {Tn} of ν(·,Θ0(P )):

lim inf
n→∞

E[L(
√
n{Tn − ν(·,Θ0(P ))})] ≥ lim sup

n→∞
E[L(

√
n{ν(·,Θ0(P̂n))− ν(·,Θ0(P ))})] = E[L(G0)]

The lower bound on asymptotic risk obtained in Theorem 4.2 is a direct consequence of the Con-

volution Theorem and in fact holds for any subconvex function L : C(Sdθ)→ R+. The requirement

that L(f) be majorized by a polynomial in the norm of f is imposed to show the plug-in estimator

actually attains the bound. Below, we provide some examples of possible choices of loss function L.

Example 4.1. Suppose in Example 2.1 we are concerned with the mean absolute error in estimating

the upper bound on E[Y |Z = z0] for some z0 ∈ Z. Since supθ∈Θ0(P )〈z0, θ〉 = ‖z0‖ν(z0/‖z0‖,Θ0(P )),

we may apply Theorem 4.2 with L(f) = |‖z0‖f(z0/‖z0‖)| for any f ∈ C(Sdθ). Alternatively,

for the expected maximal estimation error across multiple upper (or lower) bounds we may let

L(f) = supp∈Sdθ |w(p)f(p)| for any bounded weight function w : Sdθ → R.

Example 4.2. If we are interested in the mean square error of estimating the diameter of the

identified set for a coordinate θ(i) of θ, then we may set L(f) = (f(p0) − f(−p0))2 where p
(i)
0 = 1

and p
(j)
0 = 0 for all j 6= i. Analogously, a common measure of “center” of a convex set C is given by

its Steiner point, defined as
∫
pν(p, C)dλ(p) for λ the uniform measure on Sdθ . To obtain the mean

square error in estimating the center of Θ0(P ), we may then set L(f) = (
∫
pf(p)dλ(p))2.

Due to the equality of the Hausdorff distance between convex sets and the supremum distance

between their corresponding support functions (see (9)), Theorem 4.2 further implies an asymptotic

optimality result for asymptotic risk based on the Hausdorff metric. Specifically, define

Θ̂n ≡ co{Θ0(P̂n)} , (19)

where for a set C, co{C} denotes its convex hull. Corollary 4.1 then establishes that for a wide

class of loss functions Θ̂n is an asymptotically optimal estimator of Θ0(P ).

Corollary 4.1. Let Assumption 3.1-3.5 hold, P ∈ P and L : R+ → R+ be a subconvex function

continuous on D0 ⊆ R+, and satisfying lim supa→∞ L(a)a−κ < ∞ for some κ > 0. If {Kn} is a

10L is subconvex if for all f ∈ C(Sdθ ): L(0) = 0 ≤ L(f), L(f) = L(−f), and {f : L(f) ≤ c} is convex for all c ∈ R.
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regular convex compact valued set estimator for Θ0(P ), and P (‖G0‖∞ ∈ D0) = 1, then11

lim inf
n→∞

E[L(
√
ndH(Kn,Θ0(P )))] ≥ lim sup

n→∞
E[L(

√
ndH(Θ̂n,Θ0(P )))] = E[L(‖G0‖∞)] .

For instance, setting L(a) = a2 in Corollary 4.1 yields quadratic loss based on Hausdorff distance.

Alternatively, by selecting L(a) = 1{a ≥ t} for any t ∈ R we can conclude that the asymptotic dis-

tribution of
√
ndH(Θ̂n,Θ0(P )) is first order stochastically dominated by that of

√
ndH(Kn,Θ0(P )).

4.3 Marginal Identified Sets

It is often of interest to estimate the identified set of a coordinate or subvector of θ, rather than

Θ0(P ) itself. The support functions of these “marginal” identified sets are given by restrictions of

ν(·,Θ0(P )) to known subsets C ⊆ Sdθ , which we denote by ν|C(·,Θ0(P )); see Remark 4.1.12

In a finite dimensional setting, the coordinates of an efficient estimator are themselves efficient

for the coordinates of the parameter of interest. Analogously, Theorem 4.1 implies that the restric-

tion of the “plug-in” estimator, denoted {ν|C(·,Θ0(P̂n))}, is an efficient estimator for ν|C(·,Θ0(P )).

However, the more modest goal of obtaining an efficient estimator for ν|C(·,Θ0(P )), rather than for

ν(·,Θ0(P )), can be accomplished under less stringent assumptions on F and m. Specifically, it is

possible to allow the slope of linear constraints to depend on P provided we impose P satisfies

Assumption 4.1. (i) For all p ∈ C, there is a unique θ∗(p) ∈ Θ0(P ) with 〈p, θ∗(p)〉 = ν(p,Θ0(P )).

Heuristically, Assumption 4.1 imposes that at each p ∈ C the corresponding tangent hyperplane

be supported by a unique boundary point of Θ0(P ). In Remark 3.2, for instance, ν(p,Θ0(P )) is

pathwise weak differentiable, except precisely at the point p ∈ Sdθ for which the tangent hyperplane

coincides with a “flat face” of Θ0(P ). To reflect this additional restriction on P , we define

PL ≡ {P ∈M : P � µ and Assumptions 3.6(i)-(iv) and 4.1(i) hold} .

In order to allow the slope of linear constraints to depend on P , we let mA : X → RdmA and

m(x, θ) ≡ (mS(x, θ)′,mA(x)′, θ′)′ . (20)

For v 7→ FA(v) a map such that FA(v) is a dF × dθ matrix for each v ∈ RdmA , we then impose

F (

∫
m(x, θ)dP (x)) = FA(

∫
mA(x)dP (x))θ + FS(

∫
mS(x, θ)dP (x)) (21)

(contrast to (3)). We formalize this new structure for the inequalities in the following assumption

Assumption 4.2. (i) The functions m : X ×Θ→ Rdm and F : Rdm → RdF satisfy (20) and (21);

(ii) For each i ∈ {1, . . . , dF}, we have either Si = ∅ or Si = {1, . . . , dθ}.
11We say {Kn} is a regular estimator of Θ0 if its support function ν(·,Kn) is a regular estimator for ν(·,Θ0(P )).
12For any subset C ⊆ Sdθ , ν|C(·,Θ0(P )) : C→ R is defined by ν|C(p,Θ0(P )) = ν(p,Θ0(P )) for all p ∈ C.
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Assumption 4.2(i) generalizes Assumption 3.3(i), since we can set FA(v) = A for all v ∈ RdmA

and some known dF × dθ matrix A. Assumption 4.2(ii) additionally imposes that each constraint

be either linear or strictly convex in θ. This requirement is not necessary for showing existence of

a regular estimator of ν|C(·,Θ0(P )), but it is needed to establish the semiparametric efficiency of

{ν|C(·,Θ0(P̂n))}. Under Assumption 4.2(ii), knowledge that P satisfies Assumption 4.1(i) does not

affect the tangent space, and hence the plug-in estimator remains efficient. In contrast, it is possible

to construct examples violating Assumption 4.2(ii) where the tangent spaces relative to PL and P

differ, and hence so do the semiparametric efficiency bounds. Characterizing the efficiency bound

without Assumption 4.2(ii) is a challenging problem beyond the scope of this paper.

Theorem 4.3. Let Assumptions 3.1, 3.2, 3.4, 3.5 and 4.2 hold. If P ∈ PL and C ⊆ Sdθ is compact,

then {ν|C(·,Θ0(P̂n))} is a semiparametrically efficient estimator of ν|C(·,Θ0(P )) (in C(C)).

Remark 4.1. Suppose θ = (θ1, θ2) ∈ Rdθ1+dθ2 , and we are interested in the marginal identified set

Θ0,M(P ) ≡ {θ1 ∈ Rdθ1 : (θ1, θ2) ∈ Θ0(P ) for some θ2 ∈ Rdθ2} .

For any p1 ∈ Sdθ1 , the support function of the marginal identified set Θ0,M(P ) then satisfies

ν(p1,Θ0,M(P )) = sup
θ1∈Θ0,M (P )

〈p1, θ1〉 = sup
(θ1,θ2)∈Θ0(P )

{〈p1, θ1〉+ 〈0, θ2〉} = ν((p1, 0),Θ0(P )) .

Hence, we obtain ν(·,Θ0,M(P )) = ν|C(·,Θ0(P )) for C ≡ {(p1, p2) ∈ Sdθ1+dθ2 : p2 = 0}.

5 A Consistent Bootstrap

We obtain a consistent bootstrap procedure by following a “score based” approach as proposed in

Lewbel (1995) – see also Donald and Hsu (2009) and Kline and Santos (2012). In particular, for

Wi ∈ R a mean zero random variable and {Wi}ni=1 an i.i.d. sample independent of {Xi}ni=1, we let

G∗n(p) ≡ λ(p, P̂n)′∇F (
1

n

n∑
i=1

m(Xi, θ̂(p)))
1√
n

n∑
i=1

{m(Xi, θ̂(p))−
1

n

n∑
i=1

m(Xi, θ̂(p))}Wi , (22)

where λ(p, P̂n) is as in (18) and θ̂(p) is any maximizer for the optimization problem in (18). Heuris-

tically, the stochastic process p 7→ G∗n(p) is constructed by perturbing an estimate of the efficient

influence function (or score) by the random weights {Wi}ni=1. These weights are assumed to satisfy

Assumption 5.1. (i) {Xi,Wi}ni=1 is an i.i.d. sample; (ii) Wi is independent of Xi; (iii) Wi satisfies

E[Wi] = 0, E[W 2
i ] = 1 and E[|Wi|2+δ] <∞ for some δ > 0.

By construction, the distribution of G∗n depends on that of both {Xi}ni=1 and {Wi}ni=1. We

show, however, that the distribution of G∗n conditional on the data {Xi}ni=1 (but not {Wi}ni=1) is a

consistent estimator for the law of G0. Formally, letting L∗ denote a law statement conditional on

{Xi}ni=1, Theorem 5.1 establishes consistency of the law of G∗n under L∗ for that of G0.

Theorem 5.1. If Assumptions 3.1-3.5, 5.1 hold and P ∈ P, then G∗n
L∗→ G0 (in probability).
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5.1 Estimating Critical Values

In order to conduct inference, it is often necessary to estimate quantiles of transformations of G0.

In this section, we develop a procedure applicable when the transformation is of the form

sup
p∈Ψ0

Υ(G0(p)) , (23)

where Ψ0 ⊆ Sdθ and Υ : R → R is a known continuous function. The set Ψ0 ⊆ Sdθ need not be

known, but we assume the availability of a consistent estimator {Ψ̂n} for Ψ0 in Hausdorff distance.

Assumption 5.2. (i) Υ : R → R is continuous; (ii) {Ψ̂n} does not depend on {Wi}ni=1 and

Ψ̂n ⊆ Sdθ is compact almost surely; (iii) {Ψ̂n} satisfies dH(Ψ̂n,Ψ0) = op(1) with Ψ0 compact.

Quantiles of random variables as in (23) may then be estimated through the following algorithm:

Step 1: Compute the full sample support function estimate ν(·,Θ0(P̂n)) and obtain the Lagrange

multipliers {λ(p, P̂n)}p∈Sdθ and corresponding maximizers {θ̂(p)}p∈Sdθ to (18).

Step 2: Generate a random sample {Wi}ni=1 satisfying Assumption 5.1 to construct G∗n.

Step 3: Employing G∗n and {Ψ̂n}, estimate the 1− α quantile of supp∈Ψ0
Υ(G0(p)) by

ĉ1−α ≡ inf{c : P ( sup
p∈Ψ̂n

Υ(G∗n(p)) ≤ c |{Xi}ni=1) ≥ 1− α} . (24)

In practice, ĉ1−α is often not explicitly computable but obtainable through simulation.

As Theorem 5.2 establishes, ĉ1−α is indeed consistent for the desired quantile.

Theorem 5.2. Let Assumptions 3.1-3.5, 5.1, 5.2 hold and P ∈ P. If the cdf of supp∈Ψ0
Υ(G0(p))

is continuous and strictly increasing at its 1− α quantile, denoted c1−α, then ĉ1−α
p→ c1−α.

Theorem 5.2 may be employed, for example, to construct confidence regions for Θ0(P ).

Example 5.1. Let Θ̂ε
n ≡ {θ ∈ Rdθ : inf θ̃∈Θ̂n

‖θ − θ̃‖ ≤ ε}, and c1−α denote the 1 − α quantile of

supp∈Sdθ (−G0(p))+. Beresteanu and Molinari (2008) then establish that

lim
n→∞

P (Θ0(P ) ⊆ Θ̂ĉ1−α/
√
n

n ) = 1− α (25)

for any consistent estimator ĉ1−α for c1−α. In particular, by letting Υ(a) = (−a)+, and Ψ̂n =

Ψ0 = Sdθ , Theorem 5.2 implies (25) holds if c1−α is estimated employing the proposed bootstrap.

Alternatively, Chernozhukov et al. (2012) provide a related construction based on the efficient

estimator that is equivariant to transformations of the parameters.

5.2 Application to Testing

As an illustration of the applicability of Theorem 5.2, we consider the hypothesis testing problem

H0 : θ ∈ Θ0(P ) H1 : θ /∈ Θ0(P ) , (26)
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which is commonly inverted to construct confidence regions that covers each element of Θ0(P ) with

a prespecified probability. In a related setting, Kaido (2010) tests (26) employing the statistic13

Jn(θ) ≡
√
n~dH({θ}, Θ̂n) . (27)

For M(θ) ≡ arg maxp∈Sdθ{ν(p, {θ})− ν(p,Θ0(P ))}, the appropriate critical value for Jn(θ) is then

c1−α(θ) ≡ inf{c : P ( sup
p∈M(θ)

(−G0(p))+ ≤ c) ≥ 1− α} . (28)

Estimating c1−α(θ) requires a consistent estimator for M(θ), for which Kaido (2010) proposes

M̂n(θ) ≡ {p ∈ Sdθ : {ν(p, {θ})− ν(p,Θ0(P̂n))} ≥ sup
p̃∈Sdθ
{ν(p̃, {θ})− ν(p̃,Θ0(P̂n))} − κn√

n
} , (29)

which satisfies dH(M(θ), M̂n(θ)) = op(1) provided κn = o(n
1
2 ) and κn ↑ ∞. Applying Theorem 5.2

with Υ(a) = (−a)+, Ψ0 = M(θ) and Ψ̂n = M̂n(θ) then implies a consistent estimate of c1−α(θ) is

ĉ1−α(θ) ≡ inf{c : P ( sup
p∈M̂n(θ)

(−G∗n(p))+ ≤ c |{Xi}ni=1) ≥ 1− α} . (30)

Theorem 5.3 establishes the proposed bootstrap delivers pointwise (in P ) asymptotic size control.

Theorem 5.3. Let Assumptions 3.1-3.5, 5.1 hold, P ∈ P, α ∈ (0, 0.5) and κn ↑ ∞ with κn = o(n
1
2 ).

If θ ∈ Θ0(P ), and Var{G0(p)} > 0 for all p ∈M(θ), then it follows that

lim inf
n→∞

P (Jn(θ) ≤ ĉ1−α(θ)) ≥ 1− α . (31)

5.2.1 Local Properties

The test that rejects (26) whenever Jn(θ) > ĉ1−α(θ) satisfies a local optimality property. Specifically,

we show the power function of any test that controls size over local parametric submodels must be

weakly smaller than that of a test based on Jn(θ) for all θ ∈ ∂Θ0(P ) that are supported by a unique

hyperplane. Formally, let hη =
√
dPη/dµ and H(θ) denote the set of submodels η 7→ Pη in P with

(i) h0 =
√
dP/dµ (ii) θ ∈ Θ0(Pη) if η ≤ 0 (iii) θ /∈ Θ0(Pη) if η > 0 . (32)

Thus, H(θ) is the set of submodels passing through P for which Pη satisfies the null hypothesis in

(26) for η ≤ 0, and the alternative for η > 0. We consider tests in terms of their power functions

π : H(θ)→ [0, 1], where π(Pη) is the probability the null hypothesis is rejected when Xi ∼ Pη.

Theorem 5.4. Let Assumptions 3.1-3.5, 5.1 hold, P ∈ P, θ0 ∈ ∂Θ0(P ) with M(θ0) = {p0} and

Var{G0(p0)} > 0, and {πn} be any sequence of power functions such that for any Pη ∈ H(θ0), η ≤ 0

lim sup
n→∞

πn(Pη/√n) ≤ α . (33)

13Kaido (2010) examines an arbitrary estimator of ν(·,Θ0(P )), not necessarily the efficient one. This type of test
statistic was first studied by Bontemps et al. (2012) in the context of the incomplete linear model of Section 3.3.
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If {π∗n} is the power function of the test that rejects when Jn(θ0) > ĉ1−α(θ0), then {π∗n} satisfies

(33). Moreover, for l̃(x) ≡ −λ(p0, P )′H(θ0){m(x, θ0)− E[m(Xi, θ0)]} and any Pη ∈ H(θ0), η > 0

lim sup
n→∞

πn(Pη/√n) ≤ lim
n→∞

π∗n(Pη/√n) = 1− Φ
(
z1−α − η

2E[l̃(Xi)ḣ0(Xi)/h0(Xi)]√
E[G2

0(p0)]

)
, (34)

where Φ is the cdf of a standard normal random variable and z1−α is its 1− α quantile.

The null hypothesis in (26) holds if and only if 〈p, θ〉 ≤ ν(p,Θ0(P )) for all p ∈ Sdθ . When

M(θ) = {p0}, such inequality holds with equality only at p0. Heuristically, any local perturbation

Pη/√n of P that violates the null hypothesis in (26) must then satisfy 〈p0, θ〉 > ν(p0,Θ0(Pη/√n)). As

a result, it is possible to locally relate (26) to the problem of testing 〈p0, θ〉 ≤ ν(p0,Θ0(P )) against

〈p0, θ〉 > ν(p0,Θ0(P )). The limiting experiment of the latter hypothesis is akin to a one sided test

for a mean, and Theorem 5.4 follows by showing the proposed test is optimal in this context. We

note, however, that the size control requirement in (33) is local to a P ∈ P, and the proposed test

does not necessarily control size uniformly over a larger set of distributions.

6 Conclusion

This paper obtains conditions under which the support function of the identified set is a regular pa-

rameter, and characterizes the semiparametric efficiency bound for estimating it. These conditions

are instructive in also determining the sources of irregularity. As in standard maximum likelihood,

however, the results are local in nature. Consequently, care should be taken in implementation

whenever there is reason to doubt the relevance of the assumption P ∈ P.
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Supplemental Appendix

In this Supplemental Appendix we include all proofs of results stated in the main text, a more detailed discussion
of the examples introduced in Section 2.1, and the results of our Monte Carlo study. The proof of each main result is
contained in its own Appendix, which also includes a discussion of the strategy of proof and the role of the auxiliary
results. The contents of the Supplemental Appendix are organized as follows:

Appendix A: Contains the proof of Theorem 3.2 and required auxiliary results.

Appendix B: Contains the proofs of Theorems 4.1, 4.2, Corollary 4.1 and required auxiliary results.

Appendix C: Contains the proof of Theorem 4.3 and required auxiliary results.

Appendix D: Contains proof of Theorems 5.1, 5.2, 5.3 and 5.4.

Appendix E: Contains the proof of Theorem 3.3, and a discussion of regularity in the incomplete linear model.

Appendix F: Discusses our Assumptions in the context of Examples 2.1, 2.2, 2.3 and 2.4.

Appendix G: Reports the results of the Monte Carlo study.

For ease of reference, the following list includes notation and definitions that will be used in the appendix.

a . b a ≤Mb for some constant M that is universal in the context of the proof.
‖ · ‖F The Frobenius norm ‖A‖2F ≡ trace{A′A}.
‖ · ‖o The operator norm for linear mappings.

M The set of Borel probability measures on X ⊆ RdX .
Mµ For some µ ∈M, the set Mµ ≡ {P ∈M : P � µ}.

N(Q) A subset of M that contains Q in its interior (relative to the τ -topology).
N(ε,F , ‖ · ‖) Covering numbers of size ε for F under norm ‖ · ‖.
N[ ](ε,F , ‖ · ‖) Bracketing numbers of size ε for F under norm ‖ · ‖.

Si The coordinates of θ on which θ 7→ F
(i)
S (
∫
mS(x, θ)dP (x)) depends.

Ξ(p,Q) The set of maximizers of supθ∈Θ〈p, θ〉 s.t. F (
∫
m(x, θ)dQ(x)) ≤ 0.

Appendix A - Proof of Theorem 3.2

This Appendix contains the proof of Theorem 3.2. Several of the auxiliary results are stated in more generality
than needed so that they may be employed in the derivations in Theorems 4.1 and 4.3 as well.

The proof of Theorem 3.2 proceeds by verifying the conditions of Theorem 5.2.1 in Bickel et al. (1993), which
requires two key ingredients: (i) Characterizing the tangent space at P , which we accomplish in Theorem A.1, and (ii)
Showing Q 7→ ν(·,Θ0(Q)) is weak-pathwise differentiable at P , which we verify in Theorem A.2. Before proceeding
to the formal derivation of these results, we provide an outline of the general structure of the proof.

Tangent Space (Theorem A.1)

Step 1: Lemma A.16 establishes that if P is open relative to Mµ in the τ -topology, then the tangent space must be
unrestricted. Intuitively, if P is open and P ∈ P, then all distribution Q close to P must also be in P. Therefore
knowing that P ∈ P does not contain information that may be exploited in estimation.

Step 2: Theorem A.1 then follows from establishing that there is a neighborhood N(P ) of P such that all Q ∈ N(P )
satisfy: (i) Assumption 3.6(i) (shown in Corollary A.3), (ii) Assumption 3.6(ii) (by hypothesis), (iii) Assumption
3.6(iii) (established in Lemma A.2), and (iv) Assumption 3.6(iv) (demonstrated in Lemma A.8).
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Differentiability (Theorem A.2)

Step 1: Exploiting Lemma A.3, Lemma A.4 first shows Θ0(P ) has nonempty interior. Corollary A.2 then extends
this result to hold for all Q in a neighborhood of N(P ) of P .

Step 2: Next, we note that since Θ0(Q) has non empty interior for all Q ∈ N(P ), the support function has a saddle
point representation. This is shown in Lemma A.9 which also establishes the Lagrange multipliers are unique.

Step 3: Lemma A.14 then employs the saddle point representation, the envelope theorem and auxiliary Lemma A.10,
to show P 7→ ν(p,Θ0(P )) is pathwise weak-differentiable at any p ∈ Sdθ .

Step 4: Finally, Theorem A.2 is shown by extending the pointwise result of Lemma A.14. The arguments exploit
the continuity of Lagrange multipliers (Lemma A.12), and an auxiliary measurability result (Lemma A.13).

Lemma A.1. Let f : X ×Θ→ R be a measurable function, bounded in (x, θ) ∈ X ×Θ and such that θ 7→ f(x, θ) is
equicontinuous in x ∈ X . If Assumption 3.2 holds and {Qα}α∈A is a net in M with Qα → Q, then:

lim sup
α

sup
θ∈Θ
|
∫
f(x, θ)dQα(x)−

∫
f(x, θ)dQ(x)| = 0 .

Proof: Fix ε > 0 and let Nδ(θ) ≡ {θ̃ ∈ Θ : ‖θ − θ̃‖ < δ}. By equicontinuity, for every θ ∈ Θ there is a δ(θ) with:

sup
x∈X ,θ̃∈Nδ(θ)(θ)

|f(x, θ)− f(x, θ̃)| < ε . (A.1)

By compactness of Θ, there then exists a finite collection {θ1, . . . , θK} such that {Nδ(θi)(θi)}Ki=1 covers Θ. Hence,

|
∫
f(x, θ)dQα(x)−

∫
f(x, θ)dQ(x)| ≤ 2ε+ max

1≤i≤K
|
∫
f(x, θi)(dQα(x)− dQ(x))| (A.2)

for any θ ∈ Θ. Since ε is arbitrary and max1≤i≤K |
∫
f(x, θi)(dQα(x)− dQ(x))| → 0 due to f being measurable and

bounded for all θ, and Qα → Q in the τ -topology, the claim of the Lemma then follows from (A.2).

Lemma A.2. If Assumptions 3.2, 3.4(i)-(ii) and 3.5 hold, then it follows that for every P ∈ P there is a neighborhood
N(P ) ⊆M such that for all Q ∈ N(P ): {

∫
m(x, θ)dQ(x)}θ∈Θ is compact and {

∫
m(x, θ)dQ(x)}θ∈Θ ⊂ V0.

Proof: First note Assumptions 3.4(i)-(ii) and the dominated convergence theorem imply that for any Q ∈M:

lim
θ1→θ2

∫
m(x, θ1)dQ(x) =

∫
m(x, θ2)dQ(x) . (A.3)

Thus, since Θ is closed by Assumption 3.2(i), result (A.3) implies the set R(Q) ≡ {
∫
m(x, θ)dQ(x)}θ∈Θ is closed

in Rdm . Moreover, R(Q) is also bounded by Assumption 3.4(i), and hence we conclude R(Q) is compact, which
establishes the first claim of the Lemma. Defining R(P )δ ≡ {v ∈ Rdm : inf ṽ∈R(P ) ‖v − ṽ‖ < δ}, it then follows from
V0 being open by Assumption 3.5, R(P ) being compact, and Assumption 3.6(iii) that R(P ) ⊂ V0. Hence, there
exists a δ0 > 0 such that R(P )δ0 ⊂ V0, and the second claim of the Lemma then follows from Lemma A.1 implying
there exists a N(P ) such that R(Q) ⊆ R(P )δ0 for all Q ∈ N(P ).

Corollary A.1. Let Assumptions 3.2, 3.4, 3.5 hold and P ∈ P. Then there exists a neighborhood N(P ) ⊆M such
that F (

∫
m(x, ·)dQ(x)) : Θ→ RdF is continuously differentiable for all Q ∈ N(P ), and in addition:

∇θ{F (
∫
m(x, θ)dQ(x))} = ∇F (

∫
m(x, θ)dQ(x))

∫
∇θm(x, θ)dQ(x) .

Proof: By Lemma A.2, there is a neighborhood N(P ) ⊆M such that
∫
m(x, θ)dQ(x) ∈ V0 for all (θ,Q) ∈ Θ×N(P ).

For any Q ∈ N(P ) and any 1 ≤ i ≤ dF , Assumption 3.5 then allows us to conclude that:

∇θ{F (i)(
∫
m(x, θ)dQ(x))} = ∇F (i)(

∫
m(x, θ)dQ(x))

∫
∇θm(x, θ)dQ(x) , (A.4)
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where the exchange of order of integration and differentiation is warranted by the mean value theorem, the dominated
convergence theorem and Assumption 3.4(ii). Moreover, by Assumptions 3.4(i)-(iii) and 3.5(ii) we have:

lim
θn→θ0

∇F (i)(
∫
m(x, θn)dQ(x))

∫
∇θm(x, θn)dQ(x) = ∇F (i)(

∫
m(x, θ0)dQ(x))

∫
∇θm(x, θ0)dQ(x) (A.5)

by the dominated convergence theorem for any θn, θ0 ∈ Θ. The Corollary then follows from (A.4) and (A.5).

Lemma A.3. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. It then follows that for every j ∈ {1, . . . , dθ}
and every θ0 ∈ Θ0(P ) there exists a θA ∈ Θ0(P ) satisfying θ(j)

0 6= θ
(j)
A .

Proof: The proof is by contradiction. Suppose θ0 ∈ Θ0(P ) and that for some j̄ ∈ {1, . . . , dθ} we have θ(j̄) = θ
(j̄)
0 for

all θ ∈ Θ0(P ). Further define Ki ≡ {θ ∈ Θ : F (i)(
∫
m(x, θ)dP (x)) ≤ 0} and for any A ⊆ Θ let:

Πj̄{A} ≡ {c ∈ R : c = θ(j̄) for some θ ∈ A} . (A.6)

Since Θ is convex and F (i)(
∫
m(x, ·)dP (x)) : Θ → R is convex by Assumptions 4.2(i), 3.6(ii) and P ∈ P, it follows

that Ki and
⋂
i∈A(θ0,P )Ki are convex. Thus, F (i)(

∫
m(x, θ0)dP (x)) < 0 for all i ∈ {1, . . . , dF } \ A(θ0, P ) implies

{θ(j̄)
0 } = Πj̄{

⋂
i∈A(θ0,P )

Ki} , (A.7)

or otherwise there would be a θA ∈ Θ0(P ) with θ(j̄)
A 6= θ

(j̄)
0 . Moreover, Corollary A.1 and P ∈ P satisfying Assumption

3.6(iv) imply ∇θ{F (i)(
∫
m(x, θ0)dP (x))} 6= 0 for all i ∈ A(θ0, P ). Hence, for each i ∈ A(θ0, P ) there is a θi ∈ Θ with

F (i)(
∫
m(x, θi)dP (x)) < 0 (A.8)

due to θ0 ∈ Θo by P ∈ P satisfying Assumption 3.6(i). Let ι : A(θ0, P )→ {1, . . . ,#A(θ0, P )} be a bijection and:

k∗ ≡ inf
1≤k≤#A(θ0,P )

k : {Πj̄{
⋂

i:ι(i)≤k

Ki} = {θ(j̄)
0 }} , (A.9)

where we note 2 ≤ k∗ ≤ #A(θ0, P ) due to (A.7) and {Πj̄{Ki}}o 6= ∅ for all i ∈ A(θ0, P ) by (A.8). Next, define:

K̄ ≡
⋂

i:ι(i)≤k∗−1

Ki Ki∗ ≡ Kι−1(k∗) . (A.10)

Since Πj̄{K̄} is not singleton valued, there exists a θA ∈ K̄ with θ
(j̄)
A 6= θ

(j̄)
0 . It follows that if θ̄ ∈ K̄ ∩ Ki∗ then

θ̄ /∈ Ko
i∗ for otherwise cθA + (1 − c)θ̄ ∈ K̄ ∩Ki∗ for c ∈ (0, 1) sufficiently small, contradicting (A.9). We therefore

conclude that K̄ ∩Ko
i∗ = ∅, and by Theorem 5.12.3 in Luenberger (1969) that there is a p∗ ∈ Sdθ such that:

sup
θ∈Ki∗

〈θ, p∗〉 ≤ inf
θ∈K̄
〈θ, p∗〉 . (A.11)

Further note that both the infimum and supremum in (A.11) are attained at θ0, and that since P ∈ P must satisfy
Assumptions 3.6(iv), that {∇θ{F (i)(

∫
m(x, θ0)dP (x))}}i∈A(θ0,P ) are linearly independent by Corollary A.1. Thus,

it follows from Theorem 9.4.1 in Luenberger (1969) and θ0 ∈ Θo by P ∈ P satisfying Assumption 3.6(i) that:

0 = p∗ + γ0∇θ{F (ι−1(k∗))(
∫
m(x, θ0)dP (x))}

0 = p∗ +
k∗−1∑
k=1

γk∇θ{F (ι−1(k))(
∫
m(x, θ0)dP (x))} (A.12)

for some scalar γ0 6= 0 and vector (γ1, . . . , γk∗−1) 6= 0. However, result (A.12) and Corollary A.1 contradict P ∈ P
satisfying Assumption 3.6(iv) and hence the Lemma follows.

Lemma A.4. If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P, then there exists a θ0 ∈ Θ such that:

F (i)(
∫
m(x, θ0)dP (x)) < 0 for all 1 ≤ i ≤ dF .
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Proof: Let 2{1,...,dF } denote the power set of {1, . . . , dF } and note that A(·, P ) : Θ → 2{1,...,dF }. Since A(·, P ) has
finite range, there exists a collection {θj}Jj=1 with J <∞ and θj ∈ Θ0(P ) such that for all θ ∈ Θ0(P ):

A(θ, P ) ∈ {A(θj , P )}Jj=1 . (A.13)

Next, select weights {wj}Jj=1 such that wj > 0 and
∑
j wj = 1, and define θ0 ≡

∑
j wjθj . By convexity we obtain

F (i)(
∫
m(x, θ0)dP (x)) ≤

J∑
j=1

wjF
(i)(
∫
m(x, θj)dP (x)) (A.14)

for any 1 ≤ i ≤ dF , which implies θ0 ∈ Θ0(P ). Moreover, since wj > 0 for all 1 ≤ j ≤ J , it also follows that
F (i)(

∫
m(x, θ0)dP (x)) = 0 if and only if F (i)(

∫
m(x, θj)dP (x)) = 0 for all 1 ≤ j ≤ J . Thus, by (A.13) we conclude:

A(θ0, P ) =
J⋂
j=1

A(θj , P ) =
⋂

θ∈Θ0(P )

A(θ, P ) . (A.15)

Next we aim to show A(θ0, P ) = ∅ which yields the claim of the Lemma. Toward this end, note that for any
1 ≤ i ≤ dF , if j ∈ Si, then by Lemma A.3 there exists a θA ∈ Θ0(P ) with θ

(j)
0 6= θ

(j)
A . Thus, by convexity of Θ and

P ∈ P satisfying Assumption 3.6(ii), we obtain that cθ0 + (1− c)θA ∈ Θ0(P ) for all c ∈ (0, 1) and:

F (i)(
∫
m(x, cθ0 + (1− c)θA)dP (x)) < 0 . (A.16)

Therefore, (A.15) and (A.16) imply that Si = ∅ for all i ∈ A(θ0, P ), or equivalently that only linear constraints can
be active at θ0. Thus, Theorem 22.2 in Rockafellar (1970) then yields that either (A.17) or (A.18) must hold:

F (i)(
∫
m(x, θL)dP (x)) < 0 for all i ∈ A(θ0, P ) for some θL ∈ Rdθ (A.17)∑

i∈A(θ0,P )

γi∇θ{F (i)(
∫
m(x, θ0)dP (x))} = 0 for scalars {γi} with sup

i∈A(θ0,P )

γi > 0 . (A.18)

However, (A.18) is not possible due to P ∈ P satisfying Assumption 3.6(iv) and hence we conclude (A.17) must
hold. Finally, since F (i)(

∫
m(x, θ0)dP (x)) < 0 for all i ∈ {1, . . . , dF } \A(θ0, P ) and θ0 ∈ Θo due to P ∈ P satisfying

Assumption 3.6(i), we obtain that for c ∈ (0, 1) sufficiently close to one F (i)(
∫
m(x, cθ0 + (1 − c)θL)dP (x)) < 0 for

all 1 ≤ i ≤ dF . Hence, (A.15) implies A(θ0, P ) = ∅ as desired, and the claim of the Lemma follows.

Lemma A.5. Let Assumptions 3.2, 3.4(i)-(ii), 3.5, 4.2(i) hold and P ∈ P. Then, there exists a neighborhood
N(P ) ⊆M such that the mapping (θ,Q) 7→ F (

∫
m(x, θ)dQ(x)) is continuous at all (θ,Q) ∈ Θ×N(P ).

Proof: Recall that by Lemma A.2 there is N(P ) ⊆ M such that
∫
m(x, θ)dQ(x) ∈ V0 for all (θ,Q) ∈ Θ × N(P ).

Next let {θα, Qα}α∈A be a net such that (θα, Qα)→ (θ0, Q0) ∈ Θ×N(P ). Since m : X ×Θ→ Rdm is bounded by
Assumption 3.4(i), and θ 7→ m(x, θ) is equicontinuous in x by Assumption 3.4(ii) it follows from Lemma A.1 that:

lim sup
α

sup
θ∈Θ
‖F (

∫
m(x, θ)dQα(x))− F (

∫
m(x, θ)dQ0(x))‖ = 0 , (A.19)

due to F being uniformly continuous on V0 by Assumption 3.5(ii). Moreover, since
∫
m(x, θ0)dQ0(x) ∈ V0 we have

F (
∫
m(x, θα)dQ0(x))→ F (

∫
m(x, θ0)dQ0(x)) (A.20)

by Assumptions 3.4(i)-(ii) and the dominated convergence theorem. Therefore, results (A.19) and (A.20) imply that

F (
∫
m(x, θα)dQα(x))→ F (

∫
m(x, θ0)dQ0(x)) , (A.21)

which establishes the continuity of (θ,Q)→ F (
∫
m(x, θ)dQ(x)) on Θ×N(P ) as claimed.

Corollary A.2. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then, there exists a θ0 ∈ Θ and a
neighborhood N(P ) ⊆M such that F (i)(

∫
m(x, θ0)dQ(x)) < 0 for all 1 ≤ i ≤ dF and Q ∈ N(P ).
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Proof: The claim follows immediately from Lemma A.4 implying there exists θ0 ∈ Θ such that F (i)(
∫
m(x, θ0)dP (x)) <

0 for all 1 ≤ i ≤ dF , and Lemma A.5 implying Q 7→ F (
∫
m(x, θ0)dQ(x)) is continuous at Q = P .

Lemma A.6. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then there is N(P ) ⊆M such that Θ0(Q) 6= ∅
is convex for all Q ∈ N(P ), and the correspondence Q 7→ Θ0(Q) is continuous at all Q ∈ N(P ).

Proof: By Θ being convex, Corollary A.2, Assumption 4.2(i) and P ∈ P satisfying Assumption 3.6(ii) there exists a
N(P ) ⊆M and θ0 ∈ Θ such that for all Q ∈ N(P ) and 1 ≤ i ≤ dF , the functions F (i)(

∫
m(x, ·)dQ(x)) : Θ→ R are

convex, and F (i)(
∫
m(x, θ0)dQ(x)) < 0. Thus, in what follows we let Θ0(Q) be a convex set with nonempty interior.

Moreover, by Lemma A.5 N(P ) may be chosen so that (θ,Q) 7→ F (
∫
m(x, θ)dQ(x)) is continuous on Θ×N(P ).

We first establish Q 7→ Θ0(Q) is lower hemicontinuous at any Q0 ∈ N(P ). By Theorem 17.19 in Aliprantis
and Border (2006), it suffices to show that for any θ∗ ∈ Θ0(Q0) and net {Qα}α∈A with Qα → Q0, there exists a
subnet {Qαβ}β∈B and net {θβ}β∈B such that θβ ∈ Θ0(Qαβ ) for all β ∈ B and θβ → θ∗. If θ∗ ∈ Θo

0(Q0), then
F (i)(

∫
m(x, θ∗)dQ0(x)) < 0 for all 1 ≤ i ≤ dF and hence by Lemma A.5 and Qα → Q0, there exists α0 such that

θ∗ ∈ Θ0(Qα) for all α ≥ α0. Therefore, defining B ≡ {α ∈ A : α ≥ α0}, Qαβ = Qβ and setting θβ = θ∗ we obtain
{Qαβ}β∈B is a subnet with θβ ∈ Θ0(Qαβ ) and trivially satisfies θβ → θ∗. Suppose on the other hand θ∗ ∈ ∂Θ0(Q0).
Since Θ0(Q0) is convex with nonempty interior, there is a sequence θ̃k with θ̃k → θ∗ and θ̃k ∈ Θo

0(Q0) for all k. By
Lemma A.5, there then exits a α0,k such that θ̃k ∈ Θ0(Qα) for all α ≥ α0,k. Let B ≡ A× N and for any β = (α, k)
let αβ = α̃ for some α̃ ∈ A with α̃ ≥ α and α̃ ≥ α0,k and θβ = θ̃k. {Qαβ}β∈B is then a subnet of {Qα}α∈A with
θβ ∈ Θ0(Qαβ ) and θβ → θ∗.

Next, we show that Q 7→ Θ0(Q) is upper hemicontinuous at any Q0 ∈ N(P ). By Theorem 17.16 in Aliprantis
and Border (2006), it suffices to show that any net {Qα, θα}α∈A such that Qα → Q0 and θα ∈ Θ0(Qα) for all α ∈ A

is such that {θα}α∈A has a limit point θ∗ ∈ Θ0(Q0). Compactness of Θ, however, implies there exists a subnet
{θαβ}β∈B such that θαβ → θ∗ for some θ∗ ∈ Θ. Therefore, since θαβ ∈ Θ0(Qαβ ) for all β ∈ B, we obtain

0 ≥ F (
∫
m(x, θαβ )dQαβ (x))→ F (

∫
m(x, θ∗)dQ0(x)) (A.22)

by Lemma A.5. Thus, θ∗ ∈ Θ0(Q0) and upper hemicontinuity is established. Since, as argued, Q 7→ Θ0(Q) is also
lower hemicontinuous, the claim of the Lemma immediately follows.

Corollary A.3. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then, there exists a neighborhood N(P ) ⊆M
such that ∅ 6= Θ0(Q) ⊂ Θo for all Q ∈ N(P ).

Proof: Since θ 7→ F (
∫
m(x, θ)dP (x)) is continuous in θ ∈ Θ by Lemma A.5, it follows that Θ0(P ) is closed. Hence,

since ∂Θ is closed as well and Θ0(P ) ∩ ∂Θ = ∅ due to P ∈ P satisfying Assumption 3.6(i), we must have that:

inf
θ1∈Θ0(P )

inf
θ2∈∂Θ

‖θ1 − θ2‖ > 0 . (A.23)

Therefore, there exists an open set U such that Θ0(P ) ⊂ U ⊂ Θo. Since by Lemma A.6 the correspondence
Q 7→ Θ0(Q) is upper hemicontinuous at P , there then exists a N(P ) ⊆ M such that for all Q ∈ N(P ) we have
∅ 6= Θ0(Q) ⊂ U ⊂ Θo; see Definition 17.2 in Aliprantis and Border (2006).

Lemma A.7. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P and define the correspondence:

Ξ(p,Q) ≡ arg max
θ∈Θ
{〈p, θ〉 s.t. F (

∫
m(x, θ)dQ(x)) ≤ 0} . (A.24)

Then there is N(P ) ⊆M with (p,Q) 7→ Ξ(p,Q) non-empty, compact and upper hemicontinuous on Sdθ ×N(P ).

Proof: By Lemma A.6, there exists a N(P ) ⊆ M such that Θ0(Q) 6= ∅ and Q 7→ Θ0(Q) is continuous on N(P ).
Since by Lemma A.5 the set Θ0(Q) ⊆ Θ is closed, Assumption 3.2(i) implies Θ0(Q) is compact. Hence, Ξ(p,Q) is

5



well defined as the maximum is indeed attained for all (p,Q) ∈ Sdθ ×N(P ). Continuity of Q 7→ Θ0(Q) and Theorem
17.31 in Aliprantis and Border (2006) then imply (p,Q) 7→ Ξ(p,Q) is compact valued and upper hemicontinuous.

Lemma A.8. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then, there exists a neighborhood N(P ) ⊆M so
that {∇F (i)(

∫
m(x, θ)dQ(x))

∫
∇θm(x, θ)dQ(x)}i∈A(θ,Q) are linearly independent for all θ ∈ Θ0(Q) and Q ∈ N(P ).

Proof: The proof is by contradiction. Let NP be the neighborhood system of P with direction V � W whenever
V ⊆ W , which forms a directed set. If the Lemma fails to hold, then for A = NP there exists a net {Qα, θα}α∈A

such that Qα → P , θα ∈ Θ0(Qα) and the vectors {∇F (i)(
∫
m(x, θα)dQα(x))

∫
∇θm(x, θα)dQα(x)}i∈A(θα,Qα) are not

linearly independent for all α ∈ A. Since by Lemma A.6 the correspondence Q 7→ Θ0(Q) is upper hemicontinuous
in a neighborhood of P , we may pass to a subnet {Qαβ , θαβ}β∈B such that (Qαβ , θαβ ) → (P, θ∗) with θ∗ ∈ Θ0(P ).
Further note that for any index i ∈ Ac(θ∗, P ) Lemma A.5 implies that:

F (i)(
∫
m(x, θαβ )dQαβ (x))→ F (i)(

∫
m(x, θ∗)dP (x)) < 0 . (A.25)

Therefore, there is a β0 such that if β ≥ β0 then the constraints that are inactive under (θ∗, P ) are also inactive under
(θαβ , Qαβ ). Equivalently, for β ≥ β0, A(θαβ , Qαβ ) ⊆ A(θ∗, P ), and hence in establishing a contradiction it suffices
to show {∇F (i)(

∫
m(x, θαβ )dQαβ (x))

∫
∇θm(x, θαβ )dQαβ (x)}i∈A(θ∗,P ) are linearly independent for some β ≥ β0.

Towards this end, notice that Assumptions 3.4(ii)-(iii) and Lemma A.1 imply that uniformly in θ ∈ Θ:∫
∇θm(x, θ)dQαβ (x)→

∫
∇θm(x, θ)dP (x) . (A.26)

Since ∇θm is uniformly bounded and continuous in θ, the dominated convergence theorem and (A.26) yield:∫
∇θm(x, θαβ )dQαβ (x)→

∫
∇θm(x, θ∗)dP (x) . (A.27)

Similarly, since v 7→ ∇F (v) is uniformly continuous on V0 by Assumption 3.5(ii) and
∫
m(x, θαβ )dQαβ (x) ∈ V0 for β

sufficiently large by Lemma A.2, Lemma A.1 applied to θ 7→ m(x, θ) and result (A.27) yield:

∇F (
∫
m(x, θαβ )dQαβ (x))

∫
∇θm(x, θαβ )dQαβ (x)→ ∇F (

∫
m(x, θ∗)dP (x))

∫
∇θm(x, θ∗)dP (x) . (A.28)

However, since P ∈ P satisfies Assumption 3.6(iv), the vectors {∇F (i)(
∫
m(x, θ∗)dP (x))

∫
∇θm(x, θ∗)dP (x)}i∈A(θ∗,P )

are linearly independent and hence by (A.28), so must {∇F (i)(
∫
m(x, θαβ )dQαβ (x))

∫
∇θm(x, θαβ )dQαβ (x)}i∈A(θ∗,P )

for β ≥ β1 and some β1 ∈ B. Thus, the contradiction is established and the claim of the Lemma follows.

Lemma A.9. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and P ∈ P. Then there is a neighborhood N(P ) ⊆M such
that for all Q ∈ N(P ) and p ∈ Sdθ there is a unique λ(p,Q) ∈ RdF satisfying:

sup
θ∈Θ0(Q)

〈p, θ〉 = sup
θ∈Θ

{〈p, θ〉+ λ(p,Q)′F (
∫
m(x, θ)dQ(x))} . (A.29)

Proof: By Assumption 4.2(i), Corollary A.2 and P ∈ P satisfying Assumption 3.6(ii), there is a N1(P ) ⊆ M such
that for all Q ∈ N1(P ) there is a θ0 ∈ Θ with F (i)(

∫
m(x, θ0)dQ(x)) < 0 for all 1 ≤ i ≤ dF and F (i)(

∫
m(x, ·)dQ(x)) :

Θ→ R is convex for all 1 ≤ i ≤ dF . Since Θ is compact and convex by Assumption 3.2(i), the optimization problem:

sup
θ∈Θ

〈p, θ〉 s.t. F (
∫
m(x, θ)dQ(x)) ≤ 0 (A.30)

satisfies the conditions of Corollary 28.2.1 in Rockafellar (1970) for all Q ∈ N1(P ) and all p ∈ Sdθ . We can therefore
conclude that the equality in (A.29) holds for some λ(p,Q) ∈ RdF .

Next we show there exists a N(P ) ⊆ N1(P ) such that λ(p,Q) is unique for all p ∈ Sdθ and Q ∈ N(P ). To this
end, note that by Lemmas A.7 and Corollary A.3 there exists a N2(P ) ⊆ N1(P ) such that Ξ(p,Q) as defined in
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(A.24) satisfies ∅ 6= Ξ(p,Q) ⊆ Θ0(Q) ⊂ Θo for all (p,Q) ∈ Sdθ × N2(Q). Theorem 8.3.1 in Luenberger (1969) then
implies that any θ∗ ∈ Ξ(p,Q) is also a maximizer of the dual problem, and hence for any θ∗ ∈ Ξ(p,Q):

p′ + λ(p,Q)′∇F (
∫
m(x, θ∗)dQ(x))

∫
∇θm(x, θ∗)dQ(x) = 0 , (A.31)

by Corollary A.1 for all Q in some neighborhood N3(P ) ⊆ N2(P ). Result (A.31) represents a linear equation in
λ(p,Q) ∈ RdF . However, by the complementary slackness conditions λ(i)(p,Q) = 0, for any i ∈ Ac(θ∗, Q). Therefore,
the linear system in equation (A.31) can be reduced to dθ equations and #A(θ∗, Q) unknowns. Furthermore, by
Lemma A.8 there is a neighborhood N(P ) ⊆ N3(P ) with {∇F (i)(

∫
m(x, θ∗)dQ(x))

∫
∇θm(x, θ∗)dQ(x)}i∈A(θ∗,Q)

linearly independent for all Q ∈ N(P ) and any θ∗ ∈ Θ0(Q). Hence, we conclude that for any Q ∈ N(P ) the solution
to equation (A.31) in λ(p,Q) ∈ RdF satisfying (A.30) is unique and the claim of the Lemma follows.

Lemma A.10. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and Ξ(p,Q) be as in (A.24). Then, there exists
a neighborhood N(P ) ⊆M such for each (Q, p) ∈ N(P )× Sdθ and all 1 ≤ i ≤ dF one of the following must hold: (i)
λ(i)(p,Q) = 0, or (ii) θ(j)

1 = θ
(j)
2 for all j ∈ Si and all θ1, θ2 ∈ Ξ(p,Q).

Proof: Recall we refer to the arguments of F (i)
S (
∫
mS(x, ·)dQ(x)) as the coordinates of θ corresponding to indices

in Si (as in (4)). By P ∈ P satisfying Assumption 3.6(ii) and Lemma A.7, there is a N(P ) ⊆ M such that for
all Q ∈ N(P ) and 1 ≤ i ≤ dF , the functions F (i)

S (
∫
mS(x, ·)dQ(x)) are strictly convex in their arguments, and

Ξ(p,Q) 6= ∅ for all p ∈ Sdθ . To establish the Lemma, we aim to show that condition (i) must hold whenever (ii) fails.
To this end, suppose there exist a 1 ≤ i ≤ dF such that θ(j)

1 6= θ
(j)
2 for some j ∈ Si and θ1, θ2 ∈ Ξ(p,Q). Next define

θL = cθ1 + (1− c)θ2 with c ∈ (0, 1) and note θ(j)
1 6= θ

(j)
2 and j ∈ Si, and P ∈ P satisfying Assumption 3.6(ii) imply

F (i)(
∫
m(x, θL)dQ(x)) < cF (i)(

∫
m(x, θ1)dQ(x)) + (1− c)F (i)(

∫
m(x, θ2)dQ(x)) ≤ 0 (A.32)

where the second inequality follows from θ1, θ2 ∈ Θ0(Q). However, since Θ is convex by Assumption 3.2(i), Θ0(Q)
is convex as well and hence θL ∈ Θ0(Q). Since 〈p, θL〉 = c〈p, θ1〉 + (1 − c)〈p, θ2〉, we must have θL ∈ Ξ(p,Q), and
therefore (A.32) and the complementary slackness condition imply λ(i)(p,Q) = 0, establishing the Lemma.

Lemma A.11. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P, and λ(p,Q) be as in (A.29). Then, there exists
a N(P ) ⊆M such that ‖λ(p,Q)‖ is uniformly bounded in (p,Q) ∈ Sdθ ×N(P ).

Proof: We establish the claim by contradiction. Let NP denote the neighborhood system of P with direction V �W
whenever V ⊆W , N be the natural numbers, and note NP ×N then forms a directed set. If the claim is false, then
setting A = NP × N and α = (V, k) ∈ A, we may find a net {Qα, pα, θα}α∈A such that for all α ∈ A:

‖λ(pα, Qα)‖ > k Qα ∈ V pα ∈ Sdθ θα ∈ Ξ(pα, Qα) , (A.33)

where Ξ(p,Q) is as in (A.24). However, by: (i) (p,Q) 7→ Ξ(p,Q) being upper hemicontinuous and compact valued in
a neighborhood of P , and (ii) Sdθ being compact, we may pass to a subnet {Qαβ , pαβ , θαβ}β∈B such that:

(Qαβ , pαβ , θαβ , ‖λ(pαβ , Qαβ )‖)→ (P, p∗, θ∗,+∞) for some (p∗, θ∗) ∈ Sdθ × Ξ(p∗, P ) . (A.34)

Since the number of constraints is finite, there is a set of indices C ⊆ {1, . . . , dF } such that for every β0 ∈ B there
exists a β ≥ β0 with A(θαβ , Qαβ ) = C. Letting G ≡ B we may then set αβγ = αβ̃ for some β̃ ≥ β satisfying
A(θαβ̃ , Qαβ̃ ) = C. In this way, we obtain a subnet which, for simplicity, we denote {Qαγ , pαγ , θαγ}γ∈G with:

(Qαγ , pαγ , θαγ , ‖λ(pαγ , Qαγ )‖)→ (P, p∗, θ∗,+∞) A(θαγ , Qαγ ) = C ∀γ ∈ G . (A.35)

Next, let λC(pαγ , Qαγ ) and ∇CF (
∫
m(x, θαγ )dQαγ (x)) respectively be the #C × 1 vector and #C × dm matrix that

stacks components of λ(pαγ , Qαγ ) and ∇F (
∫
m(x, θαγ )dQαγ (x)) whose indexes belong to C. Similarly, define:

M(θαγ , Qαγ ) ≡ ∇CF (
∫
m(x, θαγ )dQαγ (x))

∫
∇θm(x, θαγ )dQαγ (x) . (A.36)
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By Lemma A.8 there is a γ0 such that M(θαγ , Qαγ )M(θαγ , Qαγ )′ is invertible for all γ ≥ γ0. Therefore, since by the
complementary slackness conditions λ(i)(pαγ , Qαγ ) = 0 for all i /∈ C, we obtain from result (A.31) that:

λC(pαγ , Qαγ ) = −(M(θαγ , Qαγ )M(θαγ , Qαγ )′)−1M(θαγ , Qαγ )pαγ . (A.37)

Additionally, since (θαγ , Qαγ )→ (θ∗, P ) as in (A.34), we obtain from result (A.28) and definition (A.36) that:

M(θαγ , Qαγ )M(θαγ , Qαγ )′ →M(θ∗, P )M(θ∗, P )′ . (A.38)

For a symmetric matrix Σ, let ξ(Σ) denote its smallest eigenvalue and note ξ(M(θ∗, P )M(θ∗, P )′) > 2ε for some
ε > 0 by P ∈ P satisfying Assumption 3.6(iv). Since eigenvalues are continuous under ‖ · ‖F by Corollary III.2.6 in
Bhatia (1997), we obtain from (A.38) that there is a γ1 ≥ γ0 ∈ G such that for all γ ≥ γ1 we have

ξ(M(θαγ , Qαγ )M(θαγ , Qαγ )′) > ε . (A.39)

Furthermore, since λ(i)(pαγ , Qαγ ) = 0 for all i /∈ C, it follows that ‖λ(pαγ , Qαγ )‖ = ‖λC(pαγ , Qαγ )‖ and hence:

‖λ(pαγ , Qαγ )‖ = ‖λC(pαγ , Qαγ )‖

≤ ‖(M(θαγ , Qαγ )M(θαγ , Qαγ )′)−1‖o × ‖M(θαγ , Qαγ )‖F × ‖p‖

≤ ξ−1(M(θαγ , Qαγ )M(θαγ , Qαγ )′)× sup
v∈V0

‖∇F (v)‖F × sup
(x,θ)∈X×Θ

‖∇θm(x, θ)‖F , (A.40)

where the final inequality holds for all γ ≥ γ2 for some γ2 ∈ G with γ2 ≥ γ1 by Lemma A.2. However, (A.39), (A.40)
and Assumptions 3.4(ii), 3.5(ii) imply ‖λ(pαγ , Qαγ )‖ is uniformly bounded for all γ ≥ γ2, contradicting (A.35).

Lemma A.12. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P and λ(p,Q) be as in (A.29). Then, there exists a
N(P ) ⊆M such that the function (p,Q) 7→ λ(p,Q) is continuous on (p,Q) ∈ Sdθ ×N(P ).

Proof: By Lemmas A.9 and A.11 there exists a N1(P ) ⊆M such that λ(p,Q) is well defined, unique and uniformly
bounded for all (p,Q) ∈ Sdθ ×N1(P ). Therefore, letting Λ ≡ cl{λ(p,Q) : (p,Q) ∈ Sdθ ×N1(P )} it follows that Λ is
compact in RdF . By Lemma A.9 and Theorem 8.6.1 in Luenberger (1969) we then have:

λ(p,Q) = arg min
λ≥0

V (λ, p,Q) = arg min
λ∈Λ

V (λ, p,Q) V (λ, p,Q) ≡ max
θ∈Θ
{〈p, θ〉+λ′F (

∫
m(x, θ)dQ(x))} . (A.41)

Since (θ,Q) 7→ F (
∫
m(x, θ)dQ(x)) is continuous on a neighborhood N(P ) ⊆ N1(P ) by Lemma A.5, compactness of

Θ and Theorem 17.31 in Aliprantis and Border (2006) imply (λ, p,Q) 7→ V (λ, p,Q) is continuous on Λ×Sdθ ×N(P ).
Therefore, by (A.41), compactness of Λ and a second application of Theorem 17.31 in Aliprantis and Border (2006), it
follows that (p,Q) 7→ λ(p,Q) is upper hemicontinuous on Sdθ ×N(P ). However, since (p,Q) 7→ λ(p,Q) is a singleton
valued correspondence on Sdθ ×N(P ) by Lemma A.9, we conclude that it is in fact a continuous function.

Lemma A.13. Let Assumptions 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P and Ξ(p, P ) be as in (A.24). Then, there exists a
Borel measurable selector θ∗ : Sdθ → Θ with θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ .

Proof: By Lemma A.7, p 7→ Ξ(p, P ) is upper hemicontinuous in p ∈ Sdθ and hence weakly measurable; see Definition
18.1 in Aliprantis and Border (2006). Since p 7→ Ξ(p, P ) is nonempty and compact valued by Lemma A.7, Theorem
18.13 in Aliprantis and Border (2006), implies there is a measurable selector θ∗ : Sdθ → Θ and the Lemma follows.

Lemma A.14. Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and η 7→ hη be a curve in S. Then, there is a neighborhood
N ⊆ R of 0 such that for all η0 ∈ N , p ∈ Sdθ , Ξ(p, Pη) as in (A.24) and λ(p, Pη) ∈ RdF as in (A.29),

∂

∂η
ν(p,Θ0(Pη))

∣∣∣
η=η0

= 2λ(p, Pη0)′∇F (
∫
m(x, θ∗)h2

η0(x)dµ(x))
∫
m(x, θ∗)ḣη0(x)hη0(x)dµ(x) for any θ∗ ∈ Ξ(p, Pη0) . (A.42)
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Proof: For any 1 ≤ i ≤ dm and θ ∈ Θ, first observe that by rearranging terms it follows that for any η0:

|
∫
m(i)(x, θ){h2

η0(x)− h2
η(x)− 2(η0 − η)hη0(x)ḣη0(x)}dµ(x)|

= |
∫
m(i)(x, θ){(hη(x)− hη0(x))2 + 2hη0(x)(hη(x)− hη0(x) + (η0 − η)ḣη0(x))}dµ(x)| = o(|η − η0|) (A.43)

where the final result holds by m being bounded by Assumption 3.4(i), Cauchy-Schwarz, ‖hη−hη0‖2L2
µ

= O(|η−η0|2)

and ‖hη−hη0−(η−η0)ḣη0‖L2
µ

= o(|η−η0|) due to η 7→ hη being Fréchet differentiable. Moreover, ‖hη−hη0‖L2
µ

= o(1)
implies Pη → Pη0 with respect to the total variation metric, and hence also with respect to the τ -topology. Thus,
for η0 in a neighborhood of zero, result (A.43), Lemma A.2 and Assumptions 3.5(i)-(ii) yield:

∂

∂η
F (
∫
m(x, θ)h2

η(x)dµ(x))
∣∣∣
η=η0

= 2∇F (
∫
m(x, θ)h2

η0(x)dµ(x))
∫
m(x, θ)ḣη0(x)hη0(x)dµ(x) . (A.44)

Since η 7→ hη is continuously Fréchet differentiable, result (A.28) implies the derivative in (A.44) is continuous in η0

in a neighborhood of zero. Therefore, Assumption 3.3(i) implying Assumption 4.2(i), Lemma A.9 and Corollary 5 in
Milgrom and Segal (2002) imply η 7→ ν(p,Θ0(Pη)) is directionally differentiable in a neighborhood of zero with:

∂

∂η+
ν(p,Θ0(Pη))

∣∣∣
η=η0

= max
θ∗∈Ξ(p,Pη0 )

2λ(p, Pη0)′∇F (
∫
m(x, θ∗)h2

η0(x)dµ(x))
∫
m(x, θ∗)ḣη0(x)hη0(x)dµ(x) (A.45)

∂

∂η−
ν(p,Θ0(Pη))

∣∣∣
η=η0

= min
θ∗∈Ξ(p,Pη0 )

2λ(p, Pη0)′∇F (
∫
m(x, θ∗)h2

η0(x)dµ(x))
∫
m(x, θ∗)ḣη0(x)hη0(x)dµ(x) (A.46)

where ∂
∂η+

and ∂
∂η−

denote right and left derivatives respectively. Note, however, that by Lemma A.10, for all

1 ≤ i ≤ dF such that λ(i)(p, Pη0) 6= 0 we must have θ(j)
1 = θ

(j)
2 for all j ∈ Si and all θ1, θ2 ∈ Ξ(p, Pη0). Therefore,

since Aθ trivially does not depend on η, it follows from (3), (4), and results (A.44), (A.45) and (A.46) that:

∂

∂η+
ν(p,Θ0(P ))

∣∣∣
η=η0

= max
θ∗∈Ξ(p,Pη0 )

∑
i:λ(i)(p,Pη0 ) 6=0

λ(i)(p, Pη0)
∂

∂η
F

(i)
S (
∫
m(x, θ∗)h2

η(x)dµ(x))
∣∣∣
η=η0

= min
θ∗∈Ξ(p,Pη0 )

∑
i:λ(i)(p,Pη0 ) 6=0

λ(i)(p, Pη0)
∂

∂η
F

(i)
S (
∫
m(x, θ∗)h2

η(x)dµ(x))
∣∣∣
η=η0

=
∂

∂η−
ν(p,Θ0(P ))

∣∣∣
η=η0

. (A.47)

Thus, the claim of the Lemma follows from (A.45), (A.46) and (A.47).

Lemma A.15. Let Assumptions 3.2, 3.3, 3.4, 3.5 hold, and η 7→ hη be a curve in S. Then: (i) There is a
neighborhood N ⊆ R of 0 such that ∂

∂ην(p,Θ0(Pη))|η=η0 is bounded in (p, η0) ∈ Sdθ × N , and (ii) The function
(p, η0) 7→ ∂

∂ην(p,Θ0(Pη))|η=η0 is continuous at all (p, η0) ∈ Sdθ ×N .

Proof: To establish the first claim, notice that by Lemmas A.2, A.14 and the Cauchy-Schwarz inequality:

| ∂
∂η
ν(p,Θ0(Pη))

∣∣∣
η=η0
| ≤ 2‖λ(p, Pη0)‖ × sup

v∈V0

‖∇F (v)‖F ×
√
dm sup

(x,θ)∈X×Θ

‖m(x, θ)‖ × ‖ḣη0‖L2
µ
× ‖hη0‖L2

µ
, (A.48)

for η0 in a neighborhood of zero. Since ‖ḣη0‖L2
µ

is continuous in η0 due to η 7→ hη being continuously Fréchet
differentiable, it attains a finite maximum in a neighborhood of zero. Thus, ‖ḣη0‖L2

µ
is uniformly bounded and since

‖hη0‖L2
µ

= 1 for all η0, Lemma A.11, Assumptions 3.4(i), 3.5(ii) and (A.48) establish the first claim of the Lemma.

To establish the second claim, let (pn, ηn) → (p0, η0) and select θ∗n ∈ Ξ(pn, Pηn) for Ξ(p, P ) as in (A.24). Since
‖m(x, θ)‖ is uniformly bounded by Assumption 3.4(i), we obtain for any 1 ≤ i ≤ dm that:

lim
n→∞

sup
θ∈Θ
|
∫
m(i)(x, θ){ḣηn(x)hηn(x)− ḣη0(x)hη0(x)}dµ(x)|

≤ sup
(x,θ)∈X×Θ

‖m(x, θ)‖ × lim
n→∞

{‖ḣηn − ḣη0‖L2
µ
‖hηn‖L2

µ
+ ‖hηn − hη0‖L2

µ
‖ḣη0‖L2

µ
} = 0 , (A.49)

due to the Cauchy-Schwarz inequality, η 7→ hη being continuously Fréchet differentiable and ‖hη‖L2
µ

= 1. Next, let
{nk} be an arbitrary subsequence, and note that since Lemma A.7 implies (p, η) 7→ Ξ(p, Pη) is upper hemicontinuous
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provided η is in a neighborhood of zero, there is a further subsequence {θ∗nkj } such that θ∗nkj → θ∗ for some
θ∗ ∈ Ξ(p0, Pη0). Along such a subsequence, we obtain from (A.28), (A.49) and the dominated convergence theorem:

lim
j→∞

∇F (
∫
m(x, θ∗nkj )h2

ηnkj
(x)dµ(x))

∫
m(x, θ∗nkj )ḣηn(x)hηnkj (x)dµ(x)

= ∇F (
∫
m(x, θ∗)h2

η0(x)dµ(x))
∫
m(x, θ∗)ḣη0(x)hη0(x)dµ(x) . (A.50)

Hence, by Lemmas A.12 and A.14 and result (A.50), the subsequence {nk} has a further subsequence {nkj} with:

lim
j→∞

∂

∂η
ν(pnkj ,Θ0(Pη))

∣∣∣
η=ηnkj

=
∂

∂η
ν(p0,Θ0(Pη))

∣∣∣
η=η0

. (A.51)

Therefore, since the subsequence {nk} was arbitrary, result (A.51) must also hold with {n} in place of {nkj}. We
conclude that (p, η0) 7→ ∂

∂ην(p,Θ0(Pη))|η=η0 is continuous, and the second claim of the Lemma then follows.

Lemma A.16. Let Mµ ≡ {Q ∈M : Q� µ}, Q ⊆Mµ and D ≡ {s ∈ L2
µ : s =

√
dQ/dµ for some Q ∈ Q}. If Q is

open relative to Mµ with respect to the τ -topology, then for every Q ∈ Q the tangent space of D at s =
√
dQ/dµ is

given by Ḋ = {h ∈ L2
µ :
∫
h(x)s(x)dµ(x) = 0}.

Proof: The proof exploits a construction in Example 3.2.1 of Bickel et al. (1993). Define:

T ≡ {h ∈ L2
µ :
∫
h(x)s(x)dµ(x) = 0} , (A.52)

and note that by Proposition 3.2.3 in Bickel et al. (1993) we have Ḋ ⊆ T. For the reverse inclusion, pick h ∈ T
and let Ψ : R → (0,∞) be continuously differentiable, with Ψ(0) = Ψ′(0) = 1 and Ψ, Ψ′ and Ψ′/Ψ bounded. For
s ≡

√
dQ/dµ, define a parametric family of distributions to be pointwise given by:

h2
η(x) ≡ b(η)s2(x)Ψ

(2ηh(x)
s(x)

)
b(η) ≡

[ ∫
Ψ
(2ηh(x)
s(x)

)
dQ(x)

]−1

. (A.53)

Employing Proposition 2.1.1 in Bickel et al. (1993) it is straightforward to verify η 7→ hη is a curve in L2
µ such that

h0 = s. Further note that since Q is open relative to Mµ there exists a neighborhood N(Q) ⊆M in the τ -topology
such that N(Q) ∩Mµ ⊆ Q. Let Qη satisfy hη =

√
dQη/dµ and notice 2−

1
2 ‖hη − s‖L2

µ
equals the Hellinger distance

between Qη and Q. Since convergence with respect to the Hellinger distance implies convergence with respect to the
τ -topology, it follows that there is a neighborhood N ⊆ R of 0 such that Qη ∈ N(Q) ∩Mµ ⊆ Q for all η ∈ N . We
conclude η 7→ hη is a regular parametric submodel. Moreover, by direct calculation we also have:

ḣ0(x) =
1
2
b(0)s2(x)Ψ′(0)2h(x)

s(x)s(x)
+

1
2
b′(0)s2(x)Ψ(0)

s(x)
= h(x) , (A.54)

where we have exploited that by the dominated convergence theorem b′(0) = 2
∫

Ψ′(0)h(x)s(x)dµ(x) = 0 due to
h ∈ T. Hence, from (A.54) we conclude that h ∈ Ḋ and therefore that T = Ḋ, which establishes the Lemma.

Theorem A.1. Let Assumptions 3.2, 3.3, 3.4, 3.5, hold and P ∈ P. Then, the tangent space of S at s ≡
√
dP/dµ

is given by Ṡ = {h ∈ L2
µ :
∫
h(x)s(x)dµ(x) = 0}.

Proof: The claim follows from Assumption 3.3(i) implying 4.2(i), Lemma A.16 and Lemmas A.2, A.8, Corollary A.3,
and P ∈ P satisfying Assumption 3.6(ii) implying that P is open in Mµ ≡ {Q ∈M : Q� µ}.

Theorem A.2. If Assumptions 3.2, 3.3, 3.4 and 3.5 hold, then the mapping ρ : P → C(Sdθ ) pointwise defined by
ρ(P ) = ν(·,Θ0(P )) is weak-pathwise differentiable at any P ∈ P. Moreover, for s ≡

√
dP/dµ and λ(p,Q) as defined

in (A.29), the derivative ρ̇ : Ṡ→ C(Sdθ ) satisfies:

ρ̇(ḣ0)(p) = 2λ(p, P )′∇F (
∫
m(x, θ∗(p))dP (x))

∫
m(x, θ∗(p))ḣ0(x)s(x)dµ(x) ,

where θ∗ : Sdθ → Θ is Borel measurable and satisfies θ∗(p) ∈ Ξ(p, P ) (as in (A.24)) for all p ∈ Sdθ .
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Proof: The existence of a Borel measurable θ∗ : Sdθ → Θ satisfying θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ follows from
Lemma A.13. Moreover, notice that indeed ρ̇(ḣ0) ∈ C(Sdθ ) for all ḣ0 ∈ Ṡ as implied by Lemmas A.14 and A.15.
We next establish that ρ̇ : Ṡ → C(Sdθ ) is a continuous linear operator and then verify it is indeed the derivative of
ρ : P→ C(Sdθ ). Linearity is immediate, while continuity follows by noting that by the Cauchy-Schwarz inequality:

sup
‖ḣ0‖L2

µ
=1

‖ρ̇(ḣ0)‖∞

≤ sup
‖ḣ0‖L2

µ
=1

sup
p∈Sdθ

{2‖λ(p, P )‖ × sup
v∈V0

‖∇F (v)‖F ×
√
dm sup

(x,θ)∈X×Θ

‖m(x, θ)‖ × ‖ḣ0‖L2
µ
× ‖s‖L2

µ
} <∞ , (A.55)

where we exploited P ∈ P satisfies Assumption 3.6(iii), Lemma A.11, Assumptions 3.4(i), 3.5(ii) and ‖s‖L2
µ

= 1.

In order to show ρ̇ : Ṡ→ C(Sdθ ) is the weak derivative of ρ : P→ C(Sdθ ) at P we need to establish that:

lim
η0→0

∫
Sdθ
{ν(p,Θ0(Pη0))− ν(p,Θ0(P ))

η0
− ρ̇(ḣ0)(p)}dB(p) = 0 (A.56)

for all curves η 7→ Pη in P with h0 = s and all finite Borel measures B on Sdθ . However, by the mean value theorem:

lim
η0→0

∫
Sdθ

ν(p,Θ0(Pη0))− ν(p,Θ0(P ))
η0

dB(p) = lim
η0→0

∫
Sdθ

∂

∂η
ν(p,Θ0(Pη))

∣∣∣
η=η̄(p,η0)

dB(p)

=
∫

Sdθ

∂

∂η
ν(p,Θ0(Pη))

∣∣∣
η=0

dB(p) =
∫

Sdθ
ρ̇(ḣ0)(p)dB(p) , (A.57)

where the first equality holds at each p for some η̄(p, η0) a convex combination of η0 and 0. The second equality
in turn follows by Lemma A.15 justifying the use of the dominated convergence theorem, while the final equality
follows by Lemma A.14 and the definition of ρ̇ : Ṡ→ C(Sdθ ). Therefore, from (A.57), (A.56) is established.

Proof of Theorem 3.2: We employ the framework in Chapter 5.2 in Bickel et al. (1993). Let B ≡ C(Sdθ ) and B∗

denote the set of finite Borel measures on Sdθ , which by Corollary 14.15 in Aliprantis and Border (2006) is the dual
space of B. Let s ≡

√
dP/dµ and ρ : P → B be pointwise given by ρ(P ) ≡ ν(·,Θ0(P )), which has pathwise weak

derivative ρ̇ at P by Theorem A.2. For p 7→ θ∗(p) as in Lemma A.13 and any B ∈ B∗ then let:

ρ̇T (B)(x) ≡
∫

Sdθ
2λ(p, P )′H(θ∗(p)){m(x, θ∗(p))− E[m(Xi, θ

∗(p))]}s(x)dB(p) . (A.58)

We first show that ρ̇T : B∗ → Ṡ is the adjoint of ρ̇ : Ṡ → B. Towards this end we establish that: (i) ρ̇T (B) is well
defined for any B ∈ B∗, (ii) ρ̇T (B) ∈ Ṡ and finally (iii) ρ̇T is the adjoint of ρ̇.

By Assumption 3.4(ii), Lemma A.13 and Lemmas 4.51 and 4.52 in Aliprantis and Border (2006) the function
(x, p) 7→ m(x, θ∗(p)) is jointly measurable and hence so is p 7→ E[m(Xi, θ

∗(p))]. Similarly, p 7→ H(θ∗(p)) is measurable
by continuity of θ 7→ H(θ) (see (A.28)) and Lemma A.13, while p 7→ λ(p, P ) and x 7→ s(x) are trivially measurable by
Lemma A.12 and s ∈ L2

µ. The joint measurability of (p, x) 7→ (λ(p, P ), H(θ∗(p)),m(x, θ∗(p)), E[m(Xi, θ
∗(p))], s(x))

in RdF ×RdF×dm ×Rdm ×Rdm ×R then follows from Lemma 4.49 in Aliprantis and Border (2006) and hence:

(p, x) 7→ 2λ(p, P )′H(θ∗(p)){m(x, θ∗(p))− E[m(Xi, θ
∗(p))]}s(x) (A.59)

is jointly measurable by continuity of the composition. We conclude ρ̇T (B) is a well defined measurable function for
all B ∈ B∗. Moreover, for |B| the total variation of B, P ∈ P, Lemma A.11 and

∫
s2(x)dµ(x) = 1 imply:∫

X
(ρ̇T (B)(x))2dµ(x) ≤ sup

p∈Sdθ
16‖λ(p, P )‖2 × sup

v∈V0

‖∇F (v)‖2F × sup
(x,θ)∈X×Θ

‖m(x, θ)‖2 × |B|(Sdθ ) <∞ , (A.60)

which verifies ρ̇T (B) ∈ L2
µ for all B ∈ B∗. Similarly, since s2 = dP/dµ, exchanging the order of integration yields:∫

X
ρ̇T (B)(x)s(x)dµ(x) = 2

∫
X

∫
Sdθ

λ(p, P )′H(θ∗(p)){m(x, θ∗(p))− E[m(Xi, θ
∗(p))]}dB(p)dP (x) = 0 . (A.61)
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Therefore, by Theorem A.1 and (A.61) we conclude ρ̇T (B) ∈ Ṡ for all B ∈ B∗. In addition, we note that since∫
Sdθ

ρ̇(h)(p)dB(p) =
∫
X
h(x)ρ̇T (B)(x)dµ(x) (A.62)

by Theorem A.1 implying
∫
h(x)s(x)dµ(x) = 0 for any h ∈ Ṡ, we conclude ρ̇T : B∗ → Ṡ is the adjoint of ρ̇ : Ṡ→ B.

Finally note Theorem A.1, Theorem A.2 and Theorem 5.2.1 in Bickel et al. (1993) yield:

Cov(
∫

Sdθ
G(p)dB1(p),

∫
Sdθ
G(q)dB2(q)) =

1
4

∫
X
ρ̇T (B1)(x)ρ̇T (B2)(x)dµ(x)

=
∫

Sdθ

∫
Sdθ

λ(p, P )′H(θ∗(p))Ω(θ∗(p), θ∗(q))H(θ∗(q))′λ(q, P )dB1(p)dB2(q) (A.63)

for any B1, B2 ∈ B∗, with the second equality following from s2 = dP/dµ and reversing the order of integration.
Letting B1 and B2 equal the degenerate probability measures at p1 and p2 in (A.63) then concludes the proof.

Appendix B - Proof of Theorems 4.1, 4.2 and Corollary 4.1

In this Appendix we establish Theorems 4.1 and 4.2. The proofs of Theorem 4.2 and Corollary 4.1 are self
contained. The proof of Theorem 4.1, however, requires multiple steps, which we outline below.

Step 1: We first establish P̂n is consistent for P under the τ -topology (Lemma B.5), and that each neighborhood in
the τ -topology contains a convex open set (Lemma B.2), which will enable us to employ the mean value theorem.

Step 2: Lemma B.3 shows the support function is appropriately differentiable at P , which will enable us to establish:

√
n{ν(p,Θ0(P̂n))− ν(p,Θ0(P ))} =

√
nλ(p, P̂n,τ0(p))′∇F (

∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫
m(x, θ̃(p))(dP̂n(x)− dP (x))

by the mean value theorem, where P̂n,τ = τP̂n+ (1− τ)P , τ0 : Sdθ → [0, 1] and θ̃(p) ∈ Ξ(p, P̂n,τ0(p)) for all p ∈ Sdθ .

Step 3: In Lemma B.8 we exploit equicontinuity (Lemma B.1) to further show that uniformly in p ∈ Sdθ

√
nλ(p, P )′∇F (

∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫
m(x, θ̃(p))(dP̂n(x)− dP (x))

=
√
nλ(p, P )′∇F (

∫
m(x, θ∗(p))dP (x))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x)) + op(1) ,

where θ∗(p) ∈ Ξ(p, P ). A key complication is that Ξ(p, P ) and Ξ(p, P̂n,τ0(p)) may not be singleton valued. This
problem is addressed employing Lemmas B.4 and B.7.

Step 4: Lemma B.9 then verifies Theorem 4.1(ii) using Steps 1, 2 and 3, and continuity of Q 7→ λ(p,Q). Theorem
4.1(iii) is immediate from Lemma B.9 and Lemma B.10, which shows stochastic equicontinuity.

Lemma B.1. Let {Wi, Xi}ni=1 be an i.i.d. sample with Wi ∈ R independent of Xi and E[W 2
i ] < ∞, and define

F ≡ {f : X ×R→ R : f(x,w) = wm(x, θ), θ ∈ Θ}. If Assumptions 3.2 and 3.4(ii) hold, then F is Donsker.

Proof: For any θ1, θ2 ∈ Θ, the Cauchy-Schwarz inequality and the mean value theorem imply that

sup
x∈X
|w(m(i)(x, θ1)−m(i)(x, θ2))| ≤ sup

(x,θ)∈X×Θ

‖∇θm(x, θ)‖F × ‖θ1 − θ2‖ × |w| = G(w)‖θ1 − θ2‖ , (B.1)

where the equality holds for G(w) ≡M |w| for some constant M due to Assumption 3.4(ii). It follows that the class
F is Lipschitz in θ ∈ Θ and therefore by Theorem 2.7.11 in van der Vaart and Wellner (1996) we conclude that:

N[ ](2ε‖G‖L2 ,F , ‖ · ‖L2) ≤ N(ε,Θ, ‖ · ‖) . (B.2)
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Letting D = diam(Θ) and u = ε/2‖G‖L2 , a change of variables and result (B.2) then allow us to conclude that:∫ ∞
0

√
logN[ ](ε,F , ‖ · ‖L2)dε = 2‖G‖L2

∫ ∞
0

√
logN[ ](2u‖G‖L2 ,F , ‖ · ‖L2)du

≤ 2‖G‖L2

∫ ∞
0

√
N(u,Θ, ‖ · ‖)du ≤ 2‖G‖L2

∫ D

0

√
dθ log(D/u)du <∞ , (B.3)

where the final inequality holds due to N(u,Θ, ‖ · ‖) ≤ (diam(Θ)/u)dθ . Since ‖G‖2L2 = M2E[W 2
i ] <∞, the claim of

the Lemma then follows from result (B.3) and Theorem 2.5.6 in van der Vaart and Wellner (1996).

Lemma B.2. For any neighborhood N(P ) ⊆M there is a convex neighborhood N ′(P ) ⊆M with N ′(P ) ⊆ N(P ).

Proof: Let Ms denote the set of signed, finite, countably additive Borel measures on X endowed with the τ -topology.
Note that M ⊂Ms and that Ms is a topological vector space. For F the set of bounded scalar valued measurable
functions on X and every (f, ν) ∈ F ×Ms define pf : Ms → R by pf (ν) = |

∫
fdν|. The set of functionals

{pf}f∈F is then a family of seminorms on Ms that, by Lemma 5.76(2) in Aliprantis and Border (2006), generates
the τ -topology. Therefore, Theorem 5.73 in Aliprantis and Border (2006) establishes that (Ms, τ) is a locally convex
topological vector space. Moreover, by Lemma 2.53 in Aliprantis and Border (2006), the τ -topology in M is the
relative topology on M induced by (Ms, τ). Hence, letting No(P ) denote the interior of N(P ) (relative to M), we
obtain that No(P ) = Ns(P ) ∩M for some open set Ns(P ) ⊆ Ms. However, since (Ms, τ) is locally convex, there
exists an open (in Ms) convex neighborhood of P with N ′s(P ) ⊆ Ns(P ). Defining N ′(P ) = N ′s(P ) ∩M we obtained
the desired result by convexity of M.

Lemma B.3. Let Assumptions 3.2, 3.3, 3.4, 3.5 hold and P ∈ P. For any Q ∈M define Qτ ≡ τQ+ (1− τ)P and
Ξ(p,Q) as in (A.24). Then, there is N(P ) ⊆M such that for all (Q, p, τ0) ∈ N(P )× Sdθ × [0, 1]:

∂

∂τ
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) for any θ∗ ∈ Ξ(p,Qτ0) .

Proof: First observe that by Lemma B.2 we may without loss of generality assume neighborhoods are convex. Hence,
if Q ∈ N(P ), then Qτ ∈ N(P ) for all τ ∈ [0, 1]. Since τ 7→ F (

∫
m(x, θ)dQτ (x)) is continuously differentiable in τ in

a neighborhood of P by Lemma A.2 and Assumption 3.5, Lemma A.9 and Corollary 5 in Milgrom and Segal (2002)
imply that for Q in a neighborhood of P the function τ 7→ ν(p,Θ0(Qτ )) is directionally differentiable with:

∂

∂τ+
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= max
θ∗∈Ξ(p,Qτ0 )

λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) (B.4)

∂

∂τ−
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= min
θ∗∈Ξ(p,Qτ0 )

λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) (B.5)

where ∂
∂τ+

and ∂
∂τ−

denote the right and left derivatives respectively. By Lemma A.10, however, for every 1 ≤ i ≤ dF
such that λ(i)(p,Qτ0) 6= 0 we must have θ(j)

1 = θ
(j)
2 for all j ∈ Si and θ1, θ2 ∈ Ξ(p,Qτ0). Therefore, since Aθ does not

depend on τ , we immediately can conclude from (3) (4), and results (B.4) and (B.5) that:

∂

∂τ+
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= max
θ∗∈Ξ(p,Qτ0 )

∑
i:λ(i)(p,Qτ0 )6=0

λ(i)(p,Qτ0)
∂

∂τ
F

(i)
S (
∫
mS(x, θ∗)dQτ (x))

∣∣∣
τ=τ0

= min
θ∗∈Ξ(p,Qτ0 )

∑
i:λ(i)(p,Qτ0 ) 6=0

λ(i)(p,Qτ0)
∂

∂τ
F

(i)
S (
∫
mS(x, θ∗)dQτ (x))

∣∣∣
τ=τ0

=
∂

∂τ−
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

. (B.6)

Therefore, we conclude from (B.6) that (B.4) and (B.5) agree, and the Lemma follows.

Lemma B.4. Let N(P ) ⊆ M be a neighborhood of P and Γ : Sdθ × N(P ) → Rk be an upper hemicontinuous
correspondence. Then for every ε > 0, there exists a δ > 0 and neighborhood N ′(P ) ⊆ N(P ) such that:

sup
‖p−p̃‖<δ

sup
Q∈N ′(P )

sup
γ∈Γ(p,Q)

inf
γ̃∈Γ(p̃,P )

‖γ − γ̃‖ < ε .
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Proof: Fix ε > 0, and for any ζ > 0 and (p,Q) ∈ Sdθ ×N(P ) let Γζ(p,Q) ≡ {γ ∈ Rk : inf γ̃∈Γ(p,Q) ‖γ − γ̃‖ < ζ}, and
Nζ(p) ≡ {p̃ ∈ Sdθ : ‖p− p̃‖ < ζ}. Since the correspondence Γ : Sdθ ×N(P )→ Rk is upper hemicontinuous, for each
p ∈ Sdθ there is a ζ(p) > 0 and a neighborhood N(P |p) of P in M such that:

Γ(p̃, Q) ⊆ Γ
ε
2 (p, P ) (B.7)

for all (p̃, Q) ∈ Nζ(p)(p) × N(P |p). Since {Nζ(p)/2(p)}p∈Sdθ is an open cover of Sdθ , by compactness, there exists a
finite set {pi}Ki=1 such that {Nζ(pi)/2(pi)}Ki=1 is a subcover for Sdθ . Further let N ′(P ) ≡ N(P ) ∩ {

⋂K
i=1N(P |pi)},

and set δ ≡ min1≤i≤K ζ(pi)/2. Then note that if p ∈ Nζ(pi)/2(pi) and ‖p− p̃‖ < δ, then p, p̃ ∈ Nζ(pi)(pi). Therefore,
since all p ∈ Sdθ satisfy p ∈ Nζ(pi)/2(pi) for some 1 ≤ i ≤ K and N ′(P ) ⊆ N(P |pi) for all 1 ≤ i ≤ K, we obtain

sup
‖p−p̃‖<δ

sup
Q∈N ′(P )

sup
γ∈Γ(p,Q)

inf
γ̃∈Γ(p̃,P )

‖γ − γ̃‖

≤ max
1≤i≤K

sup
p,p̃∈Nζ(pi)(pi)

sup
Q∈N(P |pi)

sup
γ∈Γ(p,Q)

inf
γ̃∈Γ(p̃,P )

‖γ − γ̃‖ ≤ max
1≤i≤K

sup
γ∈Γ

ε
2 (pi,P )

inf
γ̃∈Γ(pi,P )

2‖γ − γ̃‖ < ε , (B.8)

where in the second inequality we employed (B.7) and the third inequality follows by definition of Γ
ε
2 (p, P ).

Lemma B.5. Let Assumption 3.1 hold and P∗ denote inner probability. Then for every neighborhood N(P ) ⊆M:

lim inf
n→∞

P∗(P̂n ∈ N(P )) = 1 .

Proof: The empirical measure P̂n is not measurable in M with respect to the Borel σ-field generated by the τ -topology,
which is why we employ inner probabilities; see Chapter 6.2 in Dembo and Zeitouni (1998). Let F denote the set of
scalar bounded measurable functions on X and for every (f, ν) ∈ F ×M define pf : M→ R by pf (ν) ≡

∫
f(x)dν(x).

Since the τ -topology is the coarsest topology making ν 7→ pf (ν) continuous for all f ∈ F , it follows that for arbitrary
but finite K, {Ui}Ki=1 open sets in R, and {fi}Ki=1 ∈ F , the sets of the form:

K⋂
i=1

{Q ∈M : pfi(Q) ∈ Ui} (B.9)

constitute a base for the τ -topology. Thus, since P is in the interior of N(P ), there exists an integer K0, a finite
collection {fi}K0

i=1 and an ε > 0 such that
⋂K0
i=1{Q ∈M : |

∫
fi(x)(dP (x)− dQ(x))| ≤ ε} ⊆ N(P ). Hence,

lim inf
n→∞

P∗(P̂n ∈ N(P )) ≥ lim inf
n→∞

P ( max
1≤i≤K0

|
∫
fi(x)(dP̂n(x)− dP (x))| ≤ ε) = 1 , (B.10)

where the final equality follows from the law of large numbers since each fi is bounded.

Lemma B.6. If Assumptions 3.2, 3.4(i)-(ii), 3.5 hold and P ∈ P, then there exists a neighborhood N(P ) ⊆M of
P such that for any 1 ≤ i ≤ dF and any θ, θ̃ ∈ Θ satisfying θ(j) = θ̃(j) for all j ∈ Si it follows that:

∇F (i)
S (
∫
mS(x, θ)dQ(x))mS(x0, θ) = ∇F (i)

S (
∫
mS(x, θ̃)dQ(x))mS(x0, θ̃) for all (Q, x0) ∈ N(P )×X .

Proof: By Lemma A.2, there is a neighborhood N(P ) ⊆ M such that the set R(Q) ≡ {
∫
m(x, θ)dQ(x)}θ∈Θ is

compact and satisfies R(Q) ⊂ V0 for all Q ∈ N(P ). Letting R(Q)δ ≡ {v ∈ Rdm : inf ṽ∈R(Q) ‖v − ṽ‖ < δ}, it follows
from V0 being open by Assumption 3.5 that for each Q ∈ N(P ) there exists a δ0(Q) > 0 such that R(Q)δ0(Q) ⊂ V0.
Moreover, by Assumption 3.4(i), there exists an M < ∞ such that ‖m(x, θ)‖ ≤ M for all (x, θ) ∈ X × Θ. Hence,
we obtain that if c ∈ R satisfies |1 − c| < δ0(Q)/M , then {c

∫
m(x, θ)dQ(x)}θ∈Θ ⊆ R(Q)δ0(Q) ⊂ V0. Therefore,

Assumption 3.5(i) implies that for any Q ∈ N(P ), 1 ≤ i ≤ dF and θ, θ̃ ∈ Θ with θ(j) = θ̃(j) for all j ∈ Si:

∇F (i)
S (
∫
mS(x, θ)dQ(x))

∫
mS(x, θ)dQ(x) =

∂

∂c
{F (i)

S (c
∫
mS(x, θ)dQ(x))}

∣∣∣
c=1

=
∂

∂c
{F (i)

S (c
∫
mS(x, θ̃)dQ(x))}

∣∣∣
c=1

= ∇F (i)
S (
∫
mS(x, θ̃)dQ(x))

∫
mS(x, θ̃)dQ(x) . (B.11)
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Next, for any x0 ∈ X , let Dx0 ∈ M denote the probability measure satisfying Dx0(Xi = x0) = 1 and define
Mτ (Q,Dx0) ≡ (1 − τ)Q + τDx0 . Since Mτ (Q,Dx0) → Q in the total variation metric as τ → 0, it follows from
Q ∈ N(P ) and N(P ) being open, that there is a τ0 > 0 such that Q′ ≡ Mτ0(Q,Dx0) ∈ N(P ). Thus, Lemma B.2
implies Mτ (Q,Q′) ∈ N(P ) for all τ ∈ [0, 1], and hence for any 1 ≤ i ≤ dF and θ, θ̃ ∈ Θ with θ(j) = θ̃(j) for all j ∈ Si

τ0∇F (i)
S (
∫
mS(x, θ)dQ(x))

∫
mS(x, θ)(dDx0(x)− dQ(x)) =

∂

∂τ
{F (i)

S (
∫
mS(x, θ)dMτ (Q,Q′)(x))}

∣∣∣
τ=0

=
∂

∂τ
{F (i)

S (
∫
mS(x, θ̃)dMτ (Q,Q′)(x))}

∣∣∣
τ=0

= τ0∇F (i)
S (
∫
mS(x, θ̃)dQ(x))

∫
mS(x, θ̃)(dDx0(x)− dQ(x)) . (B.12)

Therefore, the claim of the Lemma follows from τ0 > 0 and results (B.11) and (B.12).

Lemma B.7. Let Assumptions 3.2, 3.4, 3.5 and 4.2(i) hold, P ∈ P, Ξ(p, P ) be as in (A.24) and θ∗ : Sdθ → Θ
satisfy θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ . Then, for each p ∈ Sdθ there exists a map Πp : Θ→ Rdθ such that

‖θ∗(p)−Πpθ‖ ≤ inf
θ̃∈Ξ(p,P )

√
dθ‖θ̃ − θ‖ (B.13)

for all θ ∈ Θ. In addition, there is a neighborhood N(P ) ⊆M such that for all (p,Q, x0, θ) ∈ Sdθ ×N(P )×X ×Θ

λ(p, P )′∇FS(
∫
mS(x, θ)dQ(x))mS(x0, θ) = λ(p, P )′∇FS(

∫
mS(x,Πpθ)dQ(x))mS(x0,Πpθ) . (B.14)

Proof: We first construct the map Πp : Θ→ Rdθ . To this end, for each p ∈ Sdθ we define the set:

I(p) ≡
⋃

i:λ(i)(p,P )6=0

Si , (B.15)

and for any θ ∈ Θ let Πp : Θ→ Rdθ satisfy (Πpθ)(j) = θ∗(p)(j) if j /∈ I(p), and (Πpθ)(j) = θ(j) if j ∈ I(p). Then,

‖θ∗(p)−Πpθ‖ ≤ max
j∈I(p)

√
dθ|θ∗(p)(j) − (Πpθ)(j)| ≤ inf

θ̃∈Ξ(p,P )

√
dθ‖θ̃ − θ‖ , (B.16)

where the first inequality follows from θ∗(p)(j) = (Πpθ)(j) for all j /∈ I(p), while the second inequality is the result
of θ∗(p)(j) = θ(j) for all θ ∈ Ξ(p, P ) and j ∈ I(p) by Lemma A.10, and θ(j) = (Πpθ)(j) for all j ∈ I(p). Moreover,
since for all 1 ≤ i ≤ dF such that λ(i)(p, P ) 6= 0 we have (Πpθ)(j) = θ(j) for all j ∈ Si, it follows from Lemma B.6
that there exists a neighborhood N(P ) ⊆M such that for all (p,Q, x0, θ) ∈ Sdθ ×N(P )×X ×Θ

λ(p, P )′∇FS(
∫
mS(x, θ)dQ(x))mS(x0, θ) =

∑
i:λ(i)(p,P )6=0

λ(i)(p, P )∇F (i)
S (
∫
mS(x,Πpθ)dQ(x))mS(x0,Πpθ)

= λ(p, P )′∇FS(
∫
mS(x,Πpθ)dQ(x))mS(x0,Πpθ) . (B.17)

Therefore, the claims of the Lemma follow from results (B.16) and (B.17).

Lemma B.8. Let {Wi, Xi}ni=1 be i.i.d. with Wi ∈ R independent of Xi and E[W 2
i ] <∞. Define P̂n,τ ≡ τP̂n + (1−

τ)P for any τ ∈ [0, 1] and Ξ(p,Q) as in (A.24). If Assumptions 3.1, 3.2, 3.4, 3.5, 4.2(i) hold, P ∈ P and PW and
P̂Wn are the population and empirical measures of (Xi,Wi), then uniformly in (p, τ) ∈ Sdθ × [0, 1] and θ ∈ Ξ(p, P̂n,τ ):

√
nλ(p, P )′∇FS(

∫
mS(x, θ)dP̂n,τ (x))

∫
wmS(x, θ)(dP̂Wn (x,w)− dPW (x,w))

=
√
nλ(p, P )′∇FS(

∫
mS(x, θ∗(p))dP (x))

∫
wmS(x, θ∗(p))(dP̂Wn (x,w)− dPW (x,w)) + op(1) (B.18)

where θ∗ : Sdθ → Θ is a Borel measurable mapping that satisfies θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ .

Proof: If N(P ) ⊆M is convex and P̂n ∈ N(P ), then P̂n,τ ∈ N(P ) for all τ ∈ [0, 1]. Therefore, by Lemmas A.2, A.7,
B.2 and B.5 we obtain that with inner probability tending to one {

∫
m(x, θ)dP̂n,τ}θ∈Θ ⊂ V0 and Ξ(p, P̂n,τ ) is well
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defined for all (p, τ) ∈ Sdθ × [0, 1]. Next, let Πp : Θ→ Rdθ be as in Lemma B.7, and note that by (B.13)

sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖Πpθ − θ∗(p)‖ ≤ sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

inf
θ̃∈Ξ(p,P )

√
dθ‖θ − θ̃‖ = op(1) , (B.19)

where the final result follows from Lemmas A.7, B.2 and B.5, and Lemma B.4 applied with Γ(p,Q) = Ξ(p,Q).
Moreover, since θ∗(p) ∈ Θ0(P ) for all p ∈ Sdθ , results (A.23) and (B.19) further imply that:

lim inf
n→∞

P (Πpθ ∈ Θ for all θ ∈ Ξ(p, P̂n,τ ) and (p, τ) ∈ Sdθ × [0, 1]) = 1 . (B.20)

Furthermore, by Lemmas B.2, B.5 and B.7, the map Πp : Θ→ Rdθ satisfies uniformly in (p, τ, θ) ∈ Sdθ × [0, 1]×Θ:

√
nλ(p, P )′∇FS(

∫
mS(x, θ)dP̂n,τ (x))

∫
wmS(x, θ)(dP̂Wn (x,w)− dPW (x,w))

=
√
nλ(p, P )′∇FS(

∫
mS(x,Πpθ)dP̂n,τ (x))

∫
wmS(x,Πpθ)(dP̂Wn (x,w)− dPW (x,w)) + op(1) . (B.21)

Next, observe that by Lemmas A.2, B.2 and B.5, it follows that for V0 as in Assumption 3.5 we have:

lim inf
n→∞

P (
∫
m(x, θ)dP̂n,τ (x) ∈ V0 for all (θ, τ) ∈ Θ× [0, 1]) = 1 . (B.22)

Assumption 3.2 and (A.3) imply E[mS(Xi, ·)] is uniformly continuous, and hence by (B.19), (B.20) and Lemma B.1:

sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖
∫
mS(x,Πpθ)dP̂n,τ (x)−

∫
mS(x, θ∗(p))dP (x)‖

≤ sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖
∫

(mS(x,Πpθ)−mS(x, θ∗(p)))dP (x)‖+ op(1) = op(1) . (B.23)

Thus, ∇F being uniformly continuous on V0 by Assumption 3.5(ii), (B.20), (B.22), (B.23) and Lemma A.11 imply:

sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

|λ(p, P )′(∇FS(
∫
mS(x,Πpθ)dP̂n,τ (x)) − ∇FS(

∫
mS(x, θ∗(p))dP (x)))| = op(1) . (B.24)

In addition, also observe that Lemma B.1 allows us to conclude that:

sup
θ∈Θ

√
n‖
∫
wm(x, θ)(dP̂Wn (x,w)− dPW (x,w))‖ = Op(1) . (B.25)

Therefore, from results (B.20), (B.24) and (B.25) we obtain that uniformly in (p, τ) ∈ Sdθ × [0, 1] and θ ∈ Ξ(p, P̂n,τ ):

√
nλ(p, P )′∇FS(

∫
mS(x,Πpθ)dP̂n,τ (x))

∫
wmS(x,Πpθ)(dP̂Wn (x,w)− dPW (x,w))

=
√
nλ(p, P )′∇FS(

∫
mS(x, θ∗(p))dP (x))

∫
wmS(x,Πpθ)(dP̂Wn (x,w)− dPW (x,w)) + op(1) . (B.26)

To conclude, we note that (B.19), (B.20) and Lemma B.1 imply that for some deterministic sequence δn ↓ 0,

sup
p∈Sdθ

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

√
n‖
∫
w(mS(x,Πpθ)−mS(x, θ∗(p)))(dP̂Wn (x,w)− dPW (x,w))‖

≤ sup
‖θ1−θ2‖<δn

√
n‖
∫
w(mS(x, θ1)−mS(x, θ2))(dP̂Wn (x,w)− dPW (x,w))‖+ op(1) = op(1) . (B.27)

Moreover, note that since P ∈ P satisfies Assumption 3.6(iii), it follows from Lemma A.11 and Assumption 3.5(ii)
that ‖λ(p, P )′∇FS(

∫
mS(x, θ∗(p))dP (x))‖ is uniformly bounded in p ∈ Sdθ . Hence, by (B.27) and Cauchy-Schwarz,

√
nλ(p, P )′∇FS(

∫
mS(x, θ∗(p))dP (x))

∫
wmS(x,Πpθ)(dP̂Wn (x,w)− dPW (x,w))

=
√
nλ(p, P )′∇FS(

∫
mS(x, θ∗(p))dP (x))

∫
wmS(x, θ∗(p))(dP̂Wn (x,w)− dPW (x,w)) , (B.28)
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uniformly in (p, τ) ∈ Sdθ × [0, 1] and θ ∈ Ξ(p, P̂n,τ ). The Lemma then follows from (B.21), (B.26) and (B.28).

Lemma B.9. Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 hold, P ∈ P and Ξ(p, P ) be as in (A.24). Then:

sup
p∈Sdθ

|
√
n{(ν(p,Θ0(P̂n))− ν(p,Θ0(P )))− λ(p, P )′H(θ∗(p))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x))}| = op(1) ,

where θ∗ : Sdθ → Θ is a Borel measurable mapping satisfying θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ .

Proof: For every τ ∈ [0, 1] define P̂n,τ ≡ τP̂n + (1 − τ)P and notice that P̂n,0 = P and P̂n,1 = P̂n. Employing the
mean value theorem, which is valid by Lemmas B.2, B.3 and B.5, we can then conclude that uniformly in p ∈ Sdθ :
√
n{ν(p,Θ0(P̂n))− ν(p,Θ0(P ))}

=
√
nλ(p, P̂n,τ0(p))′∇F (

∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫
m(x, θ̃(p))(dP̂n(x)− dP (x)) + op(1) (B.29)

for some τ0 : Sdθ → (0, 1) and θ̃ : Sdθ → Θ such that θ̃(p) ∈ Ξ(p, P̂n,τ0(p)) for all p ∈ Sdθ . Next, fix ε > 0 and note that
by Lemmas A.9 and A.12 there exists a neighborhood N(P ) ⊆ M such that the correspondence (p,Q) 7→ λ(p,Q)
is upper hemicontinuous and singleton valued for all (p,Q) ∈ Sdθ × N(P ). Applying Lemmas B.2 and B.4 with
Γ(p,Q) = λ(p,Q) then implies that there exists a convex neighborhood N ′(P ) ⊆ N(P ) ⊆M such that:

sup
p∈Sdθ

sup
Q∈N ′(P )

‖λ(p,Q)− λ(p, P )‖ < ε . (B.30)

Since N ′(P ) is convex, P̂n ∈ N ′(P ) implies P̂n,τ ∈ N ′(P ) for all τ ∈ [0, 1]. Therefore, we are able to conclude that:

lim inf
n→∞

P ( sup
p∈Sdθ

sup
τ∈[0,1]

‖λ(p, P̂n,τ )− λ(p, P )‖ < ε) ≥ lim inf
n→∞

P (P̂n ∈ N ′(P )) = 1 , (B.31)

where the final equality follows from Lemma B.5. Thus, result (B.22) and Assumption 3.5(ii), result (B.25) applied
with the random variable Wi = 1 almost surely, and results (B.29) and (B.31) in turn imply uniformly in p ∈ Sdθ :

√
n{ν(p,Θ0(P̂n))− ν(p,Θ0(P ))}

=
√
nλ(p, P )′∇F (

∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫
m(x, θ̃(p))(dP̂n(x)− dP (x)) + op(1)

=
√
nλ(p, P )′∇F (

∫
m(x, θ∗(p))dP (x))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x)) + op(1) , (B.32)

where the second equality follows from (3) and
∫
Aθ(dP̂n(x) − dP (x)) = 0 for all θ ∈ Θ, and Lemma B.8 applied

with the random variable Wi = 1 almost surely.

Lemma B.10. Let Assumptions 3.1, 3.2, 3.3, 3.4, 3.5 hold, P ∈ P, Ξ(p, P ) be as in (A.24) and θ∗ : Sdθ → Θ
satisfy θ∗(p) ∈ Ξ(p, P ) for all p ∈ Sdθ . Then the following class is Donsker in C(Sdθ ):

F ≡ {f : X → R : f(x) = λ(p, P )′H(θ∗(p))m(x, θ∗(p)) for some p ∈ Sdθ} .

Proof: For notational simplicity, let HS(θ) ≡ ∇FS(
∫
mS(x, θ)dP (x)), H(i)

S (θ) ≡ ∇F (i)
S (
∫
mS(x, θ)dP (x)), and:

Gn(p) ≡
√
nλ(p, P )′H(θ∗(p))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x)) . (B.33)

We first note that since λ(·, P ), m and H(·) are bounded by Lemma A.11, Assumption 3.4(i), Assumption 3.5(ii)
and P ∈ P satisfying Assumption 3.6(iii), it follows from the central limit theorem that for any p ∈ Sdθ

Gn(p) L→ N(0, σ2(p)) , (B.34)
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where σ2(p) ≡ Var(λ(p, P )′H(θ∗(p))m(Xi, θ
∗(p))). Moreover, also observe that since

∫
Aθ(dP̂n(x)− dP (x)) = 0,

Gn(p) =
√
nλ(p, P )′HS(θ∗(p))

∫
mS(x, θ∗(p))(dP̂n(x)− dP (x))

=
√
n

∑
i:λ(i)(p,P )6=0

λ(i)(p, P )H(i)
S (θ∗(p))

∫
mS(x, θ∗(p))(dP̂n(x)− dP (x)) . (B.35)

Thus, result (B.35), and Lemmas A.10 and B.6 imply Gn(p) is independent of how θ∗(p) ∈ Ξ(p, P ) is selected, and
hence so is the asymptotic variance σ2(p).

Note that in (B.34) it was argued that Gn(p) is bounded in p ∈ Sdθ , while identical arguments to those in (A.50)-
(A.51) show p 7→ Gn(p) is continuous with probability one. Hence, Gn ∈ C(Sdθ ) almost surely and to establish the
Lemma we only need to show the asymptotic uniform equicontinuity of Gn. Equivalently, we aim to show

sup
‖p−p̃‖<δn

|Gn(p)−Gn(p̃)| = op(1) , (B.36)

for any sequence δn ↓ 0. First observe that compactness of Sdθ and Lemma A.12 imply λ(·, P ) : Sdθ → RdF is
uniformly continuous. Therefore, by Assumption 3.5(ii), P ∈ P satisfying Assumption 3.6(iii) and result (B.25):

sup
‖p−p̃‖<δn

√
n|(λ(p, P )− λ(p̃, P ))′HS(θ∗(p̃))

∫
mS(x, θ∗(p̃))(dP̂n(x)− dP (x))|

≤ sup
‖p−p̃‖<δn

‖λ(p, P )− λ(p̃, P )‖ × sup
v∈V0

‖∇F (v)‖F × sup
θ∈Θ
‖
√
n

∫
m(x, θ)(dP̂n(x)− dP (x))‖ = op(1) . (B.37)

Hence, by results (B.35) and (B.37) we obtain by Lemma B.7 that for some mapping Πp : Θ→ Rdθ satisfying (B.14):

sup
‖p−p̃‖<δn

|Gn(p)−Gn(p̃)|

≤ sup
‖p−p̃‖<δn

√
n|λ(p, P )′

∫
(HS(θ∗(p))mS(x, θ∗(p))−HS(θ∗(p̃))mS(x, θ∗(p̃)))(dP̂n(x)− dP (x))|+ op(1)

= sup
‖p−p̃‖<δn

√
n|λ(p, P )′

∫
(HS(θ∗(p))mS(x, θ∗(p))−HS(Πpθ

∗(p̃))mS(x,Πpθ
∗(p̃)))(dP̂n(x)− dP (x))|+ op(1)

(B.38)

Moreover, it also follows from Πp : Θ→ Rdθ satisfying condition (B.13), and Lemmas A.7 and B.4 that:

sup
‖p−p̃‖<δn

‖θ∗(p)−Πpθ
∗(p̃)‖ ≤ sup

‖p−p̃‖<δn
sup

θ̃∈Ξ(p̃,P )

inf
θ∈Ξ(p,P )

√
dθ‖θ − θ̃‖ = o(1) . (B.39)

Therefore, results (A.23) and (B.39) imply that for δn sufficiently small, Πpθ
∗(p̃) ∈ Θ for all p̃, p ∈ Sdθ with

‖p̃− p‖ < δn. Hence, from (B.38) and (B.39) we conclude that for some sequence γn → 0 depending on δn,

sup
‖p−p̃‖<δn

|Gn(p)−Gn(p̃)|

≤ sup
p∈Sdθ

sup
‖θ−θ̃‖<γn

√
n|λ(p, P )′

∫
(HS(θ)mS(x, θ)−HS(θ̃)mS(x, θ̃))(dP̂n(x)− dP (x))|+ op(1) , (B.40)

where θ, θ̃ are restricted to lie in Θ. However, note
∫
m(x, ·)dP (x) : Θ→ Rdm is uniformly continuous by (A.3) and

Assumption 3.2(i), and therefore Assumption 3.5(ii) and P ∈ P satisfying Assumption 3.6(iii) imply θ 7→ HS(θ) is
uniformly continuous. Therefore, λ(·, P ) being bounded by Lemma A.11 and result (B.25) imply:

sup
p∈Sdθ

sup
‖θ−θ̃‖<γn

√
n|λ(p, P )′(HS(θ)−HS(θ̃))

∫
mS(x, θ̃)(dP̂n(x)− dP (x))|

≤ sup
p∈Sdθ

‖λ(p, P )‖ × sup
‖θ−θ̃‖<γn

‖HS(θ)−HS(θ̃)‖F × sup
θ∈Θ
‖
√
n

∫
m(x, θ)(dP̂n(x)− dP (x))‖ = op(1) . (B.41)
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In turn, it also follows from HS(θ) being uniformly bounded in θ ∈ Θ due to it being continuous and Assumption
3.2(i), Lemma A.11 implying ‖λ(p, P )‖ is uniformly bounded in p ∈ Sdθ and Lemma B.1 that:

sup
p∈Sdθ

sup
‖θ−θ̃‖<γn

√
n|λ(p, P )′HS(θ)

∫
(mS(x, θ)−mS(x, θ̃))(dP̂n(x)− dP (x))|

≤ sup
p∈Sdθ

‖λ(p, P )‖ × sup
θ∈Θ
‖HS(θ)‖F × sup

‖θ−θ̃‖<γn
‖
√
n

∫
(mS(x, θ)−mS(x, θ̃))(dP̂n(x)− dP (x))‖ = op(1) (B.42)

Hence, we conclude from (B.40), (B.41) and (B.42) that (B.36) holds, which establishes the asymptotic uniform
equicontinuity of Gn. In turn, because Sdθ is totally bounded under ‖ · ‖, the process Gn is asymptotically tight in
C(Sdθ ) by Theorem 1.5.7 in van der Vaart and Wellner (1996). The Lemma then follows from the convergence of the
marginals and Theorem 1.5.4, Addendum 1.5.8 and Theorem 1.3.10 in van der Vaart and Wellner (1996).

Proof of Theorem 4.1: By Lemma B.9, {ν(·,Θ0(P̂n))} has an influence function ψ : X → C(Sdθ ) given by:

ψ(x) ≡ λ(·, P )′H(θ∗(·)){m(x, θ∗(·))− E[m(Xi, θ
∗(·))]} (B.43)

where θ∗ : Sdθ → Θ with θ∗(p) ∈ Ξ(p, P ), which establishes (ii). By Theorem 3.2, x 7→ ψ(x) is the efficient influence
function, and hence regularity of {ν(·,Θ0(P̂n))} follows from Lemma B.10 and Theorem 18.1 in Kosorok (2008),
which establishes (i). The stated convergence in distribution is then immediate from Lemmas B.9 and B.10, while
the limiting process having the efficient covariance kernel is a direct result of the characterization of I−1(p1, p2)
obtained in Theorem 3.2, which establishes (iii).

Proof of Theorem 4.2: Since L : C(Sdθ ) → R+ is a subconvex function and {Tn} is a regular estimator, we obtain
from Theorems A.1, A.2 and Proposition 5.2.1 in Bickel et al. (1993) that:

lim inf
n→∞

E[L(
√
n{Tn − ν(·,Θ0(P ))})] ≥ E[L(G0)] . (B.44)

Next, we aim to show {E[L(
√
n{ν(·,Θ0(P̂n))−ν(·,Θ0(P ))})]} attains the lower bound. Towards this end, define:

Gn(p) ≡
√
n{ν(p,Θ0(P̂n))− ν(p,Θ0(P ))} , (B.45)

and note Gn ∈ C(Sdθ ) almost surely. Since L is continuous on D0 ⊆ C(Sdθ ) and P (G0 ∈ D0) = 1, Theorem 4.1
and Theorem 1.3.6 in van der Vaart and Wellner (1996) imply L(Gn) L→ L(G0) (in R). Hence, since a 7→ a ∧ C is
continuous and bounded on R for any constant C > 0, the Portmanteau Theorem yields:

lim sup
C↑∞

lim sup
n→∞

|E[L(Gn) ∧ C]− E[L(G0) ∧ C]| = 0 . (B.46)

Moreover, L(G0) ≤ M0 + M1‖G0‖κ∞ by hypothesis, and therefore Proposition A.2.3 in van der Vaart and Wellner
(1996) yields E[L(G0)] ≤M0 +M1E[‖G0‖κ∞] <∞. Therefore, by the monotone convergence theorem:

lim sup
C↑∞

|E[L(G0)]− E[L(G0) ∧ C]| = 0 . (B.47)

By Assumption 3.5(ii) and Lemmas A.2, A.11 and B.2 there exists a convex neighborhood N(P ) ⊆ M such that:
(i) ∇F (

∫
m(x, θ)dQ(x)) is uniformly bounded in (θ,Q) ∈ Θ × N(P ); (ii) λ(p,Q) is uniformly bounded on (p,Q) ∈

Sdθ × N(P ); and (iii) the conditions of Lemma B.3 are satisfied for all Q ∈ N(P ). For every τ ∈ [0, 1] define
P̂n,τ ≡ τP̂n + (1− τ)P and note that if P̂n ∈ N(P ) then (B.29) holds so that uniformly in p ∈ Sdθ :

Gn = ∆̃n ∆̃n(p) ≡ λ(p, P̂n,τ0(p))′∇F (
∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫ √
nm(x, θ̃(p))(dP̂n(x)− dP (x)) (B.48)

for some τ0 : Sdθ → (0, 1) and θ̃ : Sdθ → Θ with θ̃(p) ∈ Ξ(p, P̂n,τ0(p)) for Ξ(p,Q) as in (A.24) (and set ∆̃n = 0 if
P̂n /∈ N(P )). By compactness of Θ, definition of N(P ) and m being bounded by Assumption 3.4(i), we must have

max{‖Gn‖∞, ‖∆̃n‖∞} ≤
√
nC0 , (B.49)
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for some C0 > 0. Therefore, L(f) ≤M0 +M1‖f‖κ∞ for all f ∈ C(Sdθ ), (B.48) holding if P̂n ∈ N(P ) and (B.49) yield:

lim sup
n→∞

|E[L(Gn)]− E[L(∆̃n)]| ≤ lim sup
n→∞

2(M0 +M1C
κ
0 n

κ
2 )P (P̂n /∈ N(P )) . (B.50)

However, as shown in (B.10), there exists a finite collection {fj}K0
j=1 of bounded functions and an ε > 0 such that

{Q ∈M : max1≤j≤K0 |
∫
fj(x)(dQ(x)− dP (x))| ≤ ε} ⊆ N(P ). Therefore, (B.50) and Bernstein’s inequality imply:

lim sup
n→∞

|E[L(Gn)]− E[L(∆̃n)]| ≤ 2(M0 +M1C
κ
0 ) lim sup

n→∞

K0∑
j=1

n
κ
2 P (|

∫
fj(x)(dP̂n(x)− dP (x))| > ε) = 0 . (B.51)

From result (B.51) and applying Cauchy-Schwarz and Markov’s inequalities we can then conclude that:

lim sup
n→∞

|E[L(Gn)]− E[L(Gn) ∧ C]| = lim sup
n→∞

|E[L(∆̃n)]− E[L(∆̃n) ∧ C]|

≤ lim sup
n→∞

E[L(∆̃n)1{L(∆̃n) > C}] ≤ lim sup
n→∞

1
C
E[L2(∆̃n)] . (B.52)

By construction of N(P ), there exists a compact set C ⊂ Rdm such that λ(p,Q)′∇F (
∫
m(x, θ)dQ(x)) ∈ C for all

(p, θ,Q) ∈ Sdθ × Θ × N(P ). Let G ≡ {g : X → R : g(x) = c′m(x, θ) for some (c, θ) ∈ C × Θ} and note that by
Assumption 3.4(i) and compactness of C, there exists a C1 > 0 such that supx∈X |g(x)| ≤ C1 for all g ∈ G. Moreover,
for any (c1, θ1) ∈ C×Θ and (c2, θ2) ∈ C×Θ we also obtain by Assumptions 3.4(i)-(ii) that:

sup
x∈X
|c′1m(x, θ1)− c′2m(x, θ2)|

≤ { sup
(x,θ)∈X×Θ

‖m(x, θ)‖+ sup
(x,θ)∈X×Θ

‖∇θm(x, θ)‖F × sup
c∈C
‖c‖} × {‖c1 − c2‖+ ‖θ1 − θ2‖} , (B.53)

and hence the class G is Lipschitz in (θ, c) ∈ Θ×C. Letting ‖ · ‖+ ‖ · ‖ denote the sum of the Euclidean norms on
Rdθ and Rdm , we then obtain by Theorem 2.7.11 in van der Vaart and Wellner (1996), that:

N[ ](2εC1,G, ‖ · ‖∞) ≤ N(ε,Θ×C, ‖ · ‖+ ‖ · ‖) . ε−(dm+dθ) . (B.54)

Consequently, since ∆̃n = 0 whenever P̂n /∈ N(P ), the inequality L(f) ≤M0 +M1‖f‖κ∞ for all f ∈ C(Sdθ ) implies:

lim sup
n→∞

E[L2(∆̃n)] ≤ lim sup
n→∞

{2M2
0 + 2M2

1E[‖∆̃n‖2κ∞ ]}

≤ lim sup
n→∞

{2M2
0 + 2M2

1E[sup
g∈G
| 1√
n

n∑
i=1

{g(Xi)− E[g(Xi)]}|2κ]}

. 2M2
0 + (

∫ 1

0

√
1 + logN[ ](εC1,G, ‖ · ‖∞)dε)2κ (B.55)

where the third inequality follows from Theorem 2.14.1 in van der Vaart and Wellner (1996). Combining results
(B.52), (B.54) and (B.55), we can finally obtain:

lim sup
C↑∞

lim sup
n→∞

|E[L(Gn)]− E[L(Gn) ∧ C]| ≤ lim sup
C↑∞

lim sup
n→∞

1
C
E[L2(∆n)] = 0 . (B.56)

The claim of the Theorem then follows from results (B.46), (B.47) and (B.56).

Proof of Corollary 4.1: For any convex compact valued set Kn, Corollary 1.10 in Li et al. (2002) implies that
√
ndH(Kn,Θ0(P )) =

√
n‖ν(·,Kn)− ν(·,Θ0(P ))‖∞ , (B.57)

and in particular
√
ndH(Θ̂n,Θ0(P )) =

√
n‖ν(·,Θ0(P̂n))−ν(·,Θ0(P ))‖∞. Therefore, the claim of the Corollary follows

if we can verify the conditions of Theorem 4.2 under the loss function L̄ : C(Sdθ ) → R+ given by L̄(f) = L(‖f‖∞).
To this end, note L̄(f) = L(‖f‖∞) = L(‖ − f‖∞) = L̄(−f). Moreover, since L : R+ → R+ is subconvex, it follows
that 0 = L(0) ≤ L(a), and hence if L(a) = c then by convexity of {a : L(a) ≤ c} we must have L(λa) ≤ c for all
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λ ∈ [0, 1]. In particular, it follows that L : R+ → R+ is nondecreasing. Therefore, if L̄(f1) ≤ c and L̄(f2) ≤ c, then

L̄(λf1 + (1− λ)f2) = L(‖λf1 + (1− λ)f2‖∞) ≤ L(λ‖f1‖∞ + (1− λ)‖f2‖∞) ≤ c , (B.58)

where the first inequality follows from L being nondecreasing, and the second by subconvexity of L. It follows from
(B.58) that L̄ : C(Sdθ )→ R+ is subconvex. The other conditions on L̄ have been directly assumed, and the claim of
the Corollary follows from Theorem 4.2.

Appendix C - Proof of Theorem 4.3

The proof of Theorem 4.3 proceeds by: (i) Deriving the semiparametric efficiency bound, and (ii) Establishing
{ν|C(·,Θ0(P̂n))} attains the bound. The efficiency bound is derived in Theorem C.1, after verifying ν|C(·,Θ0(P )) is
weak-pathwise differentiable (Lemma C.4) and characterizing the tangent space (Lemma C.3). A key challenge in
the latter is showing P satisfying Assumption 4.1 does not affect the tangent space (Lemma C.2). The fact that
{ν|C(·,Θ0(P̂n))} attains the efficiency bound follows readily after characterizing its influence function (Lemma C.6).

Some of the derivations in this Appendix are similar to those in Appendices A and B. For conciseness, we provide
more succinct derivations but include references to previous instances where analogous arguments were employed.

Lemma C.1. Let SL ≡ {s ∈ L2
µ : s =

√
dP/dµ for some P ∈ PL}, and Assumptions 3.2, 3.4, 3.5 and 4.2(i)

hold. If η 7→ hη is a curve in SL, then there is a neighborhood N ⊆ R of 0 such that for all (p, η0) ∈ C × N ,
(p, η0) 7→ ∂

∂ην(p,Θ0(Pη))|η=η0 exists, satisfies (A.42) and is both bounded and continuous on C×N .

Proof: First note PL ⊆ P implies SL ⊆ S. Therefore, there is a neighborhood N1 ⊆ R of 0 such that (A.45) and
(A.46) hold for all (p, η0) ∈ Sdθ × N1. Since for any (p, η0) ∈ C × N1, Ξ(p, Pη0) is a singleton due to Pη0 ∈ PL, it
follows that (A.45) and (A.46) equal each other and hence ∂

∂ην(p,Θ0(Pη))|η=η0 exists and is given by (A.42) for all
(p, η0) ∈ C × N1. The existence of a neighborhood N2 ⊆ N1 such that (p, η0) 7→ ∂

∂ην(p,Θ0(Pη))|η=η0 is uniformly
bounded in (p, η0) ∈ C×N2 then follows from (A.48), Lemmas A.2 and A.11, and Assumptions 3.4(i) and 3.5(ii).

In order to establish continuity, note that Lemmas A.7 and A.12 imply there is a neighborhood N ⊆ N2 ⊆ R
such that (p, η0) 7→ λ(p, Pη0) and (p, η0) 7→ Ξ(p, Pη0) are continuous and upper hemicontinuous respectively on
(p, η0) ∈ Sdθ × N . Next, let (p0, η0) ∈ C × N and {(pn, ηn)}∞n=1 be a sequence such that (pn, ηn) → (p0, η0) and
(pn, ηn) ∈ C×N for all n. Since (pn, Pηn) ∈ C×PL for all 0 ≤ n <∞, Ξ(pn, Pηn) = {θ∗n} for some θ∗n ∈ Θ and by
upper hemicontinuity θ∗n → θ∗0 with Ξ(p0, Pη0) = {θ∗0}. Result (A.50) and continuity of (p, P ) 7→ λ(p, P ) then imply:

lim
n→∞

∂

∂η
ν(pn,Θ0(Pη))

∣∣∣
η=ηn

=
∂

∂η
ν(p0,Θ0(Pη))

∣∣∣
η=η0

(C.1)

due to ∂
∂ην(p,Θ0(Pη))|η=ηn satisfying (A.42) for all integer 0 ≤ n <∞.

Lemma C.2. If Assumptions 3.2, 3.4, 3.5, 4.2 hold and C is compact, then the following set is open in M:

ML ≡ {P ∈M : Assumptions 3.6(i)-(iv) and 4.1(i) hold} . (C.2)

Proof: The proof is by contradiction. Suppose there exists a P ∈ML such that N(P )  ML for all neighborhoods
N(P ) ⊆M of P . Let NP be the neighborhood system of P with direction V �W whenever V ⊆W , and recall that
Lemmas A.2 and A.8, Corollary A.3, and P ∈ML satisfying Assumption 3.6(ii) imply the set of P ∈M satisfying
Assumptions 3.6(i)-(iv) is open in M. Therefore, if the Lemma is false, then for A = NP there is a net {Qα}α∈A with
Qα → P such that for each α ∈ A: (i) Qα satisfies Assumption 3.6(i)-(iv), and (ii) there is a pα ∈ C with Ξ(pα, Qα)
(as in (A.24)) not a singleton. Furthermore, by arguing as in (A.13)-(A.15), there is a θα ∈ Ξ(pα, Qα) with:

A(θα, Qα) =
⋂

θ∈Ξ(pα,Qα)

A(θ,Qα) . (C.3)
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By compactness of C, finiteness of the number of constraints, and Lemma A.7, we can then pass to a subnet
{Qαβ , pαβ , θαβ}β∈B such that for some (p∗, θ∗) ∈ C× Ξ(p∗, P ) and a fixed set C ⊆ {1, . . . , dF }:

(Qαβ , pαβ , θαβ )→ (P, p∗, θ∗) and A(θαβ , Qαβ ) = C ∀β ∈ B . (C.4)

Next, note Assumption 4.2(ii) implies we can partition {1, . . . , dF } into IL ≡ {i : Si = ∅} and IS ≡ {i :
Si = {1, . . . , dθ}}. Since Assumption 3.2(i) and Qαβ satisfying Assumption 3.6(ii) imply Ξ(pαβ , Qαβ ) is convex and
F (i)(

∫
m(x, ·)dQαβ (x)) : Θ→ R is strictly convex for all i ∈ IS , Ξ(pαβ , Qαβ ) being nonsingleton and (C.3) yield

C ⊆ IL . (C.5)

Hence, by the complementary slackness condition λ(i)(pαβ , Qαβ ) = 0 for all i ∈ IS . Since Theorem 8.3.1 in Luenberger
(1969) implies θαβ is a maximizer of (A.29), we obtain from the first order conditions and Si = ∅ for all i ∈ IL:

FA(
∫
mA(x)dQαβ (x))′λ(pαβ , Qαβ ) = −pαβ , (C.6)

where we exploited θαβ ∈ Θo due to Qαβ satisfying Assumption 3.6(i). Since by construction, A(θαβ , Qαβ ) = C,
we may let λC(pαβ , Qαβ ), F CA(

∫
mA(x)dQαβ (x)) and F CS (

∫
mS(x, θ)dQαβ (x)) respectively be the #C × 1 subvector

of λ(pαβ , Qαβ ), #C × dθ submatrix of FA(
∫
mA(x)dQαβ (x)) and #C × 1 subvector of FS(

∫
mS(x, θ)dQαβ (x)) that

correspond to the constraints indexed by C. Since λ(i)(pαβ , Qαβ ) = 0 for all i /∈ C by (C.4), we then have:

F CA(
∫
mA(x)dP (x))′λC(p∗, P ) = −p∗ , (C.7)

by results (C.4), (C.6) and Lemmas A.5 and A.12. Moreover, note that by definition of C we also obtain that:

F CA(
∫
mA(x)dQαβ (x))θαβ = −F CS (

∫
mS(x, θαβ )dQαβ (x)) . (C.8)

Moreover, since Si = ∅ for all i ∈ C by (C.5), (C.8) is a linear equation in θαβ , and by Qαβ /∈ ML satisfying
Assumption 3.6(iv) we must have #C < dθ, for otherwise (C.8) would have a unique solution in θ and (C.3) would
imply Ξ(pαβ , Qαβ ) is a singleton. Thus, while (C.4), (C.8) and Lemma A.5 imply C ⊆ A(θ∗, P ), we may also conclude
from #C < dθ and Ξ(p∗, P ) being a singleton by (p∗, P ) ∈ C×ML, that we also have:

A(θ∗, P ) \ C 6= ∅ . (C.9)

In what follows we aim to establish a contradiction by showing that P will not satisfy Assumption 3.6(iv) at the
point θ∗ ∈ Θ0(P ). To this end, for notational convenience we first define the sets:

Ki ≡ {θ ∈ Θ : F (i)(
∫
m(x, θ)dP (x)) ≤ 0} Ei ≡ {θ ∈ Θ : F (i)(

∫
m(x, θ)dP (x)) = 0} . (C.10)

Next, note that Ξ(p∗, P ) = {θ∗} and convexity of F (i)(
∫
m(x, ·)dP (x)) : Θ→ R for all 1 ≤ i ≤ dF imply:

{θ∗} = {
⋂

1≤i≤dF

Ki} ∩ {θ ∈ Θ : 〈p∗, θ〉 = ν(p∗,Θ0(P ))} = {
⋂

i∈A(θ∗,P )

Ki} ∩ {θ ∈ Θ : 〈p∗, θ〉 = ν(p∗,Θ0(P ))} . (C.11)

Moreover, also note C ⊆ A(θ∗, P ) implies F CA(
∫
mA(x)dP (x))θ∗ = −F CS (

∫
mS(x, θ∗)dP (x)), and hence by (C.7):

λC(p∗, P )′F CS (
∫
mS(x, θ∗)dP (x)) = 〈p∗, θ∗〉 = ν(p∗,Θ0(P )) . (C.12)

Since Si = ∅ for all i ∈ C, results (C.7) and (C.12) imply {
⋂
i∈C Ei} ⊆ {θ ∈ Θ : 〈p∗, θ〉 = ν(p∗,Θ0(P ))}, which yields

{θ∗} = {
⋂

i∈A(θ∗,P )\C

Ki} ∩ {
⋂
i∈C

Ei} , (C.13)
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due to (C.9), (C.11), and Ei ⊆ Ki. Next, let ι : A(θ∗, P ) \ C → {1, . . . ,#A(θ∗, P ) \ C} be a bijection, and define:

j∗ ≡ min
1≤j≤#A(θ∗,P )\C

j : {
⋂

i∈A(θ∗,P )\C:ι(i)≤j

Ki} ∩ {
⋂
i∈C

Ei} is a singleton , (C.14)

where we note j∗ is well defined due to (C.13), and {
⋂
i∈C Ei} not being singleton due to #C < dθ and F (i)(

∫
m(x, ·)dP (x)) :

Θ→ R being linear for all i ∈ C. Thus, from (C.10), (C.14) and setting i∗ ≡ ι−1(j∗) ∈ A(θ∗, P ) we conclude:14

{θ∗} = arg min
θ∈Θ

{
F (i∗)(

∫
m(x, θ)dP (x)) s.t. θ ∈ {

⋂
i:ι(i)≤j∗−1

Ki} ∩ {
⋂
i∈C

Ei}
}
. (C.15)

However, since the constraint set is not a singleton, it follows that for each i such that ι(i) ≤ j∗ − 1, either
F (i)(

∫
m(x, θ)dP (x)) is linear in θ (if i ∈ IL), or F (i)(

∫
m(x, θi)dP (x)) < 0 for some θi ∈ {

⋂
i:ι(i)≤j∗−1Ki}∩{

⋂
i∈C Ei}

(if i ∈ IS). It follows that (C.15) is an ordinary convex problem satisfying a primal qualification constraint, and by
Theorem 28.2 in Rockafellar (1970) that there exist Kuhn-Tucker vectors such that:

{θ∗} = arg min
θ∈Θ

{
F (i∗)(

∫
m(x, θ)dP (x))+

∑
i:ι(i)≤j∗−1

γiF
(i)(
∫
m(x, θ)dP (x))+

∑
i∈C

πiF
(i)(
∫
m(x, θ)dP (x))

}
. (C.16)

Finally, we observe that since θ∗ ∈ Θ0(P ) ⊆ Θo by Assumption 3.6(i), result (C.16) and Corollary A.1 imply:

−∇θF (i∗)(
∫
m(x, θ∗)dP (x)) =

∑
i:ι(i)≤j∗−1

γi∇θF (i)(
∫
m(x, θ∗)dP (x)) +

∑
i∈C

πi∇θF (i)(
∫
m(x, θ∗)dP (x)) . (C.17)

Thus, we reach the desired contradiction that P ∈ML violates Assumption 3.6(iv).

Lemma C.3. If Assumptions 3.2, 3.4, 3.5, 4.2 hold, P ∈ PL, SL ≡ {h ∈ L2
µ : h =

√
dQ/dµ for some Q ∈ PL},

and C is compact, then the tangent space of SL at s =
√
dP/dµ is ṠL = {h ∈ L2

µ :
∫
h(x)s(x)dµ(x) = 0}.

Proof: The claim follows immediately from Lemmas A.16 and C.2.

Lemma C.4. If Assumptions 3.2, 3.4, 3.5, 4.2(i) hold and C is compact, then the mapping ρL : PL → C(C) pointwise
defined by ρL(P ) = ν|C(·,Θ0(P )) is weak-pathwise differentiable at any P ∈ PL. Moreover, for s ≡

√
dP/dµ, λ(p,Q)

(as in (A.29)), and {θ∗(p)} = Ξ(p, P ) (as in (A.24)), the derivative ρ̇L : ṠL → C(C) satisfies:

ρ̇L(ḣ0)(p) = 2λ(p, P )′∇F (
∫
m(x, θ∗(p))dP (x))

∫
m(x, θ∗(p))ḣ0(x)s(x)dµ(x) .

Proof: First note ρ̇L(ḣ0) ∈ C(C) for any ḣ0 ∈ ṠL by Lemma C.1. In addition, ρ̇L : ṠL → C(C) is linear, and bounded
since by Lemma A.11, P ∈ PL satisfying Assumption 3.6(iii), and Assumptions 3.4(i) and 3.5(ii) we have:

sup
‖ḣ0‖L2

µ
=1

sup
p∈C
|ρ̇L(ḣ0)(p)|

≤ sup
‖ḣ0‖L2

µ

sup
p∈C
{2‖λ(p, P )‖ × sup

v∈V0

‖∇F (v)‖F ×
√
dm sup

(x,θ)∈X×Θ

‖m(x, θ)‖ × ‖ḣ0‖L2
µ
× ‖s‖L2

µ
} <∞ . (C.18)

Finally, note that for any curve η 7→ Pη in PL with h0 = s and all finite Borel measures B on C, the mean value
theorem, the dominated convergence theorem and Lemma C.1 allow us to conclude that:

lim
η0→0

∫
C
{ν(p,Θ0(Pη0))− ν(p,Θ0(P ))

η0
− ρ̇L(ḣ0)(p)}dB(p) = 0 , (C.19)

(see (A.57)). Since (C.19) verifies ρ̇L : ṠL → C(C) is the weak derivative of ρL : PL → C(C), the Lemma follows.

Theorem C.1. Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, P ∈ PL and C be compact. For each θ1, θ2 ∈ Θ,
let H(θ1) and Ω(θ1, θ2) be as in Theorem 3.2, {θ∗(p)} = Ξ(p, P ) (as in (A.24)) and define ρL : PL → C(C) by

14Here {
⋂
i∈∅Ki} ∩ {

⋂
i∈C Ei} should be understood to equal {

⋂
i∈C Ei}.
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ρL(P ) ≡ ν|C(·,Θ0(P )). The inverse information covariance functional for estimating ρL(P ) is then given by:

I−1(p1, p2) = λ(p1, P )′H(θ∗(p1))Ω(θ∗(p1), θ∗(p2))H(θ∗(p2))′λ(p2, P ) . (C.20)

Proof: As in the proof of Theorem 3.2, we closely follow Chapter 5.2 in Bickel et al. (1993). Let B ≡ C(C) and B∗

denote the set of finite Borel measures on C, which by Corollary 14.15 in Aliprantis and Border (2006) is the dual
space of B. For s ≡

√
dP/dµ then define ρ̇TL : B∗ → ṠL pointwise by:

ρ̇TL(B)(x) ≡
∫

C
2λ(p, P )′H(θ∗(p)){m(x, θ∗(p))− E[m(Xi, θ

∗(p))]}s(x)dB(p) , (C.21)

noting the integrand is indeed measurable by arguing as in (A.59) and exploiting p 7→ θ∗(p) is continuous on C due
to Lemma A.7 and Ξ(p, P ) being a singleton for all p ∈ C due to P ∈ PL. For any B ∈ B∗ let Γ(B) denote the finite
Borel measure on Sdθ given by Γ(B)(A) = B(A ∩ C) for any Borel set A ⊆ Sdθ . Noting that ρ̇TL(B) = ρ̇T (Γ(B)), it
then follows from Lemma C.3 and results (A.60)-(A.62) that ρ̇TL : B∗ → ṠL is the adjoint of ρ̇L : ṠL → B. Lemmas
C.3 and C.4 and Theorem 5.2.1 in Bickel et al. (1993) then establish the Theorem.

Lemma C.5. Let Assumptions 3.2, 3.4, 3.5, 4.2 hold, C be compact, P ∈ PL and Qτ ≡ τQ + (1 − τ)P for any
Q ∈M. Then, there is a N(P ) ⊆M such that for all (Q, p, τ0) ∈ N(P )× C× (0, 1):

∂

∂τ
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) where {θ∗} = Ξ(p,Qτ0) .

Proof: By Lemmas B.2 and C.2 there is a N(P ) ⊆M that is convex and contained in ML (as in (C.2)). Hence, if
Q ∈ N(P ) ⊆ML, then Qτ ∈ML for all τ ∈ (0, 1) which together with Assumption 3.5, Lemma A.9 and Corollary
5 in Milgrom and Segal (2002) imply that for any (Q, p) ∈ N(P )×C the function τ 7→ ν(p,Θ0(Qτ )) is directionally
differentiable with right and left derivatives given by:

∂

∂τ+
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= max
θ∗∈Ξ(p,Qτ0 )

λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) (C.22)

∂

∂τ−
ν(p,Θ0(Qτ ))

∣∣∣
τ=τ0

= min
θ∗∈Ξ(p,Qτ0 )

λ(p,Qτ0)′∇F (
∫
m(x, θ∗)dQτ0(x))

∫
m(x, θ∗)(dQ(x)− dP (x)) (C.23)

(see also (B.4)-(B.5)). However, since Qτ0 ∈ N(P ) ⊆ ML for all τ0 ∈ (0, 1), it follows that for any p ∈ C the
correspondence Ξ(p,Qτ0) is singleton valued. We conclude (C.22) and (C.23) agree, and the Lemma follows.

Lemma C.6. Let Assumptions 3.1, 3.2, 3.4, 3.5, 4.2 hold, C be compact, P ∈ PL and {θ∗(p)} = Ξ(p, P ). Then:

sup
p∈C
|
√
n{(ν(p,Θ0(P̂n))− ν(p,Θ0(P )))− λ(p, P )′H(θ∗(p))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x))}| = op(1) .

Proof: By Lemma B.2 we may restrict attention to convex neighborhoods, so that if P̂n ∈ N(P ) then P̂n,τ ≡
τP̂n+(1−τ)P ∈ N(P ) for all τ ∈ [0, 1]. Hence, Lemmas A.7 and B.5 imply Ξ(p, P̂n,τ ) is well defined for all τ ∈ [0, 1]
with probability tending to one. Moreover, since P ∈ PL implies Ξ(p, P ) is singleton valued for all p ∈ C, we obtain:

lim inf
n→∞

P (sup
p∈C

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖θ − θ∗(p)‖ > ε) = 0 (C.24)

for any ε > 0 due to Lemmas A.7, B.4 and B.5. Thus, since p 7→ λ(p, P ) and p 7→ H(θ∗(p)) are uniformly bounded
on C by Lemma A.11, Assumption 3.5 and P ∈ PL satisfying Assumption 3.6(iii), we obtain

sup
p∈C

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖
√
nλ(p, P )′H(θ∗(p))

∫
(m(x, θ)−m(x, θ∗(p)))(dP̂n(x)− dP (x))‖ = op(1) (C.25)

due to result (C.24) and Lemma B.1 (see also (B.27)-(B.28)). Additionally, since Θ is compact, result (A.3) implies
θ 7→

∫
m(x, θ)dP (x) is uniformly continuous on Θ, and we therefore obtain from Lemma B.1 that (see also (B.23)):

sup
p∈C

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖
∫
m(x, θ)dP̂n,τ (x)−

∫
m(x, θ∗(p))dP (x)‖ = op(1) . (C.26)
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Further note ∇F (
∫
m(x, θ)dP (x)) is uniformly bounded in θ ∈ Θ by Assumption 3.5 and P ∈ PL satisfying As-

sumption 3.6(iii), while λ(p, P ) is uniformly bounded on C by Lemma A.11. Therefore, v 7→ ∇F (v) being uniformly
continuous on V0 by Assumption 3.5(ii), together with Lemmas A.2 and B.5 and results (B.31) and (C.26) yield:

sup
p∈C

sup
τ∈[0,1]

sup
θ∈Ξ(p,P̂n,τ )

‖λ(p, P̂n,τ )′∇F (
∫
m(x, θ)dP̂n,τ (x))− λ(p, P )′∇F (

∫
m(x, θ∗(p))dP (x))‖ = op(1) . (C.27)

Finally, employing the mean value theorem, which is valid by Lemmas B.2, B.5 and C.5, we obtain uniformly in
p ∈ C that for some τ0 : C→ (0, 1) and θ̃ : C→ Θ with θ̃(p) ∈ Ξ(p, P̂n,τ0(p)) for all p ∈ C:
√
n{ν(p,Θ0(P̂n))− ν(p,Θ0(P ))}

=
√
nλ(p, P̂n,τ0(p))′∇F (

∫
m(x, θ̃(p))dP̂n,τ0(p)(x))

∫
m(x, θ̃(p))(dP̂n(x)− dP (x)) + op(1)

=
√
nλ(p, P )′H(θ∗(p))

∫
m(x, θ∗(p))(dP̂n(x)− dP (x)) + op(1) , (C.28)

where the second equality follows from results (B.25), (C.25) and (C.27).

Proof of Theorem 4.3: We first show the class F ≡ {f : X → R : f(x) = λ(p, P )′H(θ∗(p))m(x, θ∗(p)) for some p ∈ C}
is Donsker in C(C). To this end note that p 7→ λ(p, P )′H(θ∗(p)) and p 7→ θ∗(p) are continuous in p ∈ C due to
Lemmas A.7 and A.12, result (A.3), Assumption 3.5 and P ∈ PL satisfying Assumption 3.6(iii). Thus, it follows
from Assumption 3.4(i)-(ii) that f ∈ F are uniformly bounded, and that the empirical process belongs to C(C).
Convergence of the marginals is then immediate, while for any sequence δn ↓ 0 we obtain

sup
p1,p2∈C:‖p1−p2‖≤δn

|
√
n

∫
(m(x, θ∗(p1))−m(x, θ∗(p2)))(dP̂n(x)− dP (x))| = op(1) , (C.29)

due to Lemma B.1 and continuity of p 7→ θ∗(p) on C. The class F being Donsker then follows from (C.29), Lemma
B.1 and p 7→ λ(p, P )′H(θ∗(p)) being uniformly continuous and bounded on C by compactness. Theorem 18.1 in
Kosorok (2008) and Lemma C.6 then imply {ν|C(·,Θ0(P̂n))} is a regular estimator of ν|C(·,Θ0(P )). The Theorem
then follows from the influence function of {ν|C(·,Θ0(P̂n))} being efficient by Lemma C.6 and Theorem C.1.

Appendix D - Proof of Theorems 5.1, 5.2, 5.3 and 5.4

The proofs of all Theorems in this section are self contained, and do not require auxiliary Lemmas or results.

Proof of Theorem 5.1: For any metric space (D, ‖ · ‖D) let BLM (D) denote the set of Lipschitz real functions on D
whose absolute value and Lipschitz constant are bounded by M . To establish the Theorem, it then suffices to show:

sup
f∈BL1(C(Sdθ ))

|E[f(G∗n)|{Xi}ni=1]− E[f(G0)]| = op(1) , (D.1)

due to Theorem 1.12.4 in van der Vaart and Wellner (1996). Towards this end, note that Lemma B.1 implies that:

sup
p∈Sdθ

‖
√
n

∫
w{m(x, θ̂(p))−

∫
m(x, θ̂(p))dP̂n(x)}dP̂Wn (x,w)‖

≤ sup
θ∈Θ
‖
√
n

∫
wm(x, θ)dP̂Wn (x,w)‖+ sup

(x,θ)∈(X×Θ)

‖m(x, θ)‖ × |
√
n

∫
wdP̂Wn (x,w)| = Op(1) (D.2)

25



due to Wi ⊥ Xi, E[Wi] = 0 by Assumption 5.1(ii) and (x, θ) 7→ m(x, θ) being uniformly bounded by Assumption
3.4(i). Next, let Πp : Θ→ Rdθ be as in Lemma B.7, and note Lemmas B.5 and B.7 imply uniformly in p ∈ Sdθ

λ(p, P )′∇FS(
∫
mS(x, θ̂(p))dP̂n(x))

∫
mS(x, θ̂(p))dP̂n(x)

= λ(p, P )′∇FS(
∫
mS(x,Πpθ̂(p)))dP̂n(x))

∫
mS(x,Πpθ̂(p))dP̂n(x) + op(1)

= λ(p, P )′∇FS(
∫
mS(x, θ∗(p)))dP (x))

∫
mS(x,Πpθ̂(p))dP̂n(x) + op(1)

= λ(p, P )′∇FS(
∫
mS(x, θ∗(p)))dP (x))

∫
mS(x, θ∗(p))dP (x) + op(1) , (D.3)

where the second equality follows from (B.20), Assumption 3.4(i) and (B.24), while the third equality results from
Lemma A.11, Assumption 3.5(ii), P ∈ P satisfying Assumption 3.6(iii) and result (B.23). Therefore, results (B.31),
Assumption 3.5(ii), Lemmas A.2 and B.5, and result (D.2) yield uniformly in p ∈ Sdθ

√
nλ(p, P̂n)′∇F (

∫
m(x, θ̂(p))dP̂n(x))

∫
w{m(x, θ̂(p))−

∫
m(x, θ̂(p))dP̂n(x)}dP̂Wn (x,w)

=
√
nλ(p, P )′∇F (

∫
m(x, θ̂(p))dP̂n(x))

∫
w{m(x, θ̂(p))−

∫
m(x, θ̂(p))dP̂n(x)}dP̂Wn (x,w) + op(1)

=
√
nλ(p, P )′∇F (

∫
m(x, θ∗(p))dP (x))

∫
w{m(x, θ∗(p))−

∫
m(x, θ∗(p))dP (x)}dP̂Wn (x,w) + op(1) , (D.4)

where the second equality follows from Aθ −
∫
AθdP̂n(x) = 0, E[Wi] = 0 and Wi ⊥ Xi by Assumption 5.1, Lemma

B.8 and result (D.3). Next, define the process G∗n to be pointwise given by:

Ḡ∗n(p) ≡
√
nλ(p, P )′H(θ∗(p))

∫
w{m(x, θ∗(p))−

∫
m(x, θ∗(p))dP (x)}dP̂Wn (x,w) , (D.5)

and note arguments identical to those in (A.50)-(A.51) imply that Ḡ∗n ∈ C(Sdθ ) almost surely. Since all f ∈
BL1(C(Sdθ )) are bounded and have Lipschitz constant less than or equal to one, for any η > 0 we must have:

sup
f∈BL1(C(Sdθ ))

|E[f(Ḡ∗n)−f(G∗n)|{Xi}ni=1]| ≤ ηP (‖Ḡ∗n−G∗n‖∞ ≤ η|{Xi}ni=1)+2P (‖Ḡ∗n−G∗n‖∞ > η|{Xi}ni=1) . (D.6)

However, from (D.4), it follows that P (‖Ḡ∗n −G∗n‖∞ > η|{Xi}ni=1) = op(1), and hence since η in (D.6) is arbitrary:

sup
f∈BL1(C(Sdθ ))

|E[f(G∗n)|{Xi}ni=1]− E[f(Ḡ∗n)|{Xi}ni=1]| = op(1) . (D.7)

To conclude, we note that by Lemma B.10 and Theorem 2.9.6 in van der Vaart and Wellner (1996), we have:

sup
f∈BL1(C(Sdθ ))

|E[f(Ḡ∗n)|{Xi}ni=1]− E[f(G0)]| = op(1) , (D.8)

and therefore results (D.7) and (D.8) verify (D.1) which establishes the claim of the Theorem.

Proof of Theorem 5.2: Let Ḡ∗n be defined as in (D.5) and note that by (D.4) ‖Ḡ∗n −G∗n‖∞ = op(1) unconditionally.
Define a mapping Γ : C(Sdθ )→ C(Sdθ ) pointwise by Γ(f) = Υ ◦ f . The continuous mapping theorem then yields:

| sup
p∈Ψ̂n

Υ(G∗n(p))− sup
p∈Ψ̂n

Υ(Ḡ∗n(p))| ≤ sup
p∈Sdθ

|Υ(G∗n(p))−Υ(Ḡ∗n(p))| = ‖Γ(G∗n)− Γ(Ḡ∗n)‖∞ = op(1) . (D.9)

Next, let p̂∗ ∈ arg maxp∈Ψ̂n
Υ(Ḡ∗n(p)) which is well defined by Assumption 5.2(ii) and continuity of p 7→ Ḡ∗n(p).

Letting ΠΨ0 p̂
∗ denote the projection of p̂∗ onto Ψ0 and noting ‖p̂∗ −ΠΨ0 p̂

∗‖ ≤ dH(Ψ̂n,Ψ0), we can then obtain:

sup
p∈Ψ̂n

Υ(Ḡ∗n(p))− sup
p∈Ψ0

Υ(Ḡ∗n(p)) ≤ Υ(Ḡ∗n(p̂∗))−Υ(Ḡ∗n(ΠΨ0 p̂
∗)) ≤ sup

‖p−p̃‖≤dH(Ψ̂n,Ψ0)

|Υ(Ḡ∗n(p))−Υ(Ḡ∗n(p̃))| . (D.10)

Similarly, by analogous manipulations to the term supp∈Ψ0
Υ(Ḡ∗n(p))− supp∈Ψ̂n

Υ(Ḡ∗n(p)), we can conclude:

| sup
p∈Ψ̂n

Υ(Ḡ∗n(p))− sup
p∈Ψ0

Υ(Ḡ∗n(p))| ≤ sup
‖p−p̃‖≤dH(Ψ̂n,Ψ0)

|Υ(Ḡ∗n(p))−Υ(Ḡ∗n(p̃))| . (D.11)
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By Assumption 5.1, Lemma B.10 and Theorem 2.9.2 in van der Vaart and Wellner (1996), Ḡ∗n
L→ Ḡ (unconditionally)

for some tight Gaussian process Ḡ in C(Sdθ ). Therefore, it follows that supp∈Sdθ |Ḡ∗n(p)| is asymptotically tight in R.
Next, fix η > 0, ε > 0 and note there then is a constant K > 0 such that:

lim sup
n→∞

P ( sup
p∈Sdθ

|Ḡ∗n(p)| > K) < η . (D.12)

By Assumption 5.2(i), Υ : R → R is continuous and hence uniformly continuous on [−K,K]. Therefore, there is a
δ0 > 0 such that |Υ(a1)−Υ(a2)| < ε whenever |a1 − a2| < δ0 with a1, a2 ∈ [−K,K]. Hence, we then obtain:

lim sup
n→∞

P ( sup
‖p−p̃‖≤dH(Ψ̂n,Ψ0)

|Υ(Ḡ∗n(p))−Υ(Ḡ∗n(p̃))| > ε)

≤ lim sup
n→∞

P ( sup
‖p−p̃‖≤dH(Ψ̂n,Ψ0)

|Ḡ∗n(p)− Ḡ∗n(p̃)| > δ0) + lim sup
n→∞

P ( sup
p∈Sdθ

|Ḡ∗n(p)| > K) . (D.13)

Moreover, since the process p 7→ Ḡ∗n(p) is asymptotically tight in C(Sdθ ) by Lemma 1.3.8 in van der Vaart and Wellner
(1996), it then follows that there exists a γ0 > 0 such that:

lim sup
n→∞

P ( sup
‖p−p̃‖≤dH(Ψ̂n,Ψ0)

|Ḡ∗n(p)− Ḡ∗n(p̃)| > δ0)

≤ lim sup
n→∞

P ( sup
‖p−p̃‖≤γ0

|Ḡ∗n(p)− Ḡ∗n(p̃)| > δ0) + lim sup
n→∞

P (dH(Ψ̂n,Ψ0) > γ0) < η , (D.14)

due to dH(Ψ̂n,Ψ0) = op(1) by hypothesis. Since ε, η were arbitrary, combining (D.9)-(D.14) we then obtain:

sup
p∈Ψ̂n

Υ(G∗n(p)) = sup
p∈Ψ0

Υ(Ḡ∗n(p)) + op(1) . (D.15)

Therefore, for BL1(R) as in (D.1), arguing as in (D.7) and using Theorem 5.1 and Theorem 10.8 in Kosorok (2008):

sup
f∈BL1(R)

|E[f( sup
p∈Ψ̂n

Υ(G∗n(p)))|{Xi}ni=1]− E[f( sup
p∈Ψ0

Υ(G0(p)))]|

≤ sup
f∈BL1(R)

|E[f( sup
p∈Ψ0

Υ(Ḡ∗n(p)))|{Xi}ni=1]− E[f( sup
p∈Ψ0

Υ(G0(p)))]|+ op(1) = op(1) . (D.16)

To conclude, observe that result (D.16) together with Lemma 10.11 in Kosorok (2008) imply that:

P ( sup
p∈Ψ̂n

Υ(G∗n(p)) ≤ t|{Xi}ni=1) = P ( sup
p∈Ψ0

Υ(G0(p)) ≤ t) + op(1) (D.17)

for all t ∈ R that are continuity points of the cdf of supp∈Ψ0
Υ(G0(p)). Moreover, since c1−α is itself a continuity

point, for any ε > 0 there is an ε̃ ≤ ε such that c1−α ± ε̃ are also continuity points and in addition:

P ( sup
p∈Ψ0

Υ(G0(p)) ≤ c1−α − ε̃) < 1− α < P ( sup
p∈Ψ0

Υ(G0(p)) ≤ c1−α + ε̃) , (D.18)

due to the cdf of supp∈Ψ0
Υ(G0(p)) being strictly increasing at c1−α. To conclude, define the event:

An ≡ {P ( sup
p∈Ψ̂n

Υ(G∗n(p)) ≤ c1−α − ε̃|{Xi}ni=1) < 1− α < P ( sup
p∈Ψ̂n

Υ(G∗n(p)) ≤ c1−α + ε̃|{Xi}ni=1)} (D.19)

and observe that since c1−α ± ε̃ are continuity points of the cdf of supp∈Ψ0
Υ(G0(p)), result (D.17) yields that:

lim inf
n→∞

P (|ĉ1−α − c1−α| ≤ ε) ≥ lim inf
n→∞

P (An) = 1 , (D.20)

which establishes the claim of the Theorem.

Proof of Theorem 5.3: Since support functions are continuous, it follows that M̂n(θ) ⊆ Sdθ is closed and bounded and
therefore compact. Moreover, by Theorem 17.31 in Aliprantis and Border (2006), M(θ) is nonempty and compact
valued, while Theorem 4.1 and Corollary 1.10 in Li et al. (2002) imply that:

dH(Θ0(P ), Θ̂n) = Op(n−
1
2 ) . (D.21)
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In turn, result (D.21) and Lemma B.10 in Kaido (2010) yield dH(M̂n(θ),M(θ)) = op(1). Therefore, Assumption
5.2 is satisfied with M(θ) = Ψ0 and M̂n(θ) = Ψ̂n. Moreover, by Theorem 11.1 in Davydov et al. (1998), the cdf of
supp∈M(θ) |−G0(p)|+ is continuous and strictly increasing except possibly at zero. However, since M(θ) is nonempty
and Var{G0(p)} > 0 for all p ∈M(θ) by hypothesis, we obtain for any p0 ∈M(θ) that:

P ( sup
p∈M(θ)

| −G0(p)|+ ≤ 0) ≤ P (−G0(p0) ≤ 0) = 0.5 . (D.22)

Therefore, α < 0.5 implies that the cdf of supp∈M(θ) | −G0(p)|+ is continuous and strictly increasing at c1−α(θ). By
Theorem 5.2 it then follows that ĉ1−α(θ) = c1−α(θ) + op(1).

Suppose θ ∈ Θ0(P )o. Then result (D.21) implies that with probability tending to one θ ∈ Θ̂o
n. Therefore,

Jn(θ) = 0 with probability tending to one, and since ĉ1−α(θ)
p→ c1−α(θ) > 0, we conclude:

lim inf
n→∞

P (Jn(θ) ≤ ĉ1−α(θ)) = 1 . (D.23)

Suppose on the other hand that θ ∈ ∂Θ0(P ). Theorem 4.1 and Lemma B.9 in Kaido (2010) then imply that:

Jn(θ) L→ sup
p∈M(θ)

| −G0(p)|+ . (D.24)

Therefore, since ĉ1−α(θ)
p→ c1−α(θ) and the cdf of supp∈M(θ) | −G0(θ)|+ is continuous at c1−α(θ), (D.24) yields:

lim
n→∞

P (Jn(θ) ≤ ĉ1−α(θ)) = P ( sup
p∈M(θ)

| −G0(p)|+ ≤ c1−α(θ)) = 1− α , (D.25)

which establishes the claim of the Theorem.

Proof of Theorem 5.4: We first study the behavior of {π∗n}. To this end define the functional ψ : C(Sdθ )→ R to be
pointwise given by ψ(f) = supp∈Sdθ {ν(p, {θ0}) − f(p)}, and the event An ≡ {co(Θ0(P̂n)) = Θ0(P̂n)}. By Lemmas
A.6 and B.5, P (Acn) = o(1), and hence by Theorem 11.14 in Kosorok (2008) Pη/√n(Acn) = o(1). Therefore, we obtain:

Jn(θ0) = max{ψ(ν(·,Θ0(P̂n))), 0}+ oPη/√n(1) (D.26)

since Jn(θ0) = max{ψ(ν(·,Θ0(P̂n))), 0} whenever An occurs. Next, note that by Lemma B.8 in Kaido (2010), the
map ψ is Hadamard differentiable at ν(·,Θ0(P )) with derivative ψ̇ : C(Sdθ )→ R pointwise given by:

ψ̇(f) = −f(p0) . (D.27)

Moreover, the Hadamard differentiability of ψ together with Theorem 4.1 and Theorem 18.6 in Kosorok (2008) imply
{ψ(ν(·,Θ0(P̂n)))} is an efficient estimator for ψ(ν(·,Θ0(P ))) and hence it is regular. Let Lη/√n denote the implied
Law when Xi ∼ Pη/√n and note that the functional delta method and regularity then imply:

√
n{ψ(ν(·,Θ0(P̂n)))− ψ(ν(·,Θ0(Pη/√n)))}

Lη/
√
n→ −G0(p0) . (D.28)

Since by Theorem 4.1 the estimator {ν(·,Θ0(P̂n))} is regular and asymptotically linear, Theorem 2.1 in van der
Vaart (1991) implies η 7→ ν(·,Θ0(Pη)) is pathwise differentiable. Hence, by the chain rule, Theorem A.2 and (D.27):

∂

∂η
ψ(ν(·,Θ0(Pη)))

∣∣∣
η=0

= −2
∫
λ(p0, P )′H(θ0)m(x, θ0)ḣ0(x)h0(x)dµ(x) = 2

∫
l̃(x)ḣ0(x)h0(x)dµ(x) (D.29)

where hη ≡
√
dPη/dµ and the final result holds by definition of l̃(x) and

∫
ḣ0(x)h0(x)dµ(x) = 0. Therefore,

√
n{ψ(ν(·,Θ0(P̂n)))− ψ(ν(·,Θ0(P )))}

Lη/
√
n→ −G0(p0) + η

∫
2l̃(x)ḣ0(x)h0(x)dµ(x) , (D.30)
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due to (D.28) and (D.29). Moreover, as shown in the proof of Theorem 5.3, ĉ1−α(θ0) = c1−α(θ0)+op(1) when Xi ∼ P
and therefore by Theorem 11.14 in Kosorok (2008) also when Xi ∼ Pη/√n. Thus, exploiting result (D.26) we obtain:

lim
n→∞

Pη/
√
n(Jn(θ0) > ĉ1−α(θ0)) = lim

n→∞
Pη/
√
n(max{ψ(ν(·,Θ0(P̂n))), 0} > c1−α(θ0))

= lim
n→∞

Pη/
√
n(ψ(ν(·,Θ0(P̂n))) > c1−α(θ0)) = P (−G0(p0) > c1−α(θ0)− 2η

∫
l̃(x)ḣ0(x)h0(x)dµ(x)) (D.31)

where the second equality follows from c1−α(θ0) > 0 due to α < 0.5 and the last equality is a result of (D.30). Thus
(D.31) verifies {π∗n} attains the bound in (34). Moreover, if Pη ∈ H(θ0), then by (D.29) we must have:∫

l̃(x)ḣ0(x)h0(x) ≥ 0 . (D.32)

Therefore, results (D.31) and (D.32) imply that Jn(θ0) satisfies (33) as well.

We next establish the upper bound in (34) holds using arguments in the proof of Theorem 25.44 in van der Vaart
(1999). Fix a Pη ∈ H(θ0) and η̄ > 0 for which we aim to show the bound, and pass to a subsequence {nk}∞k=1 with:

lim sup
n→∞

πn(Pη̄/√n) = lim
k→∞

πnk(Pη̄/√nk) . (D.33)

Further let s̃(x) = 2l̃(x)h0(x) and r̃(x) = s̃(x) − ḣ0(x)〈s̃, ḣ0〉L2
µ
/‖ḣ0‖2L2

µ
. Then, notice that by direct calculation we

can obtain that s̃ ∈ Ṡ, r̃ ∈ Ṡ and 〈r̃, ḣ0〉L2
µ

= 0. Moreover, also observe that by result (D.29) we have:

〈s̃, ḣ0〉L2
µ

=
∂

∂η
ψ(ν(·,Θ0(Pη)))

∣∣∣
η=0

. (D.34)

Proceeding as in the proof of Lemma A.16, we next build an augmented model by letting s ≡
√
dP/dµ, Ψ : R →

(0,∞) be continuously differentiable, with Ψ(0) = Ψ′(0) = 1 and Ψ, Ψ′ and Ψ′/Ψ bounded, and defining:

q2
η,γ(x) ≡ b(η, γ)s2(x)Ψ

( 2
s(x)
{ηḣ0(x) + γr̃(x)}

)
b(η, γ) ≡

[ ∫
Ψ
( 2
s(x)
{ηḣ0(x) + γr̃(x)}

)
dP (x)

]−1

. (D.35)

For Qη,γ satisfying qη,γ =
√
dQη,γ/dµ, using Proposition 2.1.1 in Bickel et al. (1993) it is straightforward to verify

that (η, γ) 7→ qη,γ is then a quadratic mean differentiable model with q0,0 =
√
dP/dµ. Moreover, Lemmas A.2, A.8,

Corollary A.3, and P ∈ P satisfying Assumption 3.6(ii) imply that Qη,γ ∈ P for all (η, γ) ∈ N and N a suitably
small neighborhood of (0, 0) in R2. By Theorems 12.2.3 and 13.4.1 in Lehmann and Romano (2005), it then follows
that if ‖r̃‖2L2

µ
6= 0, then there exists a further subsequence {nkj}∞j=1 such that:

lim
j→∞

πnkj (Q(η,γ)/
√
nkj

) = π(η, γ) (D.36)

for all (η, γ) ∈ N , and where π is the power function of a test in a limit experiment that takes the form:

Z ∼ N
([ η

γ

]
, I−1

0

)
I0 ≡

[
4‖ḣ0‖2L2

µ
0

0 4‖r̃‖2L2
µ

]
. (D.37)

Next we establish that the power function π corresponds to a test that controls size for the hypothesis:

H0 : η〈ḣ0, s̃〉L2
µ

+ γ〈r̃, s̃〉L2
µ
≤ 0 H1 : η〈ḣ0, s̃〉L2

µ
+ γ〈r̃, s̃〉L2

µ
> 0 . (D.38)

Select any (η0, γ0) ∈ R2 such that η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ
< 0 and define a path t 7→ P̃t to be given by P̃t ≡

Q(−tη0,−tγ0). Notice that P̃t ∈ P for t small due to Q(η,γ) ∈ P for all (η, γ) ∈ N . Then, as in (D.34):

∂

∂t
ψ(ν(·,Θ0(P̃t)))

∣∣∣
t=0

= −{η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ
} > 0 , (D.39)
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and, in addition, since at t = 0, P̃0 = P we have ψ(ν(·,Θ0(P̃0))) = 0 due to θ0 ∈ ∂Θ0(P ). Thus, from (D.39) we
conclude P̃t ∈ H(θ0) for t in a neighborhood of zero. Noting Q(η0,γ0)/

√
n = P̃−1/

√
n, it follows from (33) and (D.36):

π(η0, γ0) = lim
j→∞

πnkj (Q(η0,γ0)/
√
nkj

) = lim
j→∞

πnkj (P̃−1/
√
nkj

) ≤ lim sup
n→∞

πn(P̃−1/
√
n) ≤ α . (D.40)

Since (D.40) holds for any (η0, γ0) such that η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ
< 0, continuity of the power function π implies

it also holds for any (η0, γ0) with η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ

= 0. We conclude π corresponds to a test that controls size
in (D.38). Therefore, Proposition 15.2 in van der Vaart (1999) and s̃ being in the linear span of ḣ0 and r̃ yield:

π(η0, γ0) ≤ 1− Φ
(
z1−α −

η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ

σ0

)
σ2

0 ≡
〈ḣ0, s̃〉2L2

µ

4‖ḣ0‖2L2
µ

+
〈r̃, s̃〉2L2

µ

4‖r̃‖2L2
µ

=
‖s̃‖2L2

µ

4
, (D.41)

for any (η0, γ0) such that η0〈ḣ0, s̃〉L2
µ

+ γ0〈r̃, s̃〉L2
µ
> 0. Furthermore, since both η 7→

√
dPη/dµ and η 7→

√
dQη,0/dµ

are Fréchet differentiable in L2
µ at η = 0 with derivative ḣ0, we also have that for any η̄ > 0:

lim sup
n→∞

√
n‖hη̄/√n − qη̄/√n,0‖L2

µ
≤ lim sup

n→∞

√
n{‖hη̄/√n − h0 −

η̄√
n
ḣ0‖L2

µ
+ ‖qη̄/√n,0 − h0 −

η̄√
n
ḣ0‖L2

µ
} = 0 . (D.42)

Hence, by Theorem 13.1.4 in Lehmann and Romano (2005) Pn
η̄/
√
n

and Qn
η̄/
√
n,0

converge in total variation, and thus

lim
k→∞

πnk(Pη̄/√nk) = lim
k→∞

πnk(Qη̄/√nk,0) . (D.43)

To conclude, observe that since Pη ∈ H(θ0), result (D.34) implies that 〈ḣ0, s̃〉L2
µ
≥ 0. If 〈ḣ0, s̃〉L2

µ
> 0, then η̄ > 0

and results (D.33), (D.36), (D.41) and (D.43) establish that:

lim sup
n→∞

πn(Pη̄/√n) = lim
j→∞

πnkj (Q(η̄,0)/
√
nkj

) = π(η̄, 0) ≤ 1− Φ
(
z1−α −

2η̄E[l̃(Xi)ḣ0(Xi)/h0(Xi)]√
E[G2

0(p0)]

)
(D.44)

where we have used σ2
0 = E[G2

0(p0)], s̃(x) = 2l̃(x)h0(x) and h2
0 = dP/dµ. If on the other hand 〈ḣ0, s̃〉L2

µ
= 0, then:

lim sup
n→∞

πn(Pη̄/√n) = lim
j→∞

πnkj (Q(η̄,0)/
√
nkj

) = π(η̄, 0) ≤ α = 1− Φ
(
z1−α −

2η̄ × 0√
E[G2

0(p0)]

)
(D.45)

due to (D.33), (D.36), (D.43) together with η̄〈ḣ0, s̃〉L2
µ

+ 0× 〈r̃, s̃〉L2
µ

= 0 and π controlling size in (D.38). Recall we
assumed ‖r̃‖L2

µ
6= 0 in obtaining (D.37), and hence the Theorem follows from (D.44) and (D.45) whenever ‖r̃‖L2

µ
6= 0.

The case ‖r̃‖L2
µ

= 0 follows from the arguments in (D.36)-(D.43) applied directly to Pη (rather than Qη,γ).

Appendix E - Proof of Theorem 3.3

As in the proof of Theorem 3.2, we establish Theorem 3.3 by verifying the conditions of Theorem 5.2.1 in Bickel
et al. (1993), which again requires us to: (i) Characterize the tangent space at P , and (ii) Show Q 7→ ν(·,Θ0,I(Q)) is
weakly pathwise differentiable at P . In this setting, however, both endeavors are simpler. Lemma E.1 employs Lemma
A.16 to characterize the tangent space, while Lemma E.3 shows Q 7→ ν(p,Θ0,I(Q)) is weak-pathwise differentiable
at P , and Lemma E.4 extends the result to show weak-pathwise differentiability of Q 7→ ν(·,Θ0,I(Q)).

Subsequent to the proof of Theorem 3.3, we briefly discuss the connection between weak-pathwise differentiability
in this setting, and in the moment inequalities model studied in Theorem 3.2.

Lemma E.1. Let Assumption 3.7 hold, P ∈ PI, and SI ≡ {h ∈ L2
µ : h =

√
dQ/dµ for some Q ∈ PI}. Then the

tangent space of SI at s =
√
dP/dµ is ṠI = {h ∈ L2

µ :
∫
h(x)s(x)dµ(x) = 0}.

Proof: Let P ∈ PI and ξ(
∫
vz′dP (x)) denote the smallest singular value of the matrix

∫
vz′dP (x). Since X is

compact by Assumption 3.7(i), it follows that vz′ is bounded, and hence for any net {Qα}α∈A ⊂M with Qα → P :∫
vz′dQα(x)→

∫
vz′dP (x) . (E.1)
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Thus, since ξ is continuous under the Frobenius norm (Bhatia (1997), page 78) it follows from P ∈ PI that there
exists a neighborhood N(P ) ⊆ M such that ξ(

∫
vz′dQ(x)) > 0 for all Q ∈ N(P ). We conclude that PI is open in

Mµ ≡ {Q ∈M : Q� µ} and the claim follows from Lemma A.16.

Lemma E.2. Let Assumption 3.7 hold, and SI ≡ {h ∈ L2
µ : h =

√
dQ/dµ for some Q ∈ PI}. If η 7→ hη is a curve

in SI and hη =
√
dPη/dµ, then there is a neighborhood N ⊂ R of zero, such that for all η0 ∈ N :

∂

∂η
Σ(Pη)−1

∣∣∣
η=η0

= −2Σ(Pη0)−1{
∫
vz′ḣη0(x)hη0(x)dµ(x)}Σ(Pη0)−1 , (E.2)

and in addition η0 7→ ∂
∂ηΣ(Pη)−1|η=η0 is continuous and ‖ ∂∂ηΣ(Pη)−1|η=η0‖F is uniformly bounded in η0 ∈ N .

Proof: Recall that if η 7→ U(η) is a square matrix valued function that is invertible at η = η0, then ∂
∂ηU(η)−1|η=η0 =

−U(η0)−1 ∂
∂ηU(η)|η=η0U(η0)−1. Hence, since Pη ∈ PI implies Σ(Pη) is invertible, we obtain:

∂

∂η
Σ(Pη)−1

∣∣∣
η=η0

= −Σ(Pη0)−1{
∫

2vz′ḣη0(x)hη0(x)dµ(x)}Σ(Pη0)−1 (E.3)

by exploiting that vz′ is bounded by Assumption 3.7(i), and arguing as in (A.43). Moreover, since Pη0 ∈ PI

by assumption, continuity of η 7→ Σ(Pη)−1 follows from (E.1) and ‖hη − hη0‖L2
µ

= o(1) implying Pη → Pη0 in
the τ -topology. Since vz′ is uniformly bounded by Assumption 3.7(i), arguing as in (A.49) in turn implies that∫

2vz′ḣη0(x)hη0(x)dµ(x) is continuous in η0, and hence the continuity of η0 7→ ∂
∂ηΣ(Pη)−1|η=η0 follows from (E.3).

To conclude, note that ‖ ∂∂ηΣ(Pη)−1|η=0‖F < ∞ due to ‖Σ(P0)−1‖F < ∞, zv′ being bounded, the Cauchy-Schwarz
inequality, ‖h0‖L2

µ
= 1 and ‖ḣ0‖L2

µ
< ∞ because η 7→ hη is Fréchet differentiable. Hence, since ‖ ∂∂ηΣ(Pη)−1|η=0‖F

is finite, continuity implies it must be uniformly bounded in a neighborhood of zero, and the Lemma follows.

Lemma E.3. Let Assumption 3.7 hold, and SI ≡ {h ∈ L2
µ : h =

√
dQ/dµ for some Q ∈ PI}. If η 7→ hη is a curve

in SI and hη =
√
dPη/dµ, then there is a neighborhood N ⊂ R of zero, such that for all (p, η0) ∈ Sdθ ×N :

∂

∂η
ν(p,Θ0,I(Pη))

∣∣∣
η=η0

= 2
∫
{ψν(p, x, Pη0)− ψΣ(p, x, Pη0)}ḣη0(x)hη0(x)dµ(x) , (E.4)

where ψν and ψΣ are as defined in equations (15) and (16) respectively. In addition, N may be chosen so that
(p, η0) 7→ ∂

∂ην(p,Θ0,I(Pη))|η=η0 is continuous and uniformly bounded in (p, η0) ∈ Sdθ ×N .

Proof: First note that since Pη ∈ PI it follows that
∫
vz′dPη(x) is invertible, while Pη � µ and Assumption 3.7(ii)

imply Pη(YL ≤ YU ) = 1. Therefore, Proposition 2 in Bontemps et al. (2012) implies that:

ν(p,Θ0,I(Pη)) =
∫
p′Σ(Pη)−1v(yL + 1{p′Σ(Pη)−1v > 0}(yU − yL))dPη(x) (E.5)

provided Pη(YL < YU ) > 0, while direct calculation shows (E.5) holds when Pη(YL = YU ) = 1 since then Θ0,I(Pη) =
{Σ(Pη)−1

∫
vyLdPη(x)}. Let γη(p, v) ≡ p′Σ(Pη)−1v and note that if (pn, ηn)→ (p0, η0) with p0 ∈ Sdθ , then:

µ((yL, yU , v, z) : lim
n→∞

1{γηn(pn, v) > 0} = 1{γη0(p0, v) > 0}) = 1 (E.6)

since (p, η) 7→ γη(p, v) is continuous, and µ((yL, yU , v, z) : p′0Σ(Pη0)−1v = 0) = 0 by Assumption 3.7(iii). Moreover,

lim
n→∞

sup
p∈Sdθ

|
∫
v(i)(yU − yL)1{γηn(p, v) > 0}(h2

ηn(x)− h2
η0(x))dµ(x)|

≤ sup
x∈X

2‖x‖2 × lim
n→∞

{‖hηn − hη0‖L2
µ
× ‖hηn + hη0‖L2

µ
} = 0 , (E.7)

for any 1 ≤ i ≤ dZ by compactness of X , the Cauchy-Schwarz inequality, ‖hη‖L2
µ

= 1 for all η, and η 7→ hη being
Fréchet differentiable. Hence, compactness of X , result (E.6) and the dominated convergence theorem imply:

lim
n→∞

∫
v(yU − yL)1{γηn(p, v) > 0}h2

ηn(x)dµ(x) =
∫
v(yU − yL)1{γη0(p, v) > 0}h2

η0(x)dµ(x) . (E.8)
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Therefore, for any p ∈ Sdθ we can conclude from (E.8) and η 7→ Σ(Pη)−1 being differentiable by Lemma E.2 that:

lim
n→∞

1
|ηn − η0|

∫
(γηn(p, v)− γη0(p, v))(yU − yL)1{γηn(p, v) > 0}h2

ηn(x)dµ(x)

= p′{ ∂
∂η

Σ(Pη)−1
∣∣∣
η=η0
}
∫
v(yU − yL)1{γη0(p, v) > 0}h2

η0(x)dµ(x) . (E.9)

Next, note γη0(p, v)(yU − yL) is uniformly bounded by compactness of Sdθ ×X , and hence arguing as in (A.43):

lim
n→∞

1
|ηn − η0|

∫
γη0(p, v)(yU − yL)1{γηn(p, v) > 0}(h2

ηn(x)− h2
η0(x)− 2(ηn − η0)ḣη0(x)hη0(x))dµ(x) = 0 . (E.10)

Thus, results (E.6) and (E.10), compactness of X , and the dominated convergence theorem yield:

lim
n→∞

1
|ηn − η0|

∫
γη0(p, v)(yU − yL)1{γηn(p, v) > 0}(h2

ηn(x)− h2
η0(x))dµ(x)

= 2
∫
γη0(p, v)(yU − yL)1{γη0(p, v) > 0}ḣη0(x)hη0(x)dµ(x) . (E.11)

In addition, Lemma E.2 and the mean value theorem imply that for some η̄n(x) between ηn and η0

lim
n→∞

|
∫
γη0(p, v)(yU − yL)(1{γηn(p, v) > 0} − 1{γη0(p, v) > 0})h2

η0(x)dµ(x)|

= lim
n→∞

|
∫
γη0(p, v)(yU − yL)(1{γη0(p, v) > (η0 − ηn)

∂

∂η
γη(p, v)

∣∣∣
η=η̄n(x)

} − 1{γη0(p, v) > 0})h2
η0(x)dµ(x)|

≤ lim
n→∞

∫
|γη0(p, v)(yU − yL)|1{|γη0(p, v)| ≤M |η0 − ηn|}h2

η0(x)dµ(x) , (E.12)

where the inequality holds for some M > 0 due to Lemma E.2 and compactness of Sdθ ×X implying ∂
∂ηγη(p, v)|η=η0

is uniformly bounded for η0 in a neighborhood of zero. Therefore, from (E.12) we conclude:

lim
n→∞

1
|ηn − η0|

|
∫
γη0(p, v)(yU − yL)(1{γηn(p, v) > 0} − 1{γη0(p, v) > 0})h2

η0(x)dµ(x)|

≤ 2 sup
x∈X
‖x‖ × lim

n→∞
M

∫
1{|γη0(p, v)| ≤M |η0 − ηn|}h2

η0(x)dµ(x) = 0 , (E.13)

where the final equality results from the monotone convergence theorem, and µ((yL, yU , v, z) : p′Σ(Pη0)−1v = 0) = 0
by Assumption 3.7(iii) and p′Σ(Pη0)−1 6= 0. Finally, combining results (E.9), (E.11) and (E.13) we can obtain:

∂

∂η
{
∫
γη(p, v)(yU − yL)1{γη(p, v) > 0}h2

η(x)dµ(x)}
∣∣∣
η=η0

=
∫

(p′{ ∂
∂η

Σ(Pη)−1
∣∣∣
η=η0
}vh2

η0(x) + 2γη0(p, v)ḣη0(x)hη0(x))(yU − yL)1{γη0(p, v) > 0}dµ(x) . (E.14)

Similarly, Lemma E.2, compactness of X and arguing as in (E.9) and (E.11) allow us to establish that:

∂

∂η
{
∫
γη(p, v)yLh2

η(x)dµ(x)}
∣∣∣
η=η0

=
∫

(p′{ ∂
∂η

Σ(Pη)−1
∣∣∣
η=η0
}vh2

η0(x) + 2γη0(p, v)ḣη0(x)hη0(x))yLdµ(x) . (E.15)

Result (E.4) then follows from (E.14), (E.15) Lemma E.2, and the definitions of ψν and ψΣ.

In order to establish continuity, let (pn, ηn)→ (p0, η0) ∈ Sdθ ×N . Results (E.6) and (E.7) then imply that:

lim
n→∞

∫
v(yU − yL)1{γηn(pn, v) > 0}h2

ηn(x)dµ(x) =
∫
v(yU − yL)1{γη0(p0, v) > 0}h2

η0(x)dµ(x) (E.16)

by the dominated convergence theorem. Next, note that by compactness of X and the Cauchy-Schwarz inequality:

lim
n→∞

|
∫
v(i)(yU − yL)1{γηn(pn, v) > 0}(ḣηn(x)hηn(x)− ḣη0(x)hη0(x))dµ(x)|

≤ 2 sup
x∈X
‖x‖2 × lim

n→∞
{‖ḣηn − ḣη0‖L2

µ
‖hηn‖L2

µ
+ ‖hηn − hη0‖L2

µ
‖ḣη0‖L2

µ
} = 0 (E.17)

32



since ‖hη‖L2
µ

= 1 for all η and η 7→ hη is continuously Fréchet differentiable. Hence, we can conclude that:

lim
n→∞

∫
v(yU − yL)1{γηn(pn, v) > 0}ḣηn(x)hηn(x)dµ(x) =

∫
v(yU − yL)1{γη0(p0, v) > 0}ḣη0(x)hη0(x)dµ(x) (E.18)

by (E.6) and the dominated convergence theorem. Therefore, (E.14), (E.16), (E.18) and Lemma E.2 yield:

lim
n→∞

∂

∂η
{
∫
γη(pn, v)(yU − yL)1{γη(pn, v) > 0}h2

η(x)dµ(x)}
∣∣∣
η=ηn

=
∂

∂η
{
∫
γη(p0, v)(yU − yL)1{γη(p0, v) > 0}h2

η(x)dµ(x)}
∣∣∣
η=η0

. (E.19)

Similarly, employing the same arguments as in (E.16) and (E.18) together with result (E.15) it is possible to show:

lim
n→∞

∂

∂η
{
∫
γη(pn, v)yLh2

η(x)dµ(x)}
∣∣∣
η=ηn

=
∂

∂η
{
∫
γη(p0, v)yLh2

η(x)dµ(x)}
∣∣∣
η=η0

. (E.20)

Thus, continuity of (p, η0) 7→ ∂
∂ην(p,Θ0,I(Pη))|η=η0 follows from (E.5), (E.19) and (E.20). Finally, note that since

η 7→ hη is continuously Fréchet differentiable, we may choose the neighborhood N ⊆ R so that ‖ḣη‖L2
µ

is uniformly
bounded in η ∈ N . The Cauchy-Schwarz inequality then implies |

∫
ḣη(x)hη(x)dµ(x)| ≤ ‖ḣη‖L2

µ
‖hη‖L2

µ
< ∞

uniformly in η ∈ N . Therefore, compactness of X × Sdθ , Lemma E.2, and results (E.5), (E.14) and (E.15) imply
∂
∂ην(p,Θ0,I(Pη))|η=η0 is uniformly bounded in (p, η0) ∈ Sdθ ×N , and the Lemma follows.

Lemma E.4. Let Assumption 3.7 hold, and ρI : PI → C(Sdθ ) be given by ρI(P ) ≡ ν(·,Θ0,I(P )). Then ρI is weakly
pathwise differentiable at any P ∈ PI, and for s ≡

√
dP/dµ the derivative ρ̇I : ṠI → C(Sdθ ) satisfies:

ρ̇I(ḣ0)(p) = 2
∫
{ψν(p, x, P )− ψΣ(p, x, P )}ḣ0(x)h0(x)dµ(x) ,

where ψν and ψΣ are as defined in equations (15) and (16) respectively.

Proof: We first note that Lemma E.3 implies ρ̇I(ḣ0) ∈ C(Sdθ ) for any ḣ0 ∈ ṠI. In addition, ρ̇I is linear by inspection,
while ψν(p, x, P ) and ψΣ(p, x, P ) being uniformly bounded in (p, x) ∈ Sdθ ×X by Assumption 3.7(i) imply:

sup
‖ḣ0‖L2

µ
=1

‖ρ̇I(ḣ0)‖∞ ≤ sup
(p,x)∈Sdθ×X

2{|ψν(p, x, P )|+ |ψΣ(p, x, P )|} × sup
‖ḣ0‖L2

µ
=1

{‖ḣ0‖L2
µ
× ‖h0‖L2

µ
} <∞ , (E.21)

and hence ρ̇I is continuous as well. Moreover, for any finite Borel measure B on Sdθ and curve η 7→ Pη ∈ PI with
h0 = s, the mean value and dominated convergence theorems together with Lemma E.3 yield:

lim
η0→0

∫
{ν(p,Θ0,I(Pη0))− ν(p,Θ0,I(P ))

η0
− ρ̇I(ḣ0)(p)}dB(p) = 0 , (E.22)

(see also (A.57)). Result (E.22) verifies ρ̇I is the weak derivative of ρI and the Lemma follows.

Proof of Theorem 3.3: As in the proof of Theorem 3.2, we let B ≡ C(Sdθ ) and B∗ denote the set of finite Borel
measures on Sdθ , which is the dual of B by Corollary 14.15 in Aliprantis and Border (2006). Let ρI : PI → B be
given by ρI(P ) ≡ ν(·,Θ0,I(P )), which has weak derivative ρ̇I by Lemma E.4. For any B ∈ B∗ then define:

ρ̇TI (B)(x) ≡ 2
∫

Sdθ
{ψ(x, p, P )− E[ψ(Xi, p, P )]}s(x)dB(p) , (E.23)

where s ≡
√
dP/dµ, and the measurability of the integrand can be established arguing as in (A.59). In what follows,

we aim to show ρ̇TI : B∗ → ṠI is the adjoint of ρ̇I : ṠI → B. To this end, note ρ̇TI (B) ∈ L2
µ for any B ∈ B∗ since

ψ(p, x, P ) = ψν(p, x, P )− ψΣ(p, x, P ) is uniformly bounded in (p, x) ∈ Sdθ ×X as argued in (E.21). Moreover,∫
X
ρ̇TI (B)(x)s(x)dµ(x) = 2

∫
Sdθ

∫
X
{ψ(x, p, P )− E[ψ(Xi, p, P )]}dP (x)dB(p) = 0 , (E.24)

by exchanging the order of integration and exploiting that s2 = dP/dµ. Hence, Lemma E.1 and (E.24) verify that
ρ̇TI (B) ∈ ṠI for any B ∈ B∗. Finally, for any ḣ0 ∈ ṠI and B ∈ B∗ we can use that

∫
ḣ0(x)s(x)dµ(x) = 0 by Lemma
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E.1, exchange the order of integration and exploit Lemma E.4 to obtain that:∫
X
ρ̇TI (B)(x)ḣ0(x)dµ(x) =

∫
Sdθ

∫
X
ψ(x, p, P )ḣ0(x)s(x)dµ(x)dB(p) =

∫
Sdθ

ρ̇I(ḣ0)(p)dB(p) . (E.25)

From result (E.25) we conclude ρ̇TI : B∗ → ṠI is indeed the adjoint of ρ̇I : ṠI → B, and the Theorem then follows
from Theorem 5.2.1 in Bickel et al. (1993).

The principal challenge in establishing Theorem 3.3 is in verifying weak-pathwise differentiability of the support
function of the identified set. Differentiability of the support function in particular implies that the scalar valued
parameter Q 7→ ν(p0,Θ0,I(Q)) must be differentiable at every p0 ∈ Sdθ , which by (14) is equivalent to

ν(p0,Θ0,I(Pη)) =
∫
p′0Σ(Pη)−1v(yL + 1{p′0Σ(Pη)−1v > 0}(yU − yL))dPη(x) (E.26)

being differentiable in η for any parametric submodel η 7→ Pη. Inspecting (E.26), however, reveals that nondiffer-
entiability at η = 0 may occur if P (p′0Σ(P )−1V = 0) > 0 – a situation that is ruled out by Assumption 3.7(iii).
Interestingly, when V is a discrete random vector, the identified set Θ0,I(P ) has “flat” or “exposed” faces, and the
p0 ∈ Sdθ such that P (p′0Σ(P )−1V = 0) > 0 are precisely the p0 ∈ Sdθ that are orthogonal to these flat faces; see
Bontemps et al. (2012). In close connection to Remark 3.2, it is then possible to show Q 7→ ν(p0,Θ0,I(Q)) is not
pathwise weak-differentiable at any such p0 by constructing a path η 7→ Pη that alters the slope of the exposed face.

Example E.1. Suppose Z = V = (1,W )′, W ∈ {−1, 0, 1}, and YL, YU ∈ Y ⊂ R with Y compact. Further let
X = (YL, YU , V ′)′, X = Y × Y × {1} × {−1, 0, 1}, and µ ∈M satisfy Assumption 3.7(ii). The set of θ = (α, β) with

E[Ỹ − α−Wβ] = 0 E[W (Ỹ − α−Wβ)] = 0 (E.27)

for some Ỹ satisfying YL ≤ Ỹ ≤ YU , then constitutes the identified set under P . Further suppose P is such that

P (W = −1) = P (W = 0) = P (W = 1) =
1
3
, (E.28)

for a ∈ {−1, 0, 1} and ` ∈ {L,U} define EP [Y`|W = a] ≡
∫
y`1{w = a}dP (x)/P (W = a), and for simplicity let

EP [YL|W = 0] = E[YU |W = 0] = 0 . (E.29)

Let us consider a submodel satisfying EPη [Y`|W = a] = EP [Y`|W = a] for all a ∈ {−1, 0, 1} and ` ∈ {L,U}, and

Pη(W = −1) =
1
3

(1− η) Pη(W = 0) =
1
3

(1 + 2η) Pη(W = 1) =
1
3

(1− η) . (E.30)

Along the submodel η 7→ Pη, we can then obtain by direct calculation that the identified set at Pη is given by

Θ0(Pη) =
{
θ ∈ R2 :

(i) EPη [YL|W = −1] ≤ 3
2

α
1−η − β ≤ EPη [YU |W = −1]

(ii) EPη [YL|W = 1] ≤ 3
2

α
1−η + β ≤ EPη [YU |W = 1]

}
. (E.31)

Thus, Θ0(Pη) is a parallelogram with the slope of exposed faces depending on η. As in Remark 3.2, η 7→ ν(p0,Θ0(Pη))
is not differentiable at η = 0 for an appropriate choice of p0. For instance, for p0 = ( 3√

13
, 2√

13
) we obtain by (E.26)

ν(p0,Θ0(Pη)) =
2− η√

13
E[YU |W = 1]− η√

13
(E[YL|W = −1] + E[YU − YL|W = −1]1{η < 0}) , (E.32)

which is not differentiable at η = 0 if E[YU − YL|W = −1] 6= 0. Thus, η 7→ ν(p0,Θ0(Pη)) is not differentiable at
η = 0 precisely at a p0 that is orthogonal to one of the exposed faces of the identified set Θ0(P ).

Appendix F - Discussion of Examples 2.1, 2.2, 2.3 and 2.4

In this Appendix we revisit Examples 2.1, 2.2, 2.3 and 2.4 from the main text. We map each example into our
general framework, and examine Assumptions 3.2, 3.3, 3.4, 3.5 and 3.6 in their context.
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Example 2.1 (Interval Censored Outcome)

In this example, X = (YL, YU , Z ′)′ and we let Y ⊆ R, Z = {z1, . . . , zK} with K <∞ and X = Y × Y × Z. For
M the set of Borel probability measures on X and any Q ∈M such that Q(Z = zk) > 0, then denote for ` ∈ {L,U}

EQ[Y`|Z = zk] ≡
∫
y`1{Z = zk}dQ(x)∫
1{Z = zk}dQ(x)

. (F.1)

For a parameter space Θ ⊆ Rdθ and any Q ∈M, then recall that in this example the identified set under Q is

Θ0(Q) ≡ {θ ∈ Θ : EQ[YL|Z = zk] ≤ z′kθ ≤ EQ[YU |Z = zk] for all 1 ≤ k ≤ K} . (F.2)

To map this setting into the framework of (2) and (3), we let 1Z(z) ≡ (1{z = z1}, . . . , 1{z = zK})′ and mS(x, θ) =
(yL1Z(z)′, yU1Z(z)′, 1Z(z)′)′ for all θ ∈ Θ. Then define FS : R3K → R2K to be pointwise given by

F
(i)
S (v) ≡

 v(i)

v(2K+i) , i = 1, . . . ,K

− v(i)

v(K+i) , i = K + 1, . . . , 2K .
(F.3)

If Q ∈M satisfies Q(Z = zk) > 0 for some 1 ≤ k ≤ K, then (F.3) implies F (k)
S (

∫
mS(x, θ)dQ(x)) = EQ[YL|Z = zk]

and F
(2k)
S (

∫
mS(x, θ)dQ(x)) = −EQ[YU |Z = zk]. Hence, setting A = (−z1, . . . ,−zK , z1, . . . , zK)′ we obtain

Θ0(Q) = {θ ∈ Θ : Aθ + FS(
∫
mS(x, θ)dQ(x)) ≤ 0} . (F.4)

The following more primitive assumptions suffice for verifying Assumptions 3.2-3.6 in this example.

Assumption F.1. (i) Y is compact; (ii) Θ ≡ {θ ∈ Rdθ : ‖θ‖2 ≤ B0} with B0 <∞ satisfying C0B0 > K{supy∈Y y2}
where C0 ≡ infp∈Sdθ

∑
k〈p, zk〉2; (iii) K ≥ dθ; (iv) Any subset C ⊆ Z with #C ≤ dθ is linearly independent.

Assumption F.2. (i) For some θ0 ∈ Rdθ , EP [YL|Z = zk] ≤ z′kθ0 ≤ EP [YU |Z = zk] for all 1 ≤ k ≤ K; (ii)
P (Z = zk) > 0 and EP [YL − YU |Z = zk] < 0 for all 1 ≤ k ≤ K; (iii) #A(θ, P ) ≤ dθ for all θ ∈ Θ0(P ).

Assumption F.1(i) imposes that YL and YU have compact support, which we require to verify Assumption 3.4(i).
Assumption F.1(ii) defines Θ to be a ball of radius

√
B0, where B0 is chosen to ensure that Θ0(P ) ⊂ Θo as required

by Assumption 3.6(i). Assumptions F.1(iii)-(iv) impose a linear independence restrictions on the support points
of Z, which together guarantee that Θ0(P ) is bounded. Assumption F.2 contains the main requirements on P .
In particular, Assumption F.2(i), which holds if the model is properly specified, guarantees that Θ0(P ) 6= ∅. The
requirement EP [YL − YU |Z = zk] < 0 ensures that there is no θ ∈ Θ0(P ) such that EP [YL|Z = zk] = z′kθ =
EP [YU |Z = zk], which would violate Assumption 3.6(iv). Finally, Assumption F.2(iii) requires that the number
of binding constraints at each θ ∈ Θ0(P ) be less than or equal to dθ, and together with Assumption F.1(iv) imply
Assumption 3.6(iv). We note that if K = dθ, then Assumption F.1(iv) and EP [YL−YU |Z = zk] < 0 imply Assumption
F.2(iii) is automatically satisfied. In general, however, Assumption F.2(iii) imposes additional requirements on P .

Proposition F.1. In Example 2.1, Assumptions F.1 and F.2 imply Assumptions 3.2-3.6.

Proof: Assumption 3.2(i) is implied by Assumption F.1(ii). Further note that since the 2K×dθ matrix A is known, As-
sumption 3.3(i) holds. Moreover, since Y is compact by Assumption F.1(i), mS(x, θ) = (yL1Z(z)′, yU1Z(z)′, 1Z(z)′)′

is uniformly bounded in X ×Θ and hence m(x, θ) = (mS(x, θ)′, θ′A′)′ and Θ being compact by Assumption F.1(ii)
verify Assumption 3.4(i). In addition, given the definition of mS(x, θ), Assumptions 3.4(ii)-(iii) directly follow from:

∇θm(x, θ) = ∇θ
[ mS(x, θ)

Aθ

]
=
[ 0
A

]
. (F.5)

In order to verify Assumption 3.5, set 0 < ε0 < infk P (Z = zk), which is possible by Assumption F.2(ii), and M0 > 0
so that max{supy∈Y |y|, B0 supz∈Z ‖z‖} < M0 <∞, which is possible by compactness of Y. Then defining

V0 ≡ (−M0,M0)2K × (ε0, 1)K × (−M0,M0)2K , (F.6)
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and noting F (v) is differentiable unless v(i) = 0 for some 2K + 1 ≤ i ≤ 3K, it follows that Assumption 3.5(i) holds.
Moreover, since ∇F is continuous on the closure of V0 and V0 is precompact, Assumption 3.5(ii) holds as well.

We next verify that P satisfies Assumption 3.6. First observe that Assumption F.2(i) implies θ0 ∈ Θ0(P ) and
hence Θ0(P ) 6= ∅. Next, also note that if θ ∈ Θ0(P ), then (F.2) implies that for any 1 ≤ k ≤ K:

|z′kθ| ≤ max{|E[YL|Z = zk]|, |E[YU |Z = zk]|} ≤ sup
y∈Y
|y| . (F.7)

Furthermore, Assumptions F.1(iii)-(iv) imply Rdθ = span{z1, . . . , zK}, and hence C0 = infp∈Sdθ
∑
k〈p, zk〉2 > 0 by

compactness of Sdθ . Therefore, since θ/‖θ‖ ∈ Sdθ , we obtain from (F.7) that for any θ ∈ Θ0(P )

‖θ‖2C0 ≤ ‖θ‖2
K∑
k=1

〈zk,
θ

‖θ‖
〉2 ≤ K sup

y∈Y
y2 . (F.8)

It then follows from Assumption F.1(ii) that if θ ∈ Θ0(P ), then ‖θ‖2 < B0 and hence Θ0(P ) ⊆ Θo. However, since
Θ0(P ) is closed, we must have Θ0(P ) ⊂ Θo, which verifies Assumption 3.6(i).

Since mS(x, θ) = (yL1Z(z)′, yU1Z(z)′, 1Z(z)′)′ does not depend on θ, it follows that Si = ∅ for all 1 ≤ i ≤ 2K
(see (4)), and hence Assumption 3.6(ii) actually holds for all Q ∈ M. In turn, by definitions of ε0 and M0 we also
have

∫
m(x, θ)dP (x) ∈ V0 for all θ ∈ Θ and thus Assumption 3.6(iii) holds as well. Finally, note that

∇F (i)(
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x) =

{
−zi if 1 ≤ i ≤ K
+zi if K + 1 ≤ i ≤ 2K

. (F.9)

For notational simplicity, let P(θ) = {∇F (i)(
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x)}i∈A(θ,P ). Then note that since

EP [YL − YU |Z = zk] < 0, it follows for 1 ≤ i ≤ K that if i ∈ A(θ, P ) then K + i /∈ A(θ, P ) – or equivalently,
if −zi ∈ P(θ), then zi /∈ P(θ). Assumptions F.1(iv) and F.2(iii) then imply the elements of P(θ) are linearly
independent for all θ ∈ Θ0(P ), which verifies Assumption 3.6(iv).

Example 2.2 (Discrete Choice)

The structure of this example is identical to that of Example 2.1, though the notation is substantially more
cumbersome. In this example X = (Y,Z∗′)′, and we let Y ⊆ R. Also recall Z∗ is assumed to have finite support
Z = {z1, . . . , zK} with K < ∞. Set X = Y × Z, and let M denote the set of Borel measures on X . For notational
convenience, we also define ∆(y, zj , zk) ≡ ψ(y, zj)− ψ(y, zk) and the set V to be given by

V ≡ {z1 − z2, . . . , z1 − zK , z2 − z3, . . . , z2 − zK , . . . , zK−1 − zK} . (F.10)

For any Q ∈ M such that Q(Z∗ = zk) > 0 let EQ[∆(Y, zj , zk)|Z∗ = zk] ≡
∫

∆(y, zj , zk)dQ(x)/
∫

1{z∗ = zk}dQ(x)
(as in (F.1)), and note that for a parameter space Θ, the identified set under Q ∈M in this example is then

Θ0(Q) ≡ {θ ∈ Θ : EQ[∆(Y, zj , zk)|Z∗ = zk] + (zj − zk)′θ ≤ 0 for all zj 6= zk} . (F.11)

In order to identify (F.11) with the framework of (2) and (3), for each 1 ≤ k ≤ K let υk(y, z∗) ∈ RK−1 satisfy

υ
(j)
k (y, z∗) =

∆(y, zj , zk)1{z∗ = zk}, 1 ≤ j < k

∆(y, zj+1, zk)1{z∗ = zk}, k ≤ j ≤ K − 1 .
(F.12)

Then let υ(y, z∗) = (υ1(y, z∗)′, . . . , υK(y, z∗)′)′, 1Z(z∗) ≡ (1{z∗ = z1}, . . . , 1{z∗ = zK})′ and set mS(x, θ) ∈ RK2
to

be given by mS(x, θ) = (υ(y, z∗)′, 1Z(z∗)′)′. We can then define FS : RK2 → RK(K−1) to be pointwise given by

F
(i)
S (v) =

v(i)

v(K(K−1)+d i
K−1 e)

i = 1, . . . ,K(K − 1) , (F.13)

where dce denotes the smallest integer k such that k ≥ c. Given these definitions, if Q ∈ M is such that Q(Z∗ =
zk) > 0 and (K − 1)(k − 1) + 1 ≤ i ≤ (K − 1)k then F

(i)
S (
∫
mS(x, θ)dQ(x)) = EQ[∆(Y, zj , zk)|Z∗ = zk] for some
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j 6= k. Moreover, by setting A = ((z1 − z2)′, . . . , (z1 − zK)′, . . . , (zK − z1)′, . . . , (zK − zK−1)′)′ we obtain

Θ0(Q) = {θ ∈ Θ : Aθ + FS(
∫
mS(x, θ)dQ(x)) ≤ 0} . (F.14)

Given the identical structure of Examples 2.1 and 2.2, we can derive sufficient conditions for Assumptions 3.2-3.6
by recasting Assumptions F.1 and F.2 in the present context. A formal proof that Assumptions F.3 and F.4 imply
3.2-3.6 can be obtained by arguments identical to those of Proposition F.1 and is therefore omitted.

Assumption F.3. (i) ψ : Y × Z → R is bounded; (ii) Θ ≡ {θ ∈ Rdθ : ‖θ‖2 ≤ B0} with B0 < ∞ satisfying
2C0B0 > K(K−1){sup(y,z)∈Y×Z(ψ(y, z))2} where C0 ≡ infp∈Sdθ

∑
v∈V〈p, v〉2; (iii) K(K−1) ≥ 2dθ; (iv) Any subset

C ⊆ V satisfying #C ≤ dθ is linearly independent.

Assumption F.4. (i) For some θ0 ∈ Rdθ , EP [∆(Y, zj , zk)|Z∗ = zk] + (zj − zk)′θ0 ≤ 0 for all zj 6= zk ∈ Z; (ii)
P (Z∗ = zk) > 0 for all 1 ≤ k ≤ K; (iii) EP [∆(Y, zj , zk)|Z∗ = zj ] 6= EP [∆(Y, zj , zk)|Z∗ = zk] for any 1 ≤ j < k ≤ K;
(iv) #A(θ, P ) ≤ dθ for all θ ∈ Θ0(P ).

Assumption F.3(i) guarantees m(x, θ) is bounded as required by Assumption 3.4(i). As in Assumption F.1(ii),
Θ ⊂ Rdθ is defined to be a sufficiently large sphere to ensure that Θ0(P ) ⊂ Θo, as demanded by Assumption 3.6(i).
The gradient ∇F (i)(

∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x) at each active constraint is of the form (zj − zk) for some

zj 6= zk ∈ Z. Therefore, to ensure that Assumption 3.6(iv) holds, we must rule out that a θ ∈ Θ0(P ) satisfies:

E[∆(Y, zj , zk)|Z∗ = zk] + (zj − zk)′θ = 0 = E[∆(Y, zk, zj)|Z∗ = zj ] + (zk − zj)′θ , (F.15)

which is guaranteed by Assumption F.4(iii). A consequence of Assumption F.4(iii) is that when Z∗ has K points of
support, it generates K(K−1) constraints, of which at most K(K−1)/2 can be active. For this reason, Assumption
F.3(iii) requires K(K − 1)/2 ≥ dθ, which together with Assumption F.3(iv) imply Θ0(P ) is bounded. Assumption
F.4(i) is satisfied if the model is properly specified and implies Θ0(P ) 6= ∅. Finally, Assumptions F.3(iv) and F.4(iv)
together provide a sufficient condition for Assumption 3.6(iv) to be satisfied.

Remark F.1. The moment inequalities in (6) are a special case of a larger system implied by the optimality condition
in (5). In particular, for any F measurable random variable V , equation (5) implies that for any zj ∈ Z:

E[((ψ(Y, zj)− ψ(Y,Z∗)) + (zj − Z∗)′θ)g(V )] ≤ 0 , (F.16)

provided g(V ) ≥ 0 almost surely; see for example Ho (2009). Indeed, note (F.16) reduces to (6) by setting V = Z∗

and g(V ) = 1{Z∗ = zk}. Unlike (6), however, it is not possible to write (F.16) as a linear inequality constraint with
known slope for a general g(V ). On the other hand, (F.16) does satisfy Assumption 4.2. Therefore, Theorem 4.3
implies the “plug-in” estimator is still efficient for estimating ν|C(·,Θ0(P )) for any C satisfying Assumption 4.1.

Example 2.3 (Pricing Kernel)

For this example, we set X = (Y,Z ′, U ′)′ with Y ∈ R, Z ∈ RdZ and U ∈ RdZ , and hence X ⊆ R×RdZ ×RdZ .
Recall θ = (ρ, γ)′ ∈ R2, and to ensure the identified set is bounded, we impose the constraints 0 ≤ ρ ≤ ρ̄ and
0 ≤ γ ≤ γ̄ for some γ̄ > 0 and ρ̄ > 0. Formally, for a parameter space Θ, the identified set is given by:

Θ0(Q) ≡ {θ ∈ Θ :
∫

(
y−γz

1 + ρ
− u)dQ(x) ≤ 0 and θ ∈ [0, ρ̄]× [0, γ̄]} . (F.17)

In order to map this example into (2) and (3), we let A, mS : X ×Θ→ RdZ , and FS : RdZ → RdZ+4 be given by

mS(x, θ) =
y−γz

1 + ρ
− u FS(v) = (v′,−ρ̄, 0,−γ̄, 0)′ A′ =

[
0′dZ 1 −1 0 0
0′dZ 0 0 1 −1

]
, (F.18)
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where 0dZ stands for 0 ∈ RdZ . Given this notation, the constraints 1 ≤ i ≤ dZ correspond to (7), while the restriction
θ ∈ [0, ρ̄]× [0, γ̄] is imposed in the constraints dZ + 1 ≤ i ≤ dZ + 4. Therefore, we obtain the representation

Θ0(Q) = {θ ∈ Θ : Aθ + FS(
∫
mS(x, θ)dQ(x)) ≤ 0} . (F.19)

The following conditions are sufficient for verifying Assumptions 3.2-3.6 in Example 2.3.

Assumption F.5. (i) X ⊆ [ε0,∞)×RdZ
+ ×RdZ for some ε0 > 0; (ii) X is compact; (iii) Θ ≡ [−1/2, 2ρ̄]× [−1/2, 2γ̄].

Assumption F.6. (i) E[Y
−γZ

1+ρ − U ] ≤ 0 for some θ ∈ [0, ρ̄] × [0, γ̄]; (ii) P (Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ ; (iii)
For all (ρ, γ)′ = θ ∈ Θ0(P ), and {i, j} ⊆ A(θ, P ) with 1 ≤ i < j ≤ dZ + 2, E[Y −γ(Z(i)− πi,jZ(j)) log(Y )] 6= 0, where
πi,j = E[U (i)]/E[U (j)] if j ≤ dZ and πi,j = 0 otherwise; (iv) #A(θ, P ) ≤ 2 for all θ ∈ Θ0(P ).

Assumption F.5(i) requires Y , the ratio of future over current consumption, to be bounded away from zero.
Together with compactness of X ×Θ, Assumption F.5(i) ensures m : X ×Θ→ R2dZ+4 is bounded and differentiable,
as required by Assumption 3.4. The constraint θ ∈ [0, ρ̄]× [0, γ̄] can be interpreted as imposing restrictions defining
the parameter space of interest (see Remark 3.4). However, our arguments require regularity of m in a neighborhood
of Θ0(P ), and for this reason Assumption 3.6(i) further demands we may define a set Θ such that Θ0(P ) ⊂ Θo. In
this example, this is easily accomplished through Assumption F.5(iii) – alternatively, for example, we could have set
Θ = [−δ, ρ̄ + δ] × [−δ, γ̄ + δ] for any 0 < δ < 1. Assumption F.6(i) implies Θ0(P ) 6= 0, and is satisfied if the model
is properly specified. In turn, Assumption F.6(ii) is necessary for θ 7→ F

(i)
S (
∫
mS(x, θ)dP (x)) to be strictly convex

for 1 ≤ i ≤ dZ . Finally, Assumptions F.6(iii)-(iv) are equivalent to Assumption 3.6(iv) in this model. Unfortunately,
unlike in the linear models of Examples 2.1 and 2.2, the gradients of constraints 1 ≤ i ≤ dZ depend on P , and as a
result the requirement on P is more complex.

Proposition F.2. In Example 2.3, Assumptions F.5 and F.6 imply Assumptions 3.2-3.6.

Proof: Assumption 3.2(i) is implied by Assumption F.5(iii), while Assumption 3.3(i) has already been verified in
(F.18) and (F.19). Moreover, since y ≥ ε0 > 0 for all x ∈ X and ρ ≥ −1/2 for all (ρ, γ) = θ ∈ Θ, and X × Θ is
compact by Assumption F.5(i)-(ii), it also follows that mS(x, θ) is uniformly bounded on (x, θ) ∈ X ×Θ. Therefore,
m(x, θ) = (mS(x, θ)′, θ′A′)′ implies Assumption 3.4(i) also holds. Next, note by direct calculation that:

∇θmS(x, θ) =
[
− y−γz

(1+ρ)2 −y
−γ log(y)z

(1+ρ)

]
, (F.20)

and hence since ρ ≥ −1/2 and y ≥ ε0 by Assumptions F.5(i) and F.5(iii), it follows that (x, θ) 7→ ∇θmS(x, θ) is
uniformly bounded in X ×Θ. Assumption 3.4(ii) then follows from ∇θm(x, θ) = (∇θmS(x, θ)′, A′)′. Moreover, (F.20)
further implies (θ, x) 7→ ∇θm(x, θ) is continuous on X ×Θ. However, by compactness of X ×Θ, (θ, x) 7→ ∇θm(x, θ)
is uniformly continuous, and therefore θ 7→ ∇θm(x, θ) is equicontinuous in x ∈ X , verifying Assumption 3.4(iii).
Finally, employing m(x, θ) = (mS(x, θ)′, θ′A)′, and F (

∫
m(x, θ)dQ(x)) = Aθ + FS(

∫
mS(x, θ)dQ(x)) we obtain:

∇F (v) =

[
IdZ

04,dZ

... IdZ+4

]
, (F.21)

where Ik denotes the k × k identity matrix, and 04,dZ is a 4 × dZ matrix of zeroes. From (F.21) it follows that
Assumptions 3.5(i)-(ii) hold with V0 = R2dZ+4.

To verify Assumption 3.6, first observe Assumption F.2(i) directly imposes Θ0(P ) 6= ∅. Moreover, since Θ0(P ) ⊆
[0, ρ̄] × [0, γ̄] ⊂ (−1/2, 2ρ̄) × (−1/2, 2γ̄) = Θo by Assumption F.5(iii), it follows that Assumption 3.6(i) holds. To
verify Assumption 3.6(ii), first note that by (F.18) Si = {1, 2} for 1 ≤ i ≤ dZ and Si = ∅ for dZ + 1 ≤ i ≤ dZ + 4.
Thus, we need only show θ 7→

∫
m

(i)
S (x, θ)dQ(x) is strictly convex for all 1 ≤ i ≤ dZ and Q in a suitable neighborhood

of P . To this end, first exploit that ρ ≥ −1/2 for all (ρ, γ) ∈ Θ and y ≥ ε0 for all x ∈ X to deduce that

∇2
θm

(i)
S (x, θ) =

 2y−γz(i)

(1+ρ)3
y−γ log(y)z(i)

(1+ρ)2

y−γ log(y)z(i)

(1+ρ)2
y−γ log2(y)z(i)

(1+ρ)

 , (F.22)
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for any (x, θ) ∈ X ×Θ and 1 ≤ i ≤ dZ . By (F.22), ∇2
θm

(i)
S (x, θ) is positive definite for any x ∈ X such that z(i) > 0.

Hence, since z(i) ≥ 0 on X , and m(i)
S (x, θ) = −u whenever z(i) = 0, we conclude that for any λ ∈ (0, 1) and 1 ≤ i ≤ dZ∫

m
(i)
S (x, λθ1 + (1− λ)θ2)dQ(x) < λ

∫
m

(i)
S (x, θ1)dQ(x) + (1− λ)

∫
m

(i)
S (x, θ2)dQ(x) (F.23)

provided that Q ∈M satisfies Q(Z(i) > 0) > 0. However, by Assumption F.6(ii) P (Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ .
Hence, for each 1 ≤ i ≤ dZ there exists a neighborhood Ni(P ) ⊆M in the τ -topology such that Q(Z(i) > 0) > 0 for
all Q ∈ Ni(P ). Therefore, by (F.23), Assumption 3.6(ii) then holds with N(P ) =

⋂
iNi(P ). In turn, Assumption

3.6(iii) trivially holds since V0 = R2dZ+4. Finally, to verify Assumption 3.6(iv) first note

∇F (
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x) =

[
−
∫

y−γz′

(1+ρ)2 dP (x) 1 −1 0 0

−
∫ y−γ log(y)z′

(1+ρ) dP (x) 0 0 1 −1

]′
(F.24)

by direct calculation and (F.21). Since P (Z(i) > 0) > 0 for all 1 ≤ i ≤ dZ and y ≥ ε0 > 0 for all x ∈ X , we
must have E[Y −γZ(i)] > 0. Therefore, ∇F (i)(

∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x) 6= 0 for all 1 ≤ i ≤ dZ , and thus

{∇F (i)(
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x)}i∈A(θ,P ) are linearly independent if A(θ, P ) is either empty or singleton

valued. Hence, by Assumption F.6(iv), we need only consider the case A(θ, P ) = {i, j} with i 6= j. However, note
that if j ∈ {dZ + 3, dZ + 4}, then i ≤ dZ + 2 (since the dZ + 3 and dZ + 4 constraint cannot simultaneously bind),
and by (F.24) and E[Y −γZ(k)] > 0 Assumption 3.6(iv) is satisfied. Finally, for the case 1 ≤ i < j ≤ dZ + 2
Assumption 3.6(iv) follows by direct calculation, Assumption F.6(iii) and exploiting that if i ∈ A(θ, P ) and i ≤ dZ ,
then E[Y −γZ(i)] = (1 + ρ)E[U (i)].

Example 2.4 (Participation Constraint)

In order to write this example in the form of (2) and (3), let X = (C,W,L,Z ′)′ with (C,W,L) ∈ R3
+ and

Z ∈ RdZ
+ . We denote the parameter θ = (α, β)′ ∈ R2 and we ensure Θ0(P ) is bounded by imposing the constraints

0 ≤ α ≤ ᾱ and 0 ≤ β ≤ β̄ with ᾱ > 0 and β̄ > 0. For a parameter space Θ, then define the identified set

Θ0(Q) ≡ {θ ∈ Θ :
∫

(
w

c− α
− β

l
)zdQ(x) ≤ 0 and θ ∈ [0, ᾱ]× [0, β̄]} . (F.25)

Further let mS(x, θ) = (z′w/(c− α), z′/l)′ and define a (dZ + 4)× 2 matrix A and FS : R2dZ → RdZ+4 by:

F
(i)
S (v) =


v(i)

v(dZ+i) if 1 ≤ i ≤ dZ
−ᾱ if i = dZ + 1
0 if i ∈ {dZ + 2, dZ + 4}
−β̄ if i = dZ + 3

A′ =

[
0′dZ 1 −1 0 0
−1′dZ 0 0 1 −1

]
(F.26)

where 1dZ is a vector of ones in RdZ and recall 0dZ denotes 0 ∈ RdZ . Thus, for 1 ≤ i ≤ dZ we obtain the constraint

F (i)(
∫
m(x, θ)dP (x)) = −β +

E[WZ(i)/(C − α)]
E[Z(i)/L]

, (F.27)

while constraints dZ + 1 ≤ i ≤ dZ + 4 impose θ ∈ [0, ᾱ]× [0, β̄]. Given this notation, we may then rewrite:

Θ0(Q) = {θ ∈ Θ : Aθ + FS(
∫
mS(x, θ)dQ(x)) ≤ 0} . (F.28)

Assumptions F.7 and F.8 impose sufficient conditions for verifying Assumptions 3.2-3.6.

Assumption F.7. (i) X ⊆ [ε0,∞) ×R+ × [ε1,+∞) ×RdZ
+ for some ε0 > ᾱ and ε1 > 0; (ii) X is compact; (iii)

Θ ≡ [−δ0, ᾱ+ δ0]× [−δ0, β̄ + δ0] for some 0 < δ0 < (ε0 − ᾱ).

Assumption F.8. (i) E[( W
C−α −

β
L )Z] ≤ 0 for some θ ∈ [0, ᾱ] × [0, β̄]; (ii) P (WZ(i) > 0) > 0 for all 1 ≤ i ≤ dZ ;

(iii) For all (α, β)′ = θ ∈ Θ0(P ), and {i, j} ⊆ A(θ, P ) with 1 ≤ i < j ≤ dZ , E[ W
(C−α)2 (Z(i) − πi,jZ(j))] 6= 0, where

πi,j = E[Z
(i)

L ]/E[Z
(j)

L ]; (iv) #A(θ, P ) ≤ 2 for all θ ∈ Θ0(P ).
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In Assumptions F.7(i) and F.7(iii) we impose that C − α and L be bounded away from zero, as required for
m(x, θ) to be bounded and utility to remain finite (recall u(C,L) = log(C − α) + β log(L)). As in Example 2.3, in
Assumption F.7(iii) we define Θ to be an expansion of the parameter constraints θ ∈ [0, ᾱ] × [0, β̄]. Assumption
F.8(i) ensures Θ0(P ) 6= ∅, while Assumption F.8(ii) is required so that constraints 1 ≤ i ≤ dZ are strictly convex in
α. Finally, Assumptions F.8(iii)-(iv) are necessary and sufficient for P to satisfy Assumption 3.6(iv) in this model.
As in Example 2.3, the gradients of constraints 1 ≤ i ≤ dZ depend on P , which leads to a more complex requirement
than was necessary in Examples 2.1 and 2.2.

Proposition F.3. In Example 2.4, Assumptions F.7 and F.8 imply Assumptions 3.2-3.6.

Proof: Assumption 3.2(i) is implied by Assumption F.7(iii), while Assumption 3.3(i) was already verified in (F.28).
Moreover, compactness of X × Θ implies wz and z are uniformly bounded, while c ≥ ε0 > ᾱ + δ0 ≥ α and l ≥ ε1

implies (c − α)−1 and l−1 are uniformly bounded as well. Therefore, mS(x, θ) = (z′w/(c − α), z′/l)′ is uniformly
bounded in (x, θ) ∈ X ×Θ and hence so is m(x, θ) = (mS(x, θ)′, θ′A′)′, which verifies Assumption 3.4(i). Similarly,

∇θmS(x, θ) =

[
wz

(c−α)2 0dz
0dZ 0dZ

]
(F.29)

is also bounded, which together with ∇θm(x, θ) = (∇θmS(x, θ)′, A′)′ implies Assumption 3.4(ii) holds as well. In
turn, by compactness of X × Θ and (F.29), (x, θ) 7→ ∇θm(x, θ) is uniformly continuous on X × Θ and therefore
θ 7→ ∇θm(x, θ) is equicontinuous in x ∈ X as demanded by Assumption 3.4(iii). Next, let η0 < infk E[Z(k)/L]
and note we may set η0 > 0 due to Assumption F.8(ii) and P (W ≥ 0) = 1 by definition of X . Similarly, let
supX×Θ ‖m(x, θ)‖ < M0, and note that since Assumption 3.4(ii) holds, we may set M0 <∞. Then defining

V0 ≡ (−M0,M0)dZ × (η0,M0)dZ × (−M0,M0)dZ+4 , (F.30)

and noting that F (v) is differentiable unless v(i) = 0 for some dZ + 1 ≤ i ≤ 2dZ , it follows that Assumption
3.5(i) holds. In addition, since ∇F is continuous on the closure of V0 and such closure is compact, it follows that
Assumption 3.5(ii) holds as well.

In order to verify P satisfies Assumption 3.6, first note that by Assumptions F.7(iii) and F.8(i), ∅ 6= Θ0(P ) ⊆
[0, ᾱ] × [0, β̄] ⊂ (−δ0, ᾱ + δ0) × (−δ0, β̄ + δ0) = Θo which verifies Assumption 3.6(i). Next observe Si = ∅ for
dZ + 1 ≤ i ≤ dZ + 4, and Si = {1} for 1 ≤ i ≤ dZ . Therefore, to show Assumption 3.6(ii) holds it suffices to establish

F
(i)
S (
∫
m(x, θ)dQ(x)) =

∫
(wz(i)/(c− α))dQ(x)∫

(z(i)/l)dQ(x)
, (F.31)

is strictly convex in α for all Q in an appropriate neighborhood of P . However, by Assumptions F.7(i) and F.8(ii)
E[Z(i)/L] > 0 and E[WZ(i)] > 0, and therefore there exists a neighborhood Ni(P ) ⊆M such that

∫
(z(i)/l)dQ(x) > 0

and
∫
wz(i)dQ(x) > 0 for all Q ∈ Ni(P ). Letting N(P ) =

⋂
iN(P ) and noting that Q(C − α > 0) = 1 for all

α ∈ [0, ᾱ] and Q ∈M by Assumption F.7(i), we obtain that α 7→ F
(i)
S (
∫
m(x, θ)dQ(x)) is indeed strictly convex for

all Q ∈ N(P ), thus verifying Assumption 3.6(ii). In turn, Assumption 3.6(iii) is also satisfied by construction of V0

in (F.30) and definitions of η0 and M0. Finally, note that by (F.29) and direct calculation

∇F (
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x) =

[
E[WZ′/(C−α)2]

E[Z′/L] 1 −1 0 0

−1′dZ 0 0 1 −1

]′
. (F.32)

Hence, since E[WZ(i)/(C − α)] > 0 and E[Z(i)/L] > 0 for all α ∈ [0, ᾱ] and 1 ≤ i ≤ dZ by Assumptions F.7(i)
and F.8(ii), (F.32) implies ∇F (i)(

∫
m(x, θ)dP (x))

∫
∂

∂θ(j)
m(x, θ)dP (x) 6= 0 for any 1 ≤ i ≤ dZ and j ∈ {1, 2}. As a

result, it follows that {∇F (i)(
∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x)}i∈A(θ,P ) are linearly independent whenever A(θ, P )

is empty or a singleton, and also when {i, j} = A(θ, P ) with i < j and j ≥ dZ +1. Therefore, by Assumption F.8(iv),
to verify Assumption 3.6(iv) it only remains to consider the case {i, j} = A(θ, P ) with j ≤ dZ . However, in this
instance {∇F (i)(

∫
m(x, θ)dP (x))

∫
∇θm(x, θ)dP (x)}i∈A(θ,P ) are linearly independent by result (F.32), Assumption

F.8(iv) and direct calculation, and hence P satisfies Assumption 3.6(iv) as well.
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Appendix G - Simulation Evidence

In this Appendix, we assess the finite sample performance of the efficient estimator and illustrate its ease of
implementation with a Monte Carlo experiment based on Example 2.1. For comparison purposes, we also include
the results of employing the uniformly valid procedures proposed in Andrews and Soares (2010) and Bugni (2010).

For our design, we let Zi ≡ (Z(1)
i , Z

(2)
i )′ where Z(1)

i = 1 is a constant and Z
(2)
i is uniformly distributed on a set

Z2 of K equally spaced points on [−5, 5]. For a true parameter θ0 = (1, 2)′, we then generate Yi according to:

Yi = Z ′iθ0 + εi i = 1, . . . , n , (G.1)

where εi is a standard normal random variable independent of Zi. We assume Yi is unobservable, but create observable
upper and lower bounds (YL,i, YU,i) such that YL,i ≤ Yi ≤ YU,i almost surely. Specifically, we let:

YL,i = Yi − C − Vi(Z(2)
i )2 i = 1, . . . , n

YU,i = Yi + C + Vi(Z
(2)
i )2 i = 1, . . . , n , (G.2)

where C > 0 and Vi is uniformly distributed on [0, 0.2] independently of (Yi, Z ′i)
′. As discussed in Example 2.1,

Θ0(P ) consists of all θ ∈ Θ such that E[YL,i|Zi] ≤ Z ′iθ ≤ E[YU,i|Zi] almost surely (see also (F.2)). All our reported
simulation results are based on 5000 replications.

Our Monte Carlo experiment is designed to examine the robustness of the estimator to the two free parameters
K and C. Since dF = 2K, the constant K determines the number of constraints, while C controls the diameter of
the identified set with point identification occurring at C = 0 – see Figure 1. Throughout our simulation study we
will examine specifications with C ∈ {0.1, 0.5, 1} and K ∈ {5, 9, 15}, with the latter corresponding to 10, 18 and 30
moment inequalities respectively. Heuristically, high values of K or low values of C yield specifications where P is
closer to violating Assumption 3.6(iv). In such instances, we therefore expect our asymptotic results to provide a
less reliable approximation to finite sample distributions, while uniform procedures should remain accurate.

We first compare the performance of the efficient set estimator Θ̂n = co{Θ0(P̂n)} (see (19)) with that of:

Θ̂n(τn) ≡ {θ ∈ Θ : F (i)(
∫
m(x, θ)dP̂n(x)) ≤ τn√

n
σ̂(i)
n for i = 1, . . . , dF } , (G.3)

where (σ̂(i)
n )2 is a consistent estimator for the asymptotic variance of constraint number i.15 Chernozhukov et al.

(2007) and Bugni (2010) show Θ̂n(τn) is a consistent estimator for Θ0(P ) under the Hausdorff metric provided that
τn/
√
n ↓ 0. Notice in particular that the efficient estimator Θ̂n corresponds to setting τn = 0, and is therefore by

construction always smaller than Θ̂n(τn) whenever τn > 0. This is not necessarily a favorable property, however,
since an estimator that is too small may perform poorly in terms of Hausdorff distance to Θ0(P ). For example, in
certain specifications we find in many replications that Θ̂n(τn) = ∅ for values of τn ∈ {0, log(log(n))}, in which case
the Hausdorff distance to Θ0(P ) is set to equal infinity. Table 1 reports the proportion of replications for which this
event occurs in each specification. As expected, the most problematic specifications are those with many moment
inequalities (K = 15) and Θ0(P ) near point identification (C = 0.1).

Table 2 reports the median of the Hausdorff distance between the different set estimators and Θ0(P ) across
replications – see Remark G.1 for computational details. We report median, rather than mean, Hausdorff dis-
tance because dH(Θ̂n(τn),Θ0(P )) is infinite in replications for which Θ̂n(τn) = ∅. As expected, the median
Hausdorff distance decreases with sample size across all specifications and choices of τn. Interestingly, for τn ∈
{log(log(n)), log(n), n1/8, n1/4} the performance of Θ̂n(τn) is completely insensitive to the choice of C across all
specifications, while the performance of the efficient estimator is only sensitive to the value of C when many moment
inequalities are present (K = 15). In contrast, the median Hausdorff distance of all estimators deteriorates as the

15In particular, for m̄n(θ) ≡
∫
m(x, θ)dP̂n(x), and Ω̂n(θ) ≡

∫
(m(x, θ) − m̄n(θ))(m(x, θ) − m̄n(θ))′dP̂n(x), we let

(σ̂(i)
n )2 ≡ ∇F (i)(

∫
m(x, θ)dP̂n(x))Ω̂n(θ)∇F (i)(

∫
m(x, θ)dP̂n(x))′. It is easy to verify σ̂(i)

n does not depend on θ.
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number of moment inequalities increases. Remarkably, across almost all specifications the median Hausdorff distance
is monotonically increasing in τn, with the efficient estimator outperforming all the alternative estimators.16 The
notable exception is the specification K = 15, C = 0.1 and n = 200, in which the median Hausdorff distance of the
efficient estimator is infinite due to Θ0(P̂n) being empty in over half the replications (see Table 1).

Next, we examine the performance of inferential procedures based on the semiparametric efficient estimator and
compare it to that of alternative methods that are asymptotically valid uniformly in P . To this end, we first consider
the construction of confidence regions Cn for the identified set Θ0(P ) satisfying the coverage requirement:

lim inf
n→∞

P (Θ0(P ) ⊆ Cn) ≥ 1− α . (G.4)

Following the discussion in Example 5.1, we employ the efficient estimator to obtain a confidence region satisfying
(G.4) by using a construction proposed in Beresteanu and Molinari (2008) – see Remark G.2 for computational details.
Additionally, we also obtain confidence regions satisfying (G.4) by utilizing a criterion function based approach, as
developed in Chernozhukov et al. (2007) and Bugni (2010). Specifically, defining the criterion function:

Qn(θ) ≡ max
1≤i≤dF

1

σ̂
(i)
n

(F (i)(
∫
m(x, θ)dP̂n(x)))+ , (G.5)

we examine confidence regions of the form CSn(τn) ≡ {θ ∈ Θ : Qn(θ) ≤ ĉB1−α(τn)/
√
n}, where ĉB1−α(τn) is the

critical value proposed in Bugni (2010) – see Remark G.3. Employing the maximum, rather than the sum, across
constraints in defining Qn implies CSn(τn) is a convex polygon, which greatly simplifies our computations. All
bootstrap procedures employed 200 replications in computing critical values.

Table 3 reports the coverage probabilities of the different confidence regions under alternative values of (n,K,C)
for a nominal coverage of 0.95. A confidence region based on the efficient estimator is considered to have failed to
cover Θ0(P ) in any replication for which Θ0(P̂n) = ∅. Similarly, the criterion based confidence region is considered
to have failed to cover Θ0(P ) whenever Θ̂n(τn) = ∅ – see Remark G.3. As in Table 2, the performance of the
confidence region based on the efficient estimator is more sensitive to K than to C. In specifications with 10 moment
inequalities (K = 5), the actual coverage is always close to its nominal level, while under 30 moment inequalities
(K = 15) size distortions upwards of 5% remain even for n = 1000. Unsurprisingly, the most severe undercoverage
occurs in specifications for which Θ0(P̂n) = ∅ in a large number of replications (K = 15, C = 0.1). In contrast, the
criterion based confidence regions have actual coverage above the nominal level for all specifications. The coverage
probability is closest to the nominal level under 10 moment inequalities (K = 5), but can be quite conservative for
larger values of the slackness parameter τn (τn ∈ {log(n), n1/4}).

In Table 4 we report the median Hausdorff distance between the different confidence regions and the identified set
Θ0(P ). For specifications in which all confidence regions control size, the median Hausdorff distance of the confidence
region based on the efficient estimator is always smaller than that of its competitors. These results suggest that
while the criterion based confidence regions can deliver uniform size control, they can also underperform when our
asymptotic results provide an accurate approximation to finite sample distributions. Finally, in Table 9 we tabulate
the median computation time in seconds for each confidence region. The computational time of all approaches is
small, but longest for the confidence region based on the efficient estimator. It is worth noting that the Lagrange
multipliers λ(p, P̂n) and maximizers θ̂(p) needed to construct G∗n(p) (as in (22)) are by-products of computing
ν(p,Θ0(P̂n)). As a result, simulating the distribution of G∗n only requires sampling {Wi}ni=1, which significantly
reduces computation time relative to a procedure that recomputes the support function in each bootstrap iteration.

16Note that for all the values of n we consider log(log(n)) < n
1
8 < log(n) < n

1
4 .

42



We further evaluate the size and power of the test based on Jn(θ) (see (27)) for the null hypothesis:

H0 : θ ∈ Θ0(P ) H1 : θ /∈ Θ0(P ) . (G.6)

In order to make size control nontrivial, we let θ be a boundary point of Θ0(P ). In particular, for the vectors:

θF ≡ (ν((1, 0),Θ0(P )), 0) θK ≡ (0, ν((0, 1),Θ0(P ))) (G.7)

we consider the hypothesis testing problem in (G.6) when θ ∈ {θF , θK}. Notice, that θF and θK are respectively
points in a “flat face” and at a “kink” of Θ0(P ) for all values of (C,K) (see Figure 1). Thus, θF is supported
by a unique hyperplane while θK is supported by multiple hyperplanes, which implies Theorem 5.3 applies to the
former but not the latter. For comparison purposes we also examine the performance of the generalized moment
selection procedure developed in Andrews and Soares (2010). Specifically, for θ ∈ {θF , θK} we consider a test
that rejects the null hypothesis in (G.6) whenever

√
nQn(θ) > ĉAS1−α(θ) for a bootstrap critical value ĉAS1−α(θ) –

see Remark G.4. Both procedures require a choice of slackness parameter (see (29)), which we pick select the set
{log(log(n)), log(n), n1/8, n1/4}.

Tables 5 and 6 report the actual size of tests of (G.6) for a nominal size of 0.05 and θ ∈ {θF , θK}. For tests
based on the efficient estimator, we considered the null hypothesis in (G.6) to be rejected in any replication for which
Θ0(P̂n) = ∅. The performance of the tests for (G.6) when θ = θF are similar to those of the confidence regions for
Θ0(P ) (Table 3). In particular, the test based on the efficient estimator provides accurate size control under ten
moment inequalities (K = 10), but can fail to do so under 30 moment inequalities (K = 15). With the exception of
those specifications in which Θ0(P̂n) = ∅ in a significant number of replications, however, the size distortions are not
as severe as those in Table 3. In contrast, the test of Andrews and Soares (2010) always provides adequate size control,
though it can sometimes be severely conservative, for instance for K = 15 and C = 0.1. The patterns when θ = θK

are similar, though all tests have a weakly lower rejection rate than when θ = θF in a majority of the specifications.
As a result, for larger values of κn (κn ∈ {log(n), n1/4}), the test based on the efficient estimator delivers adequate
size control in all specification except those for which Θ0(P̂n) = ∅ in a large proportion of replications (see Table 1).

In order to evaluate the local power of the proposed tests, we further test (G.6) when θ is of the form

θ = θC +
h√
n
θA (G.8)

where θC ∈ {θF , θK}, and θA = (1, 0) if θC = θF and θC = (0, 1) otherwise. It can be verified by direct calculation
that h/

√
n = inf θ̃∈Θ0(P ) ‖θ − θ̃‖ whenever h ≥ 0, and hence h controls the distance of the local alternative to

the identified set. Tables 7 and 8 report rejection probabilities for tests with a nominal size of 0.05. We focus on
specifications with K ∈ {5, 9} so that both tests provide adequate size control, and ignore specifications with n = 500
for conciseness. Notice that results with h = 0 correspond to the actual size of the test. For local deviations away
from θ = θF (Table 7), the test based on the efficient estimator is more powerful than its competitors in almost
all specifications, and the pattern is robust to the choice of slackness parameters. Interestingly, all tests are more
powerful in detecting local deviations away from θ = θK (Table 8) than from θ = θF . However, in this instance the
tests are also more sensitive to the choice of slackness parameters κn and τn. As a result, the power comparison of
tests in detection deviations away from θ = θK is not as conclusive as in Table 7.

In the results reported in Tables 2-6 the performance of statistics based on the efficient estimator is always worst in
specifications for which Θ0(P̂n) = ∅ in a large number of replications. However, upon finding Θ0(P̂n) = ∅ it is evident
that our asymptotic approximation is inadequate – in fact, the developed statistics cannot even be computed. For
completeness, it is therefore also important to examine the performance of these procedures conditional on having
found Θ0(P̂n) 6= ∅. These results are reported in Table 10. Surprisingly, the procedures perform well, with our
confidence intervals and tests actually being conservative in such instances. We emphasize, however, that there is
no reason to expect the results of Table 10 to hold in generality. Thus, special care should be taken in applying
procedures based on the efficient estimator whenever there is reason to doubt the relevance of Assumption 3.6(iv).
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Remark G.1. Since each function θ 7→ F (i)(
∫
m(x, θ)dP̂n(x)) is linear for all 1 ≤ i ≤ dF , the sets Θ̂n(τn) are convex

polygons. Moreover, their support functions are easily computable through the optimization problem:17

ν(p, Θ̂n(τn)) = sup
θ
{〈p, θ〉 s.t. F (i)(

∫
m(x, θ)dP̂n(x)) ≤ τn√

n
σ̂(i) for i = 1, . . . dF } . (G.9)

In our simulations, we approximate S2 by letting G be a 100 point grid of [−π, π], and considering the vectors:

p(γ) ≡ (sin(γ), cos(γ)) (G.10)

for γ ∈ G. Exploiting (9), we then approximate dH(Θ̂n(τn),Θ0(P )) by maxγ∈G |ν(p(γ), Θ̂n(τn))− ν(p(γ),Θ0(P ))|.

Remark G.2. Because in this context all constraints are linear in θ, the support function has the dual representation:

ν(p,Θ0(P̂n)) = min
w∈R2dF

+

{〈w,FS(
∫
mS(x, θ)dP̂n(x))〉 s.t. A′w = p} , (G.11)

where A and v 7→ FS(v) are as defined in Example 2.1, and mS(x, θ) is constant in θ ∈ Θ (see (F.3)). Moreover,
the minimizers of (G.11) are the Lagrange multipliers λ(p, P̂n) of the primal problem that defines ν(p,Θ0(P̂n)).
Therefore, by (22) and direct calculation, solving (G.11) suffices for computing the bootstrap process G∗n given by:

G∗n(p) = −λ(p, P̂n)′∇FS(
1
n

n∑
i=1

mS(Xi, θ))
1√
n

n∑
i=1

Wi{mS(Xi, θ)−
1
n

n∑
i=1

mS(Xi, θ)} . (G.12)

In our simulations we draw Wi from the Rademacher distribution – i.e. P (Wi = 1) = P (Wi = −1) = 1/2 – and we
compute the critical value ĉ1−α as the 1− α quantile across bootstrap replications of:

sup
γ∈G

max{G∗n(p(γ)), 0} , (G.13)

where p(γ) and G are as in (G.10). The support function for the confidence region Θ̂ĉ1−α/
√
n

n (as in Example 5.1) is
then given by ν(·, Θ̂n)+ ĉ1−α/

√
n, and hence we check whether Θ0(P ) ⊆ Θ̂ĉ1−α/

√
n

n by verifying that ν(p(γ),Θ0(P )) ≤
ν(p(γ), Θ̂n) + ĉ1−α/

√
n for all γ ∈ G – see also Beresteanu and Molinari (2008).

Remark G.3. In order to compute ĉB1−α(τn) we draw samples {X∗i }ni=1 from {Xi}ni=1 with replacement, let P̂ ∗n denote
the empirical measure induced by {X∗i }ni=1 and (σ̂∗(i)n )2 be the corresponding estimate of the asymptotic variance of
constraint number i. We then obtain ĉB1−α(τn) by computing the 1− α quantile across bootstrap replications of:

sup
θ∈Θ̂n(τn)

max
1≤i≤dF

{√
n(

1

σ̂
∗(i)
n

F (i)(
∫
m(x, θ)dP̂ ∗n(x))− 1

σ̂
(i)
n

F (i)(
∫
m(x, θ)dP̂n(x)))+ × ω(i)

n (θ)
}
, (G.14)

where ω(i)
n (θ) ≡ 1{|F (i)(

∫
m(x, θ)dP̂n(x))| ≤ τnσ̂(i)

n /
√
n}. Since CS(τn) is a convex polygon, we compute its support

function in a manner analogous to (G.9), and check whether Θ0(P ) ⊆ CS(τn) by verifying that ν(p(γ),Θ0(P )) ≤
ν(p(γ), CS(τn)) for all γ ∈ G, where p(γ) and G are as in (G.10).

Remark G.4. Following the construction of ĉB1−α(τn), to obtain ĉAS1−α(θ) we draw samples {X∗i }ni=1 from {Xi}ni=1

with replacement, let P̂ ∗n denote the empirical measure induced by {X∗i }ni=1 and (σ̂∗(i)n )2 be the corresponding estimate
of the asymptotic variance of constraint i. For ω(i)

n (θ) ≡ 1{|F (i)(
∫
m(x, θ)dP̂n(x))| ≤ τnσ̂(i)

n /
√
n} and

Q∗n(θ) ≡ max
1≤i≤dF

{
(

1

σ̂
∗(i)
n

F (i)(
∫
m(x, θ)dP̂ ∗n(x))− 1

σ̂
(i)
n

F (i)(
∫
m(x, θ)dP̂n(x)))+ × ω(i)

n (θ)
}
, (G.15)

we then let ĉAS1−α(θ) be the 1− α quantile of
√
nQ∗n(θ) across 200 bootstrap replications.

17This problem is easily solvable by standard packages. We employ the open software Matlab toolboxes YALMIP
and MPT, available at http://users.isy.liu.se/johanl/yalmip/ and http://control.ee.ethz.ch/~mpt/.
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Table 1: Proportion of simulated samples with empty set estimators.

Estimator Θ0(P̂n)
K = 5 K = 9 K = 15

Sample Size C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
n = 200 – – – 0.201 – – 0.792 0.010 –
n = 500 – – – 0.035 – – 0.420 – –
n = 1000 – – – 0.003 – – 0.152 – –

Estimator Θ̂n(τn) with τn = log(log(n))
K = 5 K = 9 K = 15

Sample Size C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
n = 200 – – – – – – 0.007 – –
n = 500 – – – – – – – – –
n = 1000 – – – – – – – – –

Table 2: Median Hausdorff Distance.

n = 200
K = 5 K = 9 K = 15

Estimator C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.131 0.132 0.132 0.232 0.208 0.209 Inf 0.332 0.332

τn = log(log(n)) 0.372 0.372 0.372 0.423 0.423 0.423 0.393 0.392 0.392
τn = log(n) 0.941 0.941 0.941 1.138 1.138 1.138 1.226 1.226 1.226
τn = n1/8 0.414 0.414 0.414 0.476 0.476 0.476 0.455 0.455 0.455
τn = n1/4 0.702 0.702 0.702 0.838 0.838 0.838 0.879 0.879 0.879

n = 500
K = 5 K = 9 K = 15

Estimator C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.080 0.081 0.081 0.136 0.130 0.131 0.290 0.205 0.204

τn = log(log(n)) 0.251 0.251 0.251 0.316 0.316 0.316 0.315 0.315 0.315
τn = log(n) 0.692 0.692 0.692 0.890 0.890 0.890 1.021 1.021 1.021
τn = n1/8 0.285 0.285 0.285 0.362 0.362 0.362 0.371 0.371 0.371
τn = n1/4 0.542 0.542 0.542 0.696 0.696 0.696 0.783 0.783 0.783

n = 1000
K = 5 K = 9 K = 15

Estimator C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.058 0.058 0.058 0.093 0.092 0.093 0.172 0.144 0.144

τn = log(log(n)) 0.185 0.185 0.185 0.244 0.244 0.244 0.257 0.257 0.257
τn = log(n) 0.537 0.537 0.537 0.713 0.713 0.713 0.841 0.841 0.841
τn = n1/8 0.216 0.216 0.216 0.285 0.285 0.285 0.308 0.308 0.308
τn = n1/4 0.447 0.447 0.447 0.592 0.592 0.592 0.690 0.690 0.690
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Table 3: Set Confidence Region Coverage Probability. Nominal Coverage = 0.95.

n = 200
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.945 0.942 0.940 0.790 0.913 0.895 0.208 0.885 0.820

B. τn = log(log(n)) 0.980 0.984 0.986 0.990 0.992 0.992 0.989 0.997 0.998
B. τn = log(n) 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
B. τn = n1/8 0.983 0.986 0.987 0.993 0.993 0.994 0.994 0.998 0.999
B. τn = n1/4 0.994 0.995 0.995 0.999 0.999 0.999 1.000 1.000 1.000

n = 500
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.950 0.940 0.940 0.946 0.916 0.916 0.573 0.879 0.870

B. τn = log(log(n)) 0.967 0.972 0.978 0.983 0.982 0.982 0.986 0.988 0.990
B. τn = log(n) 0.994 0.993 0.995 0.999 0.999 0.998 1.000 1.000 1.000
B. τn = n1/8 0.971 0.975 0.979 0.987 0.984 0.986 0.990 0.991 0.991
B. τn = n1/4 0.989 0.989 0.990 0.998 0.998 0.997 0.999 1.000 1.000

n = 1000
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.959 0.946 0.946 0.975 0.926 0.925 0.829 0.891 0.889

B. τn = log(log(n)) 0.969 0.971 0.979 0.983 0.981 0.980 0.981 0.983 0.982
B. τn = log(n) 0.991 0.993 0.994 0.998 0.998 0.997 1.000 1.000 0.999
B. τn = n1/8 0.970 0.973 0.981 0.987 0.984 0.983 0.985 0.986 0.986
B. τn = n1/4 0.989 0.989 0.992 0.997 0.996 0.994 0.999 0.999 0.998
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Table 4: Set Confidence Region Median Hausdorff Distance. Nominal Coverage 0.95.

n = 200
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.439 0.430 0.430 0.639 0.502 0.498 Inf 0.542 0.524

B. τn = log(log(n)) 0.566 0.576 0.585 0.826 0.855 0.871 1.504 1.645 1.724
B. τn = log(n) 0.710 0.718 0.727 1.245 1.259 1.275 3.257 3.359 3.413
B. τn = n1/8 0.577 0.585 0.594 0.855 0.882 0.897 1.629 1.764 1.834
B. τn = n1/4 0.645 0.651 0.660 1.058 1.075 1.092 2.505 2.593 2.672

n = 500
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.276 0.273 0.273 0.398 0.349 0.349 0.740 0.371 0.373

B. τn = log(log(n)) 0.328 0.334 0.344 0.468 0.481 0.488 0.580 0.600 0.609
B. τn = log(n) 0.384 0.387 0.392 0.597 0.603 0.608 0.862 0.876 0.883
B. τn = n1/8 0.332 0.339 0.347 0.478 0.490 0.496 0.600 0.618 0.626
B. τn = n1/4 0.366 0.369 0.374 0.551 0.557 0.562 0.759 0.773 0.779

n = 1000
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 0.195 0.193 0.193 0.282 0.262 0.262 0.388 0.282 0.283

B. τn = log(log(n)) 0.226 0.227 0.237 0.326 0.335 0.341 0.394 0.405 0.411
B. τn = log(n) 0.257 0.258 0.261 0.389 0.392 0.394 0.514 0.519 0.523
B. τn = n1/8 0.228 0.230 0.239 0.333 0.341 0.345 0.404 0.414 0.419
B. τn = n1/4 0.250 0.252 0.254 0.372 0.376 0.378 0.480 0.485 0.489
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Table 5: Empirical Size H0 : θF ∈ Θ0(P ) (on Flat Face). Nominal Size = 0.05.

n = 200
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.037 0.055 0.056 0.205 0.066 0.073 0.792 0.113 0.146

Eff. κn = log(n) 0.034 0.054 0.056 0.204 0.057 0.067 0.792 0.089 0.134
Eff. κn = n1/8 0.036 0.054 0.056 0.205 0.065 0.072 0.792 0.110 0.144
Eff. κn = n1/4 0.035 0.054 0.056 0.204 0.058 0.068 0.792 0.094 0.136

A.S. τn = log(log(n)) 0.040 0.040 0.039 0.012 0.016 0.015 0.004 0.006 0.007
A.S. τn = log(n) 0.011 0.017 0.019 0.006 0.008 0.009 0.003 0.004 0.004
A.S. τn = n1/8 0.039 0.039 0.039 0.012 0.014 0.014 0.003 0.006 0.007
A.S. τn = n1/4 0.018 0.024 0.026 0.007 0.011 0.011 0.003 0.004 0.005

n = 500
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.040 0.052 0.052 0.045 0.053 0.053 0.421 0.090 0.093

Eff. κn = log(n) 0.034 0.052 0.052 0.040 0.047 0.047 0.420 0.076 0.082
Eff. κn = n1/8 0.039 0.052 0.052 0.044 0.052 0.052 0.420 0.089 0.092
Eff. κn = n1/4 0.035 0.052 0.052 0.040 0.048 0.048 0.420 0.079 0.084

A.S. τn = log(log(n)) 0.049 0.050 0.049 0.017 0.022 0.022 0.012 0.018 0.017
A.S. τn = log(n) 0.016 0.027 0.027 0.007 0.012 0.011 0.006 0.008 0.010
A.S. τn = n1/8 0.049 0.050 0.049 0.016 0.021 0.021 0.011 0.016 0.016
A.S. τn = n1/4 0.024 0.043 0.041 0.008 0.014 0.013 0.008 0.011 0.012

n = 1000
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.048 0.049 0.049 0.054 0.056 0.056 0.189 0.105 0.105

Eff. κn = log(n) 0.038 0.049 0.049 0.020 0.054 0.054 0.154 0.082 0.083
Eff. κn = n1/8 0.030 0.048 0.048 0.011 0.048 0.048 0.152 0.070 0.071
Eff. κn = n1/4 0.037 0.048 0.048 0.017 0.054 0.054 0.154 0.080 0.081

A.S. τn = log(log(n)) 0.050 0.050 0.048 0.026 0.027 0.028 0.016 0.020 0.051
A.S. τn = log(n) 0.023 0.045 0.043 0.008 0.011 0.011 0.006 0.009 0.020
A.S. τn = n1/8 0.050 0.050 0.048 0.020 0.023 0.024 0.014 0.018 0.009
A.S. τn = n1/4 0.024 0.049 0.048 0.008 0.014 0.015 0.007 0.011 0.017
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Table 6: Empirical Size H0 : θK ∈ Θ0(P ) (on Kink). Nominal Size = 0.05.

n = 200
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.028 0.044 0.062 0.214 0.056 0.090 0.796 0.110 0.149

Eff. κn = log(n) 0.024 0.005 0.024 0.206 0.017 0.017 0.793 0.046 0.046
Eff. κn = n1/8 0.028 0.039 0.057 0.213 0.050 0.080 0.795 0.098 0.137
Eff. κn = n1/4 0.025 0.013 0.037 0.208 0.025 0.035 0.793 0.060 0.073

A.S. τn = log(log(n)) 0.028 0.035 0.027 0.016 0.013 0.017 0.003 0.003 0.005
A.S. τn = log(n) 0.020 0.019 0.023 0.010 0.010 0.013 0.002 0.002 0.004
A.S. τn = n1/8 0.027 0.032 0.026 0.015 0.012 0.015 0.003 0.002 0.005
A.S. τn = n1/4 0.023 0.020 0.025 0.012 0.010 0.013 0.003 0.002 0.004

n = 500
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.010 0.048 0.055 0.060 0.047 0.087 0.435 0.089 0.119

Eff. κn = log(n) 0.009 0.007 0.029 0.045 0.012 0.017 0.426 0.024 0.029
Eff. κn = n1/8 0.010 0.043 0.052 0.058 0.040 0.078 0.434 0.079 0.106
Eff. κn = n1/4 0.009 0.016 0.037 0.048 0.015 0.033 0.428 0.034 0.047

A.S. τn = log(log(n)) 0.026 0.045 0.029 0.023 0.020 0.028 0.018 0.016 0.017
A.S. τn = log(n) 0.020 0.017 0.024 0.013 0.010 0.019 0.011 0.011 0.013
A.S. τn = n1/8 0.026 0.044 0.028 0.022 0.019 0.026 0.017 0.015 0.017
A.S. τn = n1/4 0.023 0.023 0.024 0.016 0.011 0.020 0.012 0.012 0.015

n = 1000
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Eff. κn = log(log(n)) 0.006 0.050 0.054 0.037 0.047 0.082 0.197 0.089 0.107

Eff. κn = log(n) 0.002 0.012 0.033 0.016 0.007 0.022 0.175 0.023 0.027
Eff. κn = n1/8 0.004 0.044 0.050 0.033 0.037 0.073 0.194 0.075 0.096
Eff. κn = n1/4 0.002 0.020 0.037 0.018 0.010 0.033 0.178 0.032 0.041

A.S. τn = log(log(n)) 0.029 0.053 0.038 0.024 0.024 0.030 0.025 0.017 0.061
A.S. τn = log(n) 0.022 0.020 0.023 0.013 0.011 0.018 0.012 0.010 0.024
A.S. τn = n1/8 0.026 0.052 0.033 0.022 0.021 0.028 0.022 0.015 0.016
A.S. τn = n1/4 0.022 0.035 0.023 0.016 0.012 0.019 0.014 0.011 0.022
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Table 7: Empirical Power H0 : θF ∈ Θ0(P ) (on Flat Face). Nominal Size = 0.05.

n = 200 and K = 5
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.055 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996

Eff. κn = log(n) 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. κn = n1/8 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996
Eff. κn = n1/4 0.054 0.306 0.722 0.951 0.996 0.056 0.306 0.722 0.951 0.996

A.S. τn = log(log(n)) 0.040 0.227 0.550 0.837 0.971 0.039 0.231 0.550 0.843 0.970
A.S. τn = log(n) 0.017 0.144 0.483 0.827 0.970 0.019 0.143 0.484 0.830 0.969
A.S. τn = n1/8 0.039 0.219 0.536 0.833 0.971 0.039 0.221 0.536 0.839 0.970
A.S. τn = n1/4 0.024 0.155 0.488 0.829 0.971 0.026 0.158 0.489 0.833 0.970

n = 200 and K = 9
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.066 0.293 0.685 0.943 0.996 0.073 0.295 0.686 0.943 0.996

Eff. κn = log(n) 0.057 0.271 0.672 0.940 0.996 0.067 0.279 0.674 0.941 0.996
Eff. κn = n1/8 0.065 0.290 0.682 0.943 0.996 0.072 0.293 0.683 0.943 0.996
Eff. κn = n1/4 0.058 0.276 0.674 0.941 0.996 0.068 0.282 0.675 0.941 0.996

A.S. τn = log(log(n)) 0.016 0.074 0.225 0.488 0.744 0.015 0.072 0.232 0.494 0.745
A.S. τn = log(n) 0.008 0.045 0.186 0.447 0.728 0.009 0.049 0.190 0.455 0.727
A.S. τn = n1/8 0.014 0.071 0.222 0.486 0.743 0.014 0.068 0.229 0.491 0.744
A.S. τn = n1/4 0.011 0.059 0.207 0.470 0.735 0.011 0.058 0.209 0.473 0.736

n = 1000 and K = 5
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.049 0.285 0.702 0.954 0.998 0.049 0.285 0.702 0.954 0.998

Eff. κn = log(n) 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998
Eff. κn = n1/8 0.048 0.285 0.702 0.954 0.998 0.048 0.285 0.702 0.954 0.998
Eff. κn = n1/4 0.048 0.285 0.701 0.954 0.998 0.048 0.285 0.701 0.954 0.998

A.S. τn = log(log(n)) 0.050 0.295 0.709 0.952 0.998 0.048 0.294 0.708 0.954 0.997
A.S. τn = log(n) 0.045 0.223 0.566 0.884 0.988 0.043 0.221 0.567 0.884 0.988
A.S. τn = n1/8 0.050 0.295 0.709 0.952 0.997 0.048 0.294 0.708 0.954 0.997
A.S. τn = n1/4 0.049 0.282 0.645 0.903 0.988 0.048 0.282 0.646 0.904 0.988

n = 1000 and K = 9
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.054 0.209 0.529 0.851 0.987 0.054 0.209 0.529 0.851 0.987

Eff. κn = log(n) 0.048 0.193 0.508 0.844 0.985 0.048 0.194 0.508 0.844 0.985
Eff. κn = n1/8 0.054 0.208 0.526 0.850 0.987 0.054 0.208 0.526 0.850 0.987
Eff. κn = n1/4 0.050 0.197 0.509 0.844 0.985 0.050 0.198 0.509 0.844 0.985

A.S. τn = log(log(n)) 0.027 0.109 0.333 0.679 0.926 0.028 0.112 0.332 0.680 0.927
A.S. τn = log(n) 0.011 0.072 0.256 0.600 0.894 0.011 0.071 0.255 0.595 0.892
A.S. τn = n1/8 0.023 0.106 0.330 0.676 0.921 0.024 0.107 0.329 0.675 0.922
A.S. τn = n1/4 0.014 0.081 0.269 0.604 0.895 0.015 0.082 0.269 0.601 0.894
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Table 8: Empirical Power H0 : θK ∈ Θ0(P ) (on Kink). Nominal Size = 0.05.

n = 200 and K = 5
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.044 0.904 1.000 1.000 1.000 0.062 0.977 1.000 1.000 1.000

Eff. κn = log(n) 0.005 0.526 0.998 1.000 1.000 0.024 0.921 1.000 1.000 1.000
Eff. κn = n1/8 0.039 0.892 1.000 1.000 1.000 0.057 0.976 1.000 1.000 1.000
Eff. κn = n1/4 0.013 0.734 0.999 1.000 1.000 0.037 0.957 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.035 0.784 1.000 1.000 1.000 0.027 0.896 1.000 1.000 1.000
A.S. τn = log(n) 0.019 0.751 1.000 1.000 1.000 0.023 0.891 1.000 1.000 1.000
A.S. τn = n1/8 0.032 0.781 1.000 1.000 1.000 0.026 0.896 1.000 1.000 1.000
A.S. τn = n1/4 0.020 0.762 1.000 1.000 1.000 0.025 0.896 1.000 1.000 1.000

n = 200 and K = 9
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.056 0.665 0.986 1.000 1.000 0.090 0.895 1.000 1.000 1.000

Eff. κn = log(n) 0.017 0.346 0.963 0.999 1.000 0.017 0.577 0.995 1.000 1.000
Eff. κn = n1/8 0.050 0.632 0.985 1.000 1.000 0.080 0.872 0.999 1.000 1.000
Eff. κn = n1/4 0.025 0.457 0.976 0.999 1.000 0.035 0.711 0.997 1.000 1.000

A.S. τn = log(log(n)) 0.013 0.322 0.881 0.970 0.983 0.017 0.495 0.939 0.979 0.987
A.S. τn = log(n) 0.010 0.313 0.881 0.970 0.983 0.013 0.481 0.939 0.979 0.987
A.S. τn = n1/8 0.012 0.321 0.881 0.970 0.983 0.015 0.494 0.939 0.979 0.987
A.S. τn = n1/4 0.010 0.315 0.881 0.970 0.983 0.013 0.490 0.939 0.979 0.987

n = 1000 and K = 5
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.050 0.937 1.000 1.000 1.000 0.054 0.961 1.000 1.000 1.000

Eff. κn = log(n) 0.012 0.811 1.000 1.000 1.000 0.033 0.931 1.000 1.000 1.000
Eff. κn = n1/8 0.044 0.934 1.000 1.000 1.000 0.050 0.960 1.000 1.000 1.000
Eff. κn = n1/4 0.020 0.864 1.000 1.000 1.000 0.037 0.944 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.053 0.917 1.000 1.000 1.000 0.038 0.899 1.000 1.000 1.000
A.S. τn = log(n) 0.020 0.848 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000
A.S. τn = n1/8 0.052 0.908 1.000 1.000 1.000 0.033 0.899 1.000 1.000 1.000
A.S. τn = n1/4 0.035 0.869 1.000 1.000 1.000 0.023 0.899 1.000 1.000 1.000

n = 1000 and K = 9
C = 0.5 C = 1

Procedure h = 0 h = 2.5 h = 5 h = 7.5 h = 10 h = 0 h = 2.5 h = 5 h = 7.5 h = 10
Eff. κn = log(log(n)) 0.047 0.601 0.995 1.000 1.000 0.082 0.944 1.000 1.000 1.000

Eff. κn = log(n) 0.007 0.303 0.979 1.000 1.000 0.022 0.661 1.000 1.000 1.000
Eff. κn = n1/8 0.037 0.547 0.993 1.000 1.000 0.073 0.935 1.000 1.000 1.000
Eff. κn = n1/4 0.010 0.331 0.983 1.000 1.000 0.033 0.780 1.000 1.000 1.000

A.S. τn = log(log(n)) 0.024 0.532 0.999 1.000 1.000 0.030 0.829 1.000 1.000 1.000
A.S. τn = log(n) 0.011 0.473 0.999 1.000 1.000 0.018 0.803 1.000 1.000 1.000
A.S. τn = n1/8 0.021 0.524 0.999 1.000 1.000 0.028 0.823 1.000 1.000 1.000
A.S. τn = n1/4 0.012 0.486 0.999 1.000 1.000 0.019 0.803 1.000 1.000 1.000
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Table 9: Median Confidence Region Computation Time in Seconds.

n = 200
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 2.528 2.683 2.751 3.741 4.061 4.319 5.824 6.138 6.514

B. τn = log(log(n)) 1.997 1.946 1.917 2.308 2.436 2.535 3.023 3.342 3.501
B. τn = log(n) 1.925 1.890 1.907 2.434 2.492 2.545 3.311 3.431 3.495
B. τn = n1/8 1.995 1.944 1.917 2.335 2.455 2.546 3.086 3.368 3.519
B. τn = n1/4 1.976 1.923 1.921 2.421 2.503 2.572 3.281 3.452 3.542

n = 500
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 2.577 2.691 2.730 3.805 4.191 4.493 5.867 6.397 6.839

B. τn = log(log(n)) 2.086 2.002 1.936 2.420 2.554 2.660 3.277 3.538 3.741
B. τn = log(n) 2.007 1.947 1.919 2.543 2.607 2.678 3.536 3.627 3.749
B. τn = n1/8 2.082 1.998 1.936 2.442 2.565 2.670 3.344 3.565 3.758
B. τn = n1/4 2.049 1.983 1.933 2.534 2.617 2.702 3.528 3.644 3.797

n = 1000
K = 5 K = 9 K = 15

Procedure C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1 C = 0.1 C = 0.5 C = 1
Efficient 2.587 2.649 2.654 3.758 4.203 4.484 5.742 6.383 6.952

B. τn = log(log(n)) 2.174 2.055 1.979 2.532 2.656 2.754 3.366 3.626 3.767
B. τn = log(n) 2.086 2.010 1.947 2.641 2.709 2.786 3.613 3.729 3.802
B. τn = n1/8 2.166 2.049 1.980 2.551 2.673 2.769 3.427 3.668 3.804
B. τn = n1/4 2.124 2.034 1.963 2.653 2.728 2.812 3.613 3.760 3.854

Table 10: Statistics Conditional on Θ0(P̂n) 6= ∅.

n = 200
Specification Med. dH(Θ0(P̂n),Θ0(P )) Θ0(P ) CI Coverage θ0 on Flat Face Size θ0 on Kink Size
K = 9, C = 0.1 0.200 0.989 0.005 0.016
K = 15, C = 0.1 0.250 0.998 0.000 0.017

n = 500
Specification Med. dH(Θ0(P̂n),Θ0(P )) Θ0(P ) CI Coverage θ0 on Flat Face Size θ0 on Kink Size
K = 9, C = 0.1 0.133 0.980 0.010 0.026
K = 15, C = 0.1 0.202 0.987 0.002 0.027

n = 200
Specification Med. dH(Θ0(P̂n),Θ0(P )) Θ0(P ) CI Coverage θ0 on Flat Face Size θ0 on Kink Size
K = 9, C = 0.1 0.093 0.978 0.017 0.034
K = 15, C = 0.1 0.157 0.978 0.003 0.054
Note: Empirical size for tests of H0 : θ0 ∈ Θ0(P ) reported for κn = log(log(n)).
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