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Abstract

We provide details on how to implement the inference method proposed
in the main text.

1. Implementation

Construction of our confidence region requires computing the belief function νθ
and the critical value cθ. For simple examples, one may compute νθ analytically.
In general, it can be computed using a simulation procedure. Once νθ is obtained,
the critical value cθ can be computed using another simulation procedure, as
demonstrated by the Monte Carlo experiments in Section 5 in the main text.
Below, we illustrate the simulation procedures using the entry game example
studied by Bresnahan and Reiss (1990,1991), Berry (1992), and Ciliberto and
Tamer (2009); the latter is CT henceforth.

Suppose there are K firms that are potential entrants into markets i = 1, 2, · · · .
For each i, we let si = (si1, · · · , siK) ∈ {0, 1}K denote the vector of entry decisions
made by the firms. For firm k in market i, CT consider the following profit function
specification:

πk(si, xi, ui; θ) =

(
v′iαk + z′ikβk + w′ikγk +

∑
j 6=k

δkj sij +
∑
j 6=k

z′kij jsij + uik

)
sik,

where vi is a vector of market characteristics, zi = (zi1, · · · , ziK) is a matrix
of firm characteristics that enter the profits of all firms in the market, while



wi = (wi1, · · · , wiK) is a matrix of firm characteristics such that wik enters firm
k’s profit but not other firms’ profits. We let xi collect vi, zi, and wi and stack
them as a vector. The unobservable payoff shifters ui = (ui1, · · · , uiK) follow
a multivariate normal distribution N(0,Σ) and vary across markets in an i.i.d.
way.1 The structural parameter θ includes Σ and the parameters associated with
the profit functions: {βk, γk, {δkj , φkj}j 6=k}Kk=1.

In this example, firm k’s profit from not entering the market is 0. Hence, the
set of pure-strategy Nash equilibria is given by

G(ui|θ, xi) = {si ∈ S : πk(si, xi, ui; θ) ≥ 0,∀k = 1, · · · , K}. (1.1)

Suppose that a sample {(si, xi), i = 1, · · · , n} of size n is available. Let A be a
subset of S = {0, 1}K . CT only use singleton events A = {s}, s ∈ S and provide
a simulation procedure to calculate νθ(A|x) and its conjugate (called H1 and H2

in their paper). In general, one can use any event A ⊂ S for inference, and we
describe a simulation procedure for this general setting below.

Recall that the belief function of event A conditional on x was given by

νθ(A|x) = mθ({u ∈ U : G(u|θ, x) ⊂ A}). (1.2)

Hence, a natural way to approximate νθ(A|x) for any A ⊂ S is to simulate u
from the parametric distribution mθ and calculate the frequency of the event
G(u|θ, x) ⊂ A. We summarize the procedure below.

Simulation procedure 1

Step 1 Fix the number of drawsR. Given Σ, draw random vectors ur = (ur1, · · · , urK),
r = 1, · · · , R, from N(0,Σ).

Step 2 For each (s, x, ur) ∈ S ×X × U , calculate

I(s, x, ur; θ) =

{
1 πk(s, x, u

r; θ) ≥ 0, ∀k,
0 otherwise.

That is, I(s, x, ur) = 1 if s is a pure strategy Nash equilibrium under (x, ur)
and θ.

1In the context of entry games played by airlines, CT model uik as a sum of independent
normal random variables: firm-specific unobserved heterogeneity, market-specific unobserved
heterogeneity, and airport-specific unobserved heterogeneity. This can also be handled by relax-
ing the i.i.d. assumption on m∞

θ .
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Step 3 Compute the frequency of event G(ur|θ, x) ⊆ A across simulation draws by
computing that of Ac ⊆ Gc(ur|θ, x):

νRθ (A|x) =
1

R

R∑
r=1

∏
s∈Ac

(1− I(s, x, ur; θ)). (1.3)

After implementing the simulation procedure above, one can evaluate the test
statistic:

Tn (θ) = max
(x,j)∈X×{1,...,J}

{
νRθ (Aj | x)−Ψn (s∞, x∞) (Aj | x)√

varRθ (Aj | x) /n

}
, (1.4)

where varRθ (Aj | x) = νRθ (Aj | x) (1− νRθ (Aj | x)). The remaining task is to com-
pute the critical value cθ, which can be done by feeding Λθ into a commonly-used
simulator for multivariate normal random vectors.

Simulation procedure 2

Step 1 Compute the covariance matrix Λθ, which is a |X| J-by-|X| J block-diagonal
matrix where Λθ,x1 , ...,Λθ,x|X| are the blocks.:

The (j, j′)-th entry of each block Λθ,x is the covariance matrix, conditional
on x: (Λθ,x)jj′ = covθ (Aj, Aj′ | x), where covθ (Aj, Aj′ | x) is calculated as

covθ (Ai, Aj | x) = νRθ (Ai ∩ Aj | x)− νRθ (Ai | x) νRθ (Aj | x) . (1.5)

Step 2 Decompose Λθ as LDL′ for a lower triangular matrix L and a diagonal
matrix D.

Step 3 Generate wr
i.i.d.∼ N(0, I|X|J) for r = 1, · · · , R. Generate zr = LD1/2wr,

r = 1, · · · , R.

Step 4 Calculate cθ as the 1− α quantile of maxk=1,··· ,|X|J zk/σθ,k:

cθ = min

(
c ≥ 0 :

1

R

R∑
r=1

I( max
k=1,··· ,|X|J

zrk/σθ,k ≤ c) ≥ 1− α

)
.
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Steps 2-3 in simulation procedure 2 are based on the Geweke-Hajivassiliou-
Keane (GHK) simulator. The GHK simulator is widely used in econometrics (see,
for example, Hajivassiliou, McFadden, and Ruud (1996) for details). The only
difference from the standard GHK-simulator is Step 2, in which we recommend to
use the LDL decomposition instead of Cholesky decomposition. This is because
Λθ may only be positive semidefinite.

Simulation procedure 2 yields a critical value cθ. Hence, one can determine
whether or not a value of the structural parameter should be included in the
confidence region by checking if Tn(θ) ≤ cθ holds. For constructing a confidence
region, one needs to repeat the procedures above for different values of θ ∈ Θ. To
save computational costs, one can draw {(ur1, · · · , urK)}Rr=1 and {wr}Rr=1 only once
and use them repeatedly across all values of θ.

A final remark is that the procedures described above extend to other settings.
In other models, the researcher may use a different solution concept (e.g. pairwise
stability of networks) that defines the correspondence G(·|θ, x), or a different
parametric specification for the latent variables in the payoff function (e.g. random
coefficients following a mixed logit specification). In such cases, one need modify
only Steps 1 and 2 in simulation procedure 1.
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