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Abstract

This paper considers inference for the set ΘI of parameter values that minimize a crite-

rion function. Chernozhukov, Hong, and Tamer (2007) (CHT) develop a general theory of

consistent set estimation using the level-set of a criterion function and inference based on a

quasi-likelihood ratio (QLR)-type statistic. This paper establishes a dual relationship between

the level-set estimator and its support function and shows that the properly normalized (scaled

and centered) support function provides an alternative Wald-type inference method to con-

duct tests regarding the identified set and a point θ0 in the identified set. These tests can be

inverted to obtain confidence sets for ΘI and θ0. For econometric models that involve finitely

many moment inequalities, we show that our Wald-type statistic is asymptotically equivalent

to CHT’s QLR statistic under regularity conditions.
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1 Introduction

Statistical inference for partially identified economic models is a growing field in econometrics. The

field was pioneered by Charles Manski in the 1990’s (See Manski, 2003, and the references therein),

and there have since been substantial theoretical extensions and applications. In this literature, the

economic structures of interest are characterized by an identified set ΘI , rather than by a single

point in the parameter space Θ ⊂ Rd, d ∈ N. Elements of the identified set lead to observationally

equivalent data generating processes. A sample of data generated by any of the parameter values

in the identified set, therefore, gives us information about the identified set, but not about the

underlying “true” parameter value generating the observed data.

Chernozhukov, Hong, and Tamer (2007) (CHT) study estimation and statistical inference on

ΘI within a general extremum estimation framework. CHT have shown that a level-set estimator

based on a properly chosen sequence of levels for the criterion function consistently estimates the

identified set, defined as a set of minimizers. They use a quasi-likelihood ratio (QLR) statistic to

construct a confidence set that asymptotically covers the identified set with at least a prespecified

probability. This criterion function approach is applicable to a broad class of problems.

Another common approach is to estimate the boundary of ΘI directly. This is an attractive

alternative if the boundary of the identified set is easily estimable. Recent studies show that when

ΘI is a compact convex set, its support function provides a tractable representation by summa-

rizing the location of the supporting hyperplanes of ΘI . (Beresteanu and Molinari, 2008 (BM);

Bontemps, Magnac, and Maurin, 2012). So far, the criterion function approach and the support

function approach have been viewed as distinct. Each has its advantages and challenges. The crite-

rion function approach is widely applicable, but constructing the level set can be computationally

demanding. The support function approach, on the other hand, is more direct and computationally

tractable for some problems, but it has been applied to a limited class of models when parameters

are multi-dimensional. A main contribution of this paper is to unify these approaches within a gen-

eral framework. We do this by studying an inference method that is based on the support function

of a level set estimator. To the best of our knowledge, this is the first such effort.

In this paper, we focus on econometric models with compact convex identified sets, which enables

us to characterize the identified set by its support function1. This class includes many econometric

models studied recently, e.g., regression with interval data (Manski and Tamer, 2002; Magnac and

Maurin, 2008), a class of discrete choice models Pakes (2010), consumer demand models with

unobserved heterogeneity (Blundell, Kristensen, and Matzkin, 2014), and an asset pricing model in

incomplete markets (Kaido and White, 2009). Following CHT, our estimator of ΘI is the level set

Θ̂n = {θ : Qn(θ) ≤ tn} of a criterion function Qn(·) for some sequence of levels {tn}. The support

function approach provides a straightforward algorithm to compute the boundary of this estimator.

Specifically, we propose to solve the optimization problem maxQn(θ)≤tn〈p, θ〉 for each p. This yields

1Our analysis applies to the convex hull of the identified set if it is nonconvex.
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the support function s(·, Θ̂n) of the set estimator as a value function and also gives the boundary

of Θ̂n. The optimization is a convex programming problem, which can be solved using standard

algorithms.

The estimated support function can also be used to conduct inference. Using a dual relationship

between the criterion function and support function, we first show that the asymptotic distribution

of the properly normalized (centered and scaled) support function is that of a specific stochastic

process on the unit sphere. The normalized support function lets us make various types of inference

for ΘI and points in ΘI . For example, as shown in BM, the normalized support function allows one

to construct a confidence set that covers the identified set with at least some prescribed confidence

level. Further, one may test whether ΘI includes a specific point, i.e., H0 : θ0 ∈ ΘI using a test

statistic based on the estimated support function. We contribute to the literature by establishing the

asymptotic distribution of this statistic. Specifically, our asymptotic distribution result generally

holds even if the identified set has kink points and thus extends the result of Bontemps, Magnac,

and Maurin (2012). This test can be inverted to construct a confidence set for each point in the

identified set.

Our work is related to the work of BM who first studied inference based on estimated support

functions for the case where ΘI is a linear transformation of the Aumann expectation of set-valued

random variables and Bontemps, Magnac, and Maurin (2012) who consider a confidence set for a

point in the identified set, when ΘI is characterized by incomplete linear moment restrictions. Our

analysis further contributes to this line of research by extending these results to the general setting

where ΘI is the set of minimizers of a convex criterion function.

We apply the main results to econometric models characterized by finitely many moment inequal-

ities. This class has been extensively studied recently (see references in Section 4). We contribute

to this literature by establishing a new equivalence result within this class. Our Wald-type statis-

tic (squared directed Hausdorff distance) and CHT’s QLR statistic converge in distribution to the

same limit under some regularity conditions. As a result, the Wald confidence set, a set obtained

by expanding the set estimator by a suitable critical value, is asymptotically equivalent to CHT’s

confidence set, a level set whose level is a specific quantile of the QLR statistic.

The paper is organized as follows. In section 2, we summarize CHT’s econometric framework

and introduce some useful background. We establish the asymptotic distribution of the normal-

ized support function and develop our inference methods in section 3. Section 4 studies moment

inequality models. We present Monte Carlo simulation results in section 5 and conclude in section

6. We collect our mathematical proofs in the appendix.

Throughout, we use the following notation. Let R+ := [0,∞) and R̄+ := R+ ∪ {∞}. For

any closed set A ⊆ Rd, let ∂A denote its boundary, and let Ao denote its interior. For any

x, y ∈ Rd, let 〈x, y〉 denote the inner product of x and y, and let ‖x‖ denote the Euclidean norm

of x. We let Sd−1 = {x ∈ Rd : ‖x‖ = 1} denote the unit sphere in Rd, and C(Sd−1) is the set

of continuous functions on Sd−1. Finally, for any J × J matrix w and vector y ∈ RJ , we let
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‖wy‖+ := ‖w(y ◦ 1{y ≥ 0})‖, where ◦ denotes the entrywise product.

2 General Setup

2.1 Criterion Functions and Set Estimator

We start with introducing criterion functions and high level conditions (Assumptions 2.1-2.3) based

on the conditions in CHT. Our first assumption is on the data generating process (DGP), parameter

space, and the criterion functions.

Assumption 2.1. (i) Let (Ω,F, P ) be a complete probability space. Let d ∈ N, and let Θ ⊆ Rd

be a compact and convex parameter space with a nonempty interior; (ii) Let Q : Rd → R̄+ be a

lower semicontinuous (lsc) function; (iii) For n = 1, 2, ..., let Qn : Ω × Rd → R̄+ be a jointly

measurable function such that Qn(ω, θ) < ∞ for at least one θ ∈ Θ, Qn(ω, θ) = ∞ for all θ /∈ Θ,

and θ 7→ Qn(ω, θ) is lsc with probability 1.

Compactness is a standard assumption on Θ for extremum estimation. The function Qn acts

as our sample criterion function. For example, a commonly used criterion function for moment

inequality models is

Qn(ω, θ) = ‖Ŵ 1/2
n (ω, θ)

1

n

n∑
i=1

m(Xi(ω), θ)‖2
+, (2.1)

where m(x, θ) is a vector-valued function such that E[m(Xi, θ)] ≤ 0 for one or more values of θ, and

Ŵn is a weighting matrix that can depend on the sample. For simplicity, we write Qn(θ) below, but

its dependence on ω should be understood implicitly. The function Q is the population criterion

function. Without loss of generality, we normalize the minimum value of Q to 0. Following CHT,

we then define the identified set as the set of minimizers of Q:

ΘI := {θ ∈ Θ : Q(θ) = 0}. (2.2)

Throughout, we assume that ΘI is a non-empty subset of Θ. The set estimator of ΘI is then defined

as a level-set of Qn. We also normalize Qn so that the minimum of Qn is 0. For a non-negative

sequence {tn} ⊂ R+ and a positive sequence {an} ⊂ R+, the set estimator is defined by

Θ̂n(tn) := {θ ∈ Θ : anQn(θ) ≤ tn}. (2.3)

For any a ∈ Rd and closed set B ⊆ Rd, let d(a,B) := infb∈B ‖a − b‖. For any closed subsets A,B

of Rd, let

dH(A,B) := max
[
~dH(A,B), ~dH(B,A)

]
, ~dH(A,B) := sup

a∈A
d(a,B) , (2.4)

where dH and ~dH are the Hausdorff and directed Hausdorff distances respectively. The following

assumptions based on CHT’s conditions C.1-C.3 are general enough to be satisfied by many examples

involving inequality constraints.
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Assumption 2.2. (i) supθ∈Θ{Q(θ)−Qn(θ)}+ = op(1). (ii) supθ∈ΘI
Qn(θ) = Op(1/an). (iii) There

exist positive constants (δ, κ, γ) such that for any ε ∈ (0, 1), there are (κε, nε) such that for all n ≥ nε

Qn(θ) ≥ κmin{d(θ,ΘI), δ}γ,

uniformly on {θ ∈ Θ : d(θ,ΘI) ≥ (κε/an)1/γ} with probability at least 1− ε.

Assumption 2.3 (Degeneracy). (i) There is a sequence of subsets Θn of Θ, which could be data

dependent such that Qn vanishes on these subsets, that is, Qn(θ) = 0 for each θ ∈ Θn, for each n,

and these sets can approximate the identified set arbitrarily well in the Hausdorff metric, that is,

dH(Θn,ΘI) ≤ εn for some εn = op(1). (ii) εn = Op(a
−1/γ
n ).

Under Assumptions 2.1-2.3, CHT’s Theorem 3.2 is applicable. In particular, CHT show that it

is possible to achieve consistency and an exact polynomial rate of convergence by choosing a level

tn = t ∈ R+ such that t ≥ infθ∈Θ anQn(θ) with probability 1. Hence, we have dH(Θ̂n(t),ΘI) =

Op(a
−1/γ
n ).

Finally, we assume that ΘI and Θ̂n(t) are convex by assuming that the population and sample

criterion functions are convex.

Assumption 2.4. (i) Q is a convex function; (ii) Qn is a convex function a.s.

2.2 Support Function

Throughout, we use support functions to characterize compact convex sets. The support function

s(·, F ) : Sd−1 → R of a compact convex set F ⊂ Rd is defined pointwise by

s(p, F ) = sup
x∈F
〈p, x〉. (2.5)

The set H(p, F ) = {x ∈ Rd : 〈p, x〉 = s(p, F )} ∩ F is called the support set. Heuristically, for each

unit vector p ∈ Sd−1, the support function s(p, F ) measures the signed distance from the origin

of the supporting plane of the set F with a normal vector p (see the online addendum for more

detailed descriptions of these objects). The support function is a continuous function on the unit

sphere and therefore takes its value in C(Sd−1). Since any convex set can be represented by the

intersection of such supporting planes, the support function fully characterizes the boundary of the

set of interest.

In our setting, the support function of the set estimator Θ̂n(t) offers a straightforward procedure

to compute the boundary of Θ̂n(t). Consider the following optimization problem:

maximize 〈p, θ〉, subject to anQn(θ) ≤ t. (2.6)

The optimal value function of this problem is s(p, Θ̂n(t)), and a solution to (2.6) is a point in the

support set H(p, Θ̂n(t)). One may then trace out the boundary of Θ̂n(t) by solving (2.6) for different
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values of p. The optimization problem in (2.6) is a convex programming problem, which is often

easily solvable using standard algorithms (see for example Boyd and Vandenberghe, 2004).

In addition to providing a straightforward algorithm to compute Θ̂n(t), support functions have

useful properties for inference. That is, for any compact convex sets A,B, it holds that dH(A,B) =

supp∈Sd−1 |s(p,A) − s(p,B)| and ~dH(A,B) = supp∈Sd−1 {s(p,A)− s(p,B)}+.2 This means that the

Hausdorff distance (or the directed Hausdorff distance) between sets is equal to the uniform distance

(or the one-sided uniform distance) between the support functions. These isometry relationships

between sets and support functions allow us to write

a1/γ
n dH(Θ̂n(t),ΘI) = sup

p∈Sd−1

|Zn(p, t)|, and a1/γ
n
~dH(ΘI , Θ̂n(t)) = sup

p∈Sd−1

{−Zn(p, t)}+, (2.7)

where Zn(p, t) is the normalized support function defined by

Zn(p, t) := a1/γ
n

(
s(p, Θ̂n(t))− s(p,ΘI)

)
. (2.8)

Therefore, if for a given t, Zn(·, t) converges weakly to some limit Z(·, t) in C(Sd−1), then the desired

limiting distributions of Hausdorff distance measures follow from the continuous mapping theorem.

This in turn allows us to conduct inference for ΘI and points inside it.

2.3 Examples

To fix ideas, we discuss below leading examples of models with convex identified sets based on

simplifications of well known models. The first example is a regression model with an interval-

valued outcome studied in Manski and Tamer (2002).

Example 1 (Interval censored outcome). An outcome variable is generated as

Y = Z ′θ + ε,

where Z ∈ Rd is a regressor vector with discrete support Z ≡ {z1, · · · , zJ}, θ ∈ Θ ⊆ Rd, and

E[ε|Z] = 0. Y is not observed but the outcome interval [YL, YU ] which contains Y is observed. The

identified set then consists of parameter values that satisfy

E[YL|Z = zj] ≤ z′jθ ≤ E[YU |Z = zj], j = 1, · · · , K. (2.9)

Since the constraints are affine in θ, the identified set is convex. Let 1Z(z) = (1{z = z1}, · · · , 1{z =

zK})′ and m(x) ≡ (yL1Z(z), yU1Z(z), 1Z(z)). Further, let A ≡ (−z1, · · · ,−zK , z1, · · · , zK)′. The

affine constraints in (2.9) can then be written as

Aθ − F (E[m(X)]) ≤ 0 , (2.10)

where F : R3K → R2K is a transformation that combines unconditional moments to construct

2See Theorem 1.1.12 (Hörmander’s embedding theorem) in Li, Ogura, and Kreinovich (2002) and Lemma A.1 in
BM.
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conditional moments whose k-th component is defined as follows:

Fk(v) =


vk

v2K+k
, k = 1, · · · , K

− vk
v2K+k

, k = K + 1, · · · , 2K.
(2.11)

Other examples that give the constraints of the form in (2.10) include the IV model for a binary

outcome studied in Chesher (2009) and a special case of revealed preference bounds studied in

Blundell, Kristensen, and Matzkin (2014).

Strictly convex identified sets also arise in an asset pricing model with market frictions.

Example 2 (Pricing kernel). Let Z : Ω → RJ be the payoffs of J securities that are traded at a

price of V ∈ RJ
+. If short sales are not allowed for any securities, then the feasible set of portfolio

weights is restricted to RJ
+ and the standard Euler equation does not hold. Instead, under power

utility, the following Euler inequalities hold (see Luttmer, 1996):

E[
1

1 + ρ
Y −γZ − V ] ≤ 0, (2.12)

where Y : Ω → R+ is a state variable, e.g. consumption growth, ρ is the investor’s subjective

discount rate, and γ is the relative risk aversion coefficient. When the payoff Z takes nonnegative

values almost surely, the set of parameter values θ = (ρ, γ) that satisfy (2.12) is convex. A criterion

function can then be defined as in (2.1) with X = (Y, Z ′, V )′ and mj(x, θ) = 1
1+ρ

y−γz − v for all j.

This example belongs to the class of moment inequality models studied in Section 4.1.

3 Inference

We first establish the main duality that relates the stochastic behavior of the normalized support

function Zn(·, t) to that of a localized criterion function. This result is then used to show that

Zn(·, t) converges weakly to a limit Z(·, t), which in turn ensures the asymptotic validity of Wald-

type inference methods based on the normalized support function.

3.1 Duality and the Asymptotic Distribution of Zn

To see how the criterion function and the support function of the set estimator are related to each

other, we start with the following equivalence relationship:

s(p, Θ̂n(t)) < u ⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t, a.s., (3.1)

where Ku,p := {θ ∈ Rd : 〈p, θ〉 ≥ u}.3 The left hand side of (3.1) means the set estimator is

separated from the half-space Ku,p intersected with Θ. Since Θ̂n(t) is the t-level set of anQn, this

3The proof of duality results discussed here are collected in Appendix C. Note that if Θ̂n(t) = ∅, we take
s(p, Θ̂n(t)) = supθ∈∅〈p, θ〉 = −∞.
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means that the minimum value of the function over Ku,p ∩ Θ exceeds the chosen level t. Figure 1

illustrates this relationship.

Θ̂n(t)

Ku,p ∩Θ

s(p, Θ̂n(t))

u

Θ
p

Figure 1: Set estimator Θ̂n(t) and its support function s(p, Θ̂n(t))

A key object for our asymptotic analysis is the sample criterion function localized on a neigh-

borhood of ΘI . For each (θ, λ) ∈ ∂ΘI × Rd, define the local criterion function `n by

`n(θ, λ) := anQn(θ + λ/a1/γ
n ).

A dual relationship similar to (3.1) also holds for the local criterion function `n and the normalized

support function Zn. In particular, using (3.1), Lemma C.2 in the appendix shows that the following

relationship holds:

Zn(p, t) < u ⇔ inf
Rn,u,p

`n(θ, λ) > t, ∀(p, u) ∈ Sd−1 × R, a.s., (3.2)

where Rn,u,p := {(θ, λ) : θ ∈ H(p,ΘI), λ ∈ Ku,p ∩ a1/γ
n (Θ − θ)} consists of the values of (θ, λ) such

that θ is in the support set H(p,ΘI) and λ is in the local parameter space Ku,p ∩ a1/γ
n (Θ− θ).

The equivalence relationship in (3.2) implies that the distribution of Zn(·, t) is tied to that of

the infimum of `n over the set Rn,u,p. The finite dimensional convergence of Zn(·, t) is then ensured

if the probability of the event on the right hand side of (3.2) converges properly to some limit.

Heuristically, the argument for establishing the limiting distribution can be summarized as follows.

For any {(pk, uk)}mk=1, the duality in (3.2) implies

P (Zn(p1, t) < u1, · · · ,Zn(pm, t) < um) = P
(

inf
Rn,u1,p1

`n(θ, λ) > t, · · · , inf
Rn,um,pm

`n(θ, λ) > t
)
. (3.3)

If {infRn,uk,pk
`n(θ, λ)}mk=1 converges in distribution to {infRuk,pk

`∞(θ, λ)}mk=1 for some process `∞

and suitable sets {Ruk,pk}mk=1, we can seek a process Z such that

P (Z(p1, t) < u1, · · · ,Z(pm, t) < um) = P
(

inf
Ru1,p1

`∞(θ, λ) > t, · · · , inf
Rum,pm

`∞(θ, λ) > t
)
. (3.4)

Then, Zn(·, t) converges weakly in finite dimension to Z(·, t). The next theorem establishes this;

It further gives the asymptotic distributions of the Hausdorff distances by showing that Zn(·, t)
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converges weakly to Z(·, t) in C(Sd−1). Below, we use
u.d.→ to denote weak convergence in C(Sd−1).4

Theorem 3.1. Suppose that Assumptions 2.1-2.4, and B.1 (in the appendix) hold. Then, (i) for

each t ∈ R+, Zn(·, t) converges weakly in finite dimension to Z(·, t), where Z(·, t) is a stochastic

process on Sd−1, which has the representation:

Z(p, t) = sup
θ∈H(p,ΘI)

s
(
p,Λθ,t

)
, Λθ,t = {λ : `∞(θ, λ) ≤ t} , (3.5)

where `∞ is defined in Assumption B.1 in the appendix; (ii) Further, Zn(·, t) u.d.→ Z(·, t) so that

a1/γ
n dH(Θ̂n(t),ΘI)

d→ sup
p∈Sd−1

|Z(p, t)| , and a1/γ
n
~dH(ΘI , Θ̂n(t))

d→ sup
p∈Sd−1

{−Z(p, t)}+. (3.6)

Theorem 3.1 characterizes the limiting distribution of the support function of the set estimator

and provides a basis for asymptotically valid inference. We illustrate this result using Example 1.

Example 1 (Interval censored outcome (continued)). Recall that the inequality restrictions in (2.9)

can be written as constraints affine in θ. Using this, define a sample criterion function Qn by

Qn(θ) =
2K∑
k=1

σ̂−1
k,n

(
a′kθ − Fk(Ên[m(Xi)]

)
+
, (3.7)

where ak denotes the k-th row of A in (2.10), and σ̂2
k,n is a consistent estimator of the asymptotic

variance of the k-th constraint.5 One can then use the support function of a level-t set Θ̂n(t) of

this criterion function for inference. We will discuss how to compute Θ̂n(t) and a confidence region

using convex programs in the next section.

By the dual relationship in (3.2), the asymptotic behavior of the normalized support function

Zn(p, t) is tied to that of the following local criterion function:

`n(θ, λ) =
√
n

2K∑
k=1

σ̂−1
k,n

(
a′k(θ + λ/

√
n)− Fk(Ên[m(Xi)])

)
+

=
2K∑
k=1

σ̂−1
k,n

(√
n{Fk(E[m(Xi)])− Fk(Ên[m(Xi)])}+ a′kλ+

√
n{a′kθ − Fk(E[m(Xi)])}

)
+
, (3.8)

where m(x) = (yL1Z(z), yU1Z(z), 1Z(z)). This local criterion function `n(θ, λ) can then be shown

to converge in the mode required by Theorem 3.1 to the following limiting process:

`∞(θ, λ) =
2K∑
k=1

σ−1
k

(
Gk + a′kλ+ ςk(θ)

)
+
, (3.9)

where G ∈ R2K is a multivariate normal vector with the covariance matrix ∇FΩm∇F ′ where ∇F is

the gradient of F , Ωm is the covariance matrix of m(Xi), and ςk(θ) = 0 if a′kθ − Fk(E[m(Xi)]) = 0,

4The online addendum (http://people.bu.edu/hkaido/pdf/Supp_Duality.pdf) provides discussions on the
convergence modes of stochastic processes used in this paper.

5Due to the moments being affine in θ and A being known, the asymptotic variance of the constraints does not
depend on θ in this example.
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and ςj(θ) = −∞ otherwise.6 By Theorem 3.1, the limiting distribution of the normalized support

function Zn(p, t) depends on `∞ via (3.5), which governs the asymptotic properties of Wald-type

statistics we introduce below. Theorem 3.1 therefore gives a theoretical basis for the asymptotic

validity of our inference methods.

3.2 Inference

For making asymptotically valid inference, one needs to consistently estimate critical values of the

form:

c1−α(t) := inf
{
x : P

(
sup
p∈Ψ0

Υ(Z(p, t)) ≤ x
)
≥ 1− α

}
, (3.10)

where Ψ0 ⊆ Sd−1, and Υ : R → R is a known function. Below, we assume Qn is constructed from

a sample {Xi : Ω → Rk}ni=1 of IID random vectors and give a generic subsampling procedure for

estimating c1−α.

Assumption 3.1. Let Assumption 2.1 hold with Qn(ω, θ) = Q̃n(X1(ω), · · · , Xn(ω), θ) where Q̃n :∏n
i=1 Rk × Rd → R̄+ is jointly measurable, n = 1, 2, · · · , and {Xi} is an IID sequence of random

k-vectors, k ∈ N.

Under Assumption 3.1, a straightforward subsampling algorithm is the following.

Algorithm 3.1 (Subsampling for normalized support functions). Let t > 0 and 0 < α < 1 be

given. Let b := bn < n be a positive integer, and let Nn,b :=
(
n
b

)
. Let {Ψn} be a sequence of random

closed subsets of Sd−1.

Step 1. For k = 1, · · · , Nn,b, construct Θ̂n,b,k(t), the set estimator for the k-th subsample, computed

as a t-level set of the criterion function abQ̃n,b,k(Xk1 , · · · , Xkb , θ).

Step 2. For k = 1, · · · , Nn,b, compute Zn,b,k(p, t) := a
1/γ
b [s(p, Θ̂n,b,k(t))− s(p, Θ̂n(t))].

Step 3. Compute the (1− α)-quantile ĉn,b,1−α(t) of the subsampling distribution:

F̂n,b(x, t) := N−1
n,b

∑
1≤k≤Nn,b

1
{

sup
p∈Ψn

Υ(Zn,b,k(p, t)) ≤ x
}
. (3.11)

For any t, let F (x, t) := P (supp∈Ψ0
Υ(Z(p, t)) ≤ x). The next theorem is a basic result for

subsampling statistics based on the normalized support function.

Theorem 3.2. Suppose the conditions of Theorem 3.1 and Assumption 3.1 hold. Suppose further

that Υ is Lipschitz continuous, Ψ0 is compact, and that dH(Ψn,Ψ0) = op(1). Let F̂n,b(·, t) and

ĉn,b,1−α(t) be computed by Algorithm 3.1. Suppose that b → ∞ and b/n → 0 as n → ∞. If x is a

continuity point of F (·, t), then F̂n,b(x, t)→ F (x, t) in probability;

6The analysis of this example is similar to that for the moment inequalities, which we will discuss in detail in
Section 4.1. A difference is due to the presence of the transformation F .
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Remark 3.1. Subsampling is generally valid under Assumption 3.1 and the conditions of Theo-

rem 3.1. We note, however, that if the example of interest has additional structure, an alternative

inference method may be preferable in terms of the accuracy of approximation or computational

tractability. For example, the score-based weighted bootstrap applied to models defined by con-

vex moment inequalities in Kaido and Santos (2014) does not require repeated set estimation on

bootstrap samples and is therefore computationally more efficient.

3.2.1 Inference for the Identified Set

We illustrate the use of Theorem 3.1 by studying inference for the identified set. Let Θ0 be a

compact convex set, and consider testing

H0 : Θ0 ⊆ ΘI vs. H1 : Θ0 * ΘI . (3.12)

We test this hypothesis using the scaled directed Hausdorff distance:

T→n (t) := a1/γ
n
~dH(Θ0, Θ̂n(t)). (3.13)

Theorem 3.1 shows that under the null hypothesis, T→n converges in law to T→ := supp∈Ψ0
Υ(Z(p, t)),

where Υ(x) = {−x}+ and Ψ0 = Sd−1. A critical value can be computed using Algorithm 3.1.

Pointwise size control and the consistency against fixed alternatives then follow as a corollary to

Theorem 3.2.

Corollary 3.1. Suppose the conditions of Theorem 3.1 and Assumption 3.1 hold. Let Θ0 be a

nonempty compact convex subset of Θo. Let ĉ→n,b,1−α(t) be the 1− α quantile of F̂n(·, t) computed by

Algorithm 3.1 with Υ(x) = {−x}+ and Ψn = Sd−1 for all n. Let c̃→n,b,1−α(t) = ĉ→n,b,1−α(t) + δ, where

δ > 0 is an arbitrarily small constant.

(i) If Θ0 ⊆ ΘI and α ∈ (0, 0.5), then it holds that

lim supn→∞ P
(
T→n (t) > c̃→n,b,1−α(t)

)
≤ α;

(ii) If Θ0 6⊆ ΘI , then the test is consistent: limn→∞ P
(
T→n (t) > c̃→n,b,1−α(t)

)
= 1.

In Corollary 3.1 (and also in Corollary 3.2 below), an arbitrarily small constant δ > 0 is intro-

duced to the critical value. This is to ensure that the test remains asymptotically valid even if the

limiting distribution F→(·, t) of the test statistic is not continuous at the 1−α quantile or showing

the continuity of F→(·, t) is not straightforward. However, if the limiting distribution is continuous,

Corollary 3.1 holds with the critical value ĉ→n,b,1−α(t), and hence one does not need to introduce δ. In

various empirically relevant examples, this is a reasonable assumption. For example, in the linear

regression with an interval censored outcome (Example 1), the limiting distribution can be shown

to be the maximum of a Gaussian process for which sufficient conditions for its absolute continuity

are known (see e.g. Tsirel’son, 1976; Davydov, Lifshits, and Smorodina, 1998). Other examples that

have the same structure include revealed preference bounds with linear payoffs (Pakes, 2010; Blun-
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dell, Kristensen, and Matzkin, 2014) and an IV model with a binary dependent variable (Chesher,

2009).

A one-sided confidence set Cn that covers the identified set with an asymptotic coverage proba-

bility 1− α can be obtained by inverting the test in Corollary 3.1. For each t, define

C1n(t) := {θ ∈ Θ : d(θ, Θ̂n(t)) ≤ c̃→n,b,1−α(t)/a1/γ
n } , c̃→n,b,1−α(t) = ĉ→n,b,1−α(t) + δ . (3.14)

This confidence set is an expansion of the set estimator Θ̂n(t) by the amount c̃→n,b,1−α(t)/a
1/γ
n .7 Under

the conditions of Corollary 3.1, the confidence set satisfies lim infn→∞ P (ΘI ⊆ C1n(t)) ≥ 1 − α for

α ∈ (0, 0.5) and t small enough.

Remark 3.2. The hypothesis in (3.12) and its test using an estimated support function is first

studied in BM. Here, we use the same hypothesis testing framework as theirs. However, there are

two key differences. First, the class of models considered here is different. We require that ΘI to be

the set of minimizers of a convex criterion function, while BM considers a class of models in which

the identified set can be represented as a linear function of the Aumann expectation of random

sets. Second, the limiting distribution of the directed Hausdorff distance statistic T→n (t) is derived

differently. We use Theorem 3.1 exploiting the duality between the support function and criterion

function, while BM applies the central limit theorem for IID random sets and a continuous mapping

theorem to their estimator, which is based on a sample average of IID random sets.

We outline below how to construct the confidence region in the context of Example 1.

Example 1 (Interval censored outcome (continued)). Constructing C1n(t) requires the researcher to

compute the support function of the consistent set estimator Θ̂n(t) and subsampled set estimators

Θ̂n,b,k(t) in Algorithm 3.1. As pointed out earlier, these objects can be computed by solving convex

programs. With the criterion function in (3.7), one can use the following linear program (LP) to

compute support functions:

max
(θ,v)∈Rd×R2K

〈p, θ〉

subject to
2K∑
k=1

wkvk ≤ t ,

− vk + a′kθ ≤ bk, k = 1, · · · 2K ,

vk ≥ 0, k = 1, · · · , 2K, (3.15)

where b = (b1, · · · , b2K) determines the location of the linear constraints, w = (w1, · · · , w2K) is a

weight vector on the constraints, and v = (v1, · · · , v2K) is a vector of auxiliary control variables.8

For example, if we set wk =
√
nσ̂−1

k,n and bk = Fk(Ên[m(Xi)]) with m(x) = (yL1Z(z), yU1Z(z), 1Z(z))

for each k, the optimal value of the LP above yields s(p, Θ̂n(t)), the support function of the set

7C1n(t) can also be written as {θ ∈ Θ : ~dH({θ}, Θ̂n(t)) ≤ c̃→n,b,1−α(t)/a
1/γ
n } because, when the first argument A of

~dH is a singleton {a}, we have ~dH(A,B) = supa∈A d(a,B) = d(a,B) by Eq. (2.4).
8For more details on computation, see discussions in Appendix F.
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estimator. Subsampled support functions s(p, Θ̂n,b,k(t)) can be computed analogously. Hence, one

may compute the normalized support function Zn,b,k(·, t) in Algorithm 3.1 and obtain a critical

value c̃n,b,1−α(t) as defined in Corollary 3.1. To compute the confidence region C1n(t), solve the LP

in (3.15) again while replacing the level t with c̃n,b,1−α(t). This gives, for each p ∈ Sd−1, a boundary

point of the confidence region C1n(t) as the optimizer of the problem. Hence, repeating this for

different directions, one can trace out the boundary of C1n(t).

The directed Hausdorff distance statistic based on Θ̂n(t) involves a user chosen parameter, the

initial level t. As we will see in section 4.2, we can often properly weight the criterion function so

that the level t only affects the mean of the limiting process Z(p, t). In this case, we can re-center

the process Zn(p, t) by a known function µ(t) or a consistent estimator µ̂n(t), so that the choice of

level becomes asymptotically irrelevant for inference. Even if we do not have a known form for µ(t)

or a consistent estimator, it is possible to remove the arbitrariness in the choice of t.

For each α ∈ (0, 1), let c→1−α(t) = inf{x ∈ R : P (T→(t) ≤ x) ≥ 1− α} denote the 1− α quantile

of the limit law T→(t) of the test statistic in (3.13) and let

t∗1−α := inf{t ∈ R+ : c→1−α(t) = 0}. (3.16)

Lemma D.1 (in the appendix) shows t 7→ c→1−α(t) is non-increasing on the interval [0, t∗1−α]. This

suggests that if we start with a large t, the amount used in (3.14) to expand the set estimator

will be smaller asymptotically, and at t = t∗1−α, we do not need to expand the set at all. The

following theorem gives conditions under which this change in the amount of expansion makes all

confidence sets with t ∈ [0, t∗1−α) asymptotically equivalent. For this result, we require that the

limiting distribution of T→n (t) is continuous.9

Theorem 3.3. Suppose the conditions of Theorem 3.1 and Assumption 3.1 hold. Suppose that the

limiting process takes the form Z(p, t) = µ(t) +Z∗(p) for each (p, t) ∈ Sd−1×R+ where µ : R+ → R
is an unknown function and that Zn(p, t)−Zn(p, t′) = µ(t)− µ(t′) + op(1) uniformly in p. Suppose

that for each t ∈ [0, t∗1−α), the cdf of T→(t) is continuous and strictly increasing at its 1−α quantile.

Let C1n(t) be defined as in (3.14) where c̃→n,b,1−α(t) = ĉ→n,b,1−α(t). Then (i) for each α ∈ (0, 1) and

0 ≤ t < t∗1−α,

dH
(
C1n(t), Θ̂n(t∗1−α)

)
= op(a

−1/γ
n ). (3.17)

(ii) for each α ∈ (0, 1) and for any t, t′ ∈ [0, t∗1−α), it holds that dH (C1n(t), C1n(t′))) = op(a
−1/γ
n ).

We also propose a generic iterative algorithm to construct a confidence set.

Algorithm 3.2. (Iterative Algorithm) Set κ > 0 small. Initialize l = 1, and set tl to an initial

value, say tl = 0.

9Recall that, if the limiting distribution of T→n (t) is continuous, the conclusions of Corollary 3.1 (i) holds with
the critical value c̃→n,b,1−α(t) = ĉ→n,b,1−α(t), i.e. δ = 0 in (3.14).
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Step 1. Construct the set estimator Θ̂n(tl). Estimate the asymptotic 1−α quantile c→1−α(tl) of the

scaled directed Hausdorff distance a
1/γ
n
~dH(ΘI , Θ̂n(tl)) by Algorithm 3.1 with Υ(x) = {−x}+

and Ψ0 = Sd−1, obtaining ĉ→n,b,1−α(t1). Using ĉ→n,b,1−α(tl), expand Θ̂n(tl) by ε̂→n,b,1−α(tl) =

ĉ→n,b,1−α(tl)/a
1/γ
n to obtain C1n(tl).

Step 2. Update the level by setting tl+1 := supθ∈C1n(tl)
anQn(θ).

Step 3. Repeat steps 1-2 until |tl+1 − tl| < κ.

The iterative algorithm can be proved to yield an increasing sequence {tl, l = 1, 2, · · · } that

tends to t∗1−α. As Theorem 3.3 shows, if the limiting process takes the form Z(p, t) = µ(t) +Z∗(p),
one may stop at Step 1.

Remark 3.3. CHT’s confidence set satisfies limn→∞ P (ΘI ⊆ Θ̂n(τ̂n,b,1−α)) = 1−α, where τ̂n,b,1−α is

a subsampling estimate of the 1−α quantile τ ∗1−α of the limiting distribution of their QLR-statistic

Sn := supΘI
anQn(θ). Theorem 3.3 suggests, if t∗1−α = τ ∗1−α, the confidence sets based on the QLR-

approach and our approach are asymptotically equivalent. In section 4.1, we will provide conditions

under which this holds for moment inequality models.

3.2.2 Inference for Points in the Identified Set

The estimated support function can also be used to make inference for points in the identified set.

Let θ0 ∈ Θ, and consider testing

H0 : θ0 ∈ ΘI vs. H1 : θ0 /∈ ΘI . (3.18)

We again use the directed Hausdorff distance statistic to test the hypothesis. Define the statistic

T→n,θ0(t) := a1/γ
n
~dH({θ0}, Θ̂n(t)) = sup

p∈Sd−1

a1/γ
n

{
〈p, θ0〉 − s(p, Θ̂n(t))

}
+
. (3.19)

The following theorem characterizes the asymptotic distribution of this statistic when θ0 is on the

boundary of ΘI .

Theorem 3.4. Suppose the conditions of Theorem 3.1 hold. Suppose further that θ0 ∈ ∂ΘI . Then,

T→n,θ0(t)
d→ sup

p∈Ψ0

{−Z(p, t)}+, (3.20)

where Ψ0 ⊆ Sd−1 is defined as Ψ0 := argmaxp∈Sd−1〈p, θ0〉 − s(p,ΘI).

Let c→1−α(θ0, t) be the 1 − α quantile of supp∈Ψ0
{−Z(p, t)}+. An aspect specific to pointwise

inference is that Ψ0 in (3.20) is generally unknown and hence needs to be estimated from data. This

is, however, straightforward. Since Ψ0 is the set of maximizers of a criterion function, it admits

consistent estimation by a level-set estimator. Letting {κn} be a sequence of positive constants such
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that κn →∞ and κn/a
1/γ
n → 0, we define

Ψ̂n := {p ∈ Sd−1 : 〈p, θ0〉 − s(p, Θ̂n(t)) ≤ sup
p′

(〈p′, θ0〉 − s(p′, Θ̂n(t)))− κn/a1/γ
n }. (3.21)

The following theorem establishes that the test has asymptotic level α and is consistent against any

fixed alternative hypothesis.

Corollary 3.2. Suppose the conditions of Theorem 3.2 hold. Let ĉ→n,b,1−α(θ0, t) be the 1−α quantile of

F̂n(·, t) computed by Algorithm 3.1 with Υ(x) = {−x}+ and Ψn = Ψ̂n for all n. Let c̃→n,b,1−α(θ0, t) =

ĉ→n,b,1−α(θ0, t) + δ, where δ > 0 is an arbitrarily small constant.

(i) If θ0 ∈ ΘI and α ∈ (0, 0.5), then it holds that

lim supn→∞ P
(
T→n,θ0(t) > c̃→n,b,1−α(θ0, t)

)
≤ α;

(ii) If θ0 /∈ ΘI , then for any t ∈ R+ and α ∈ (0, 1), the test is consistent:

limn→∞ P
(
T→n,θ0(t) > c̃→n,b,1−α(θ0, t)

)
= 1.

A confidence set for θ0 can be obtained by inverting the test in Corollary 3.2. Define

C2n(t) := {θ ∈ Θ : T→n,θ(t) ≤ c̃→n,b,1−α(θ, t)}. (3.22)

Under the conditions of Theorem 3.2, this confidence set has the coverage property:

lim inf
n→∞

P (θ0 ∈ C2n(t)) ≥ 1− α, for all θ0 ∈ ΘI . (3.23)

Remark 3.4. A statistic closely related to T→n,θ0(t) is studied in Bontemps, Magnac, and Maurin

(2012, Proposition 10) in the context of the incomplete linear model. To derive the asymptotic

distribution of their statistic, these authors construct a sequence pn of unit vectors that converges

to some p0 ∈ Ψ0. Theorem 3.4 is a novel result that complements their work by deriving the

asymptotic distribution of the statistic without such a sequence. For this, we note that our statistic

can be written as

T→n,θ0(t) = max{a1/γ
n (φθ0(s(p, Θ̂n(t)))− φθ0(s(p,ΘI))), 0},

where for any x : Sd−1 → R, φθ0(x) := supp∈Sd−1〈p, θ0〉 − x(p). In the appendix, we show that

φθ0 belongs to a class of Hadamard directionally differentiable functionals. Theorem 3.1 and a

functional δ-method in Shapiro (1991) then imply Theorem 3.4.
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4 Moment Inequality Models

4.1 Inference for Moment Inequality Models

We apply the main results to models defined by finitely many moment inequalities. This class has

been extensively studied recently.10 We first show that, employing a criterion function used in CHT,

the framework in Section 3 can be applied to convex moment inequalities. We then characterize

the limiting distribution of the normalized support function. This ensures that the researcher may

apply the Wald inference methods developed in the previous section to this class of models. In

Section 4.2, we further establish a close connection between the support function and criterion

function approaches using the characterization of the limiting distribution. Specifically, we show

that inference based on Wald and QLR statistics become asymptotically equivalent under some

conditions. This result can be thought of as a generalization of an asymptotic equivalence result

Beresteanu and Molinari (2008) established for interval identified models, a special case of convex

moment inequalities.

In the following, we use E and Ên to denote the expectation operators with respect to the data

generating probability measure and the empirical measure, respectively. Let mj : Rk × Rd → R̄,
j = 1, · · · , J and mθ be a J × 1 vector whose j-th component is mj,θ := mj(X; θ). The model is

then characterized by the following moment inequality restrictions:

E(mj(X; θ)) ≤ 0, j = 1, · · · , J. (4.1)

A number of examples including Example 2 have this structure. The identified set ΘI is the set of

parameter values at which these restrictions are satisfied. Following CHT, we consider population

and sample criterion functions of the form:

Q(θ) = ‖W 1/2(θ)E(mθ)‖2
+, and Qn(θ) = ‖Ŵ 1/2

n (θ)Ên(mθ)‖2
+, (4.2)

where W and Ŵn are population and sample weighting matrices. Below, we let P̄J be the set of

J × J positive definite matrices and make the following assumptions (Assumptions 4.1-4.3), which

are based on Condition M.2 in CHT. These conditions ensure the high-level conditions (Assumptions

2.1-2.3).

Assumption 4.1. Let (Ω,F, P ) be a complete probability space. Let d ∈ N, and let Θ ⊆ Rd be

compact and convex, with a nonempty interior; (ii) θ 7→ E(mθ) is continuous. W : Rd → P̄J is

finite and continuous on Θ, and det(W (θ)) = ∞ if θ /∈ Θ; (iii) Ŵn : Ω × Rd → P̄J is finite and

continuous on Θ, uniformly in n, and det Ŵn(ω, θ) =∞ if θ /∈ Θ with probability 1.

Assumption 4.1 makes a continuity assumption on the population moment function θ 7→ E(mθ)

10Recent research in this area includes Guggenberger, Hahn, and Kim (2008), Rosen (2008), Andrews and Guggen-
berger (2009), Galichon and Henry (2009), Canay (2010), Bugni (2010), Andrews and Soares (2010), Fan and Park
(2010), Pakes, Porter, Ho, and Ishii (2011), Andrews and Barwick (2012), Moon and Schorfheide (2012), and Yildiz
(2012) among others.
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and mild regularity conditions on the parameter space and weighting matrix so that the population

criterion function is well-defined. The next assumption then assumes that {mθ} is a P -Donsker

class and a uniform consistent estimator of the weighting matrix is available. These conditions

can be satisfied by various moment functions (van der Vaart and Wellner, 2000) and estimators of

weighting matrices, e.g. Ŵn(θ) is an estimator of the inverse of the asymptotic covariance matrix

of Ên[mθ].

Assumption 4.2. (i) {mθ : θ ∈ Θ} is a P -Donsker class; (ii) Ŵn(θ) −W (θ) = op(1) uniformly

over Θ.

We further assume that the population moment function decreases in the interior of the identified

set and increases outside a neighborhood of the identified set sufficiently rapidly. This assumption

is used to guarantee the existence of a polynomial minorant in Assumption 2.2 and a sequence of

sets Θn in Assumption 2.3, on which the sample criterion function degenerates.

Assumption 4.3. (i) There exist positive constants (C,M, ε̄) such that for any 0 ≤ ε ≤ ε̄ and θ ∈
Θ−εI , max1≤j≤J E(mj,θ) ≤ −Cε, and dH(Θ−εI ,ΘI) ≤ Mε, where Θ−εI = {θ ∈ ΘI : d(θ,Θ \ ΘI) ≥ ε};
(ii) There exist positive constants (C, δ) such that for any θ ∈ Θ, ‖E(mθ)‖+ ≥ C(d(θ,ΘI)∧ δ), and

a continuous Jacobian Π(θ) := ∇θE[mθ] exists for each θ ∈ Θ.

Finally, we assume that the identified set is in the interior of Θ and that the population and

sample criterion functions are convex.

Assumption 4.4. (i) The map θ 7→ ‖W 1/2(θ)E(mθ)‖2
+ is convex; (ii) θ 7→ ‖Ŵ 1/2

n (θ)Ên(mθ)‖2
+ is

convex a.s.; (iii) ΘI ⊂ Θo.

Under these assumptions, the localized criterion function based on Qn in (4.2) can be written

as:

`n(θ, λ) =
∥∥Ŵ 1/2

n (θ + λ/
√
n)
√
nÊn(mθ+λ/

√
n)
∥∥2

+

=
∥∥Ŵ 1/2

n (θ + λ/
√
n)(Gnmθ+λ/

√
n + E[mθ+λ/

√
n])
∥∥2

+
=
∥∥Ŵ 1/2

n (θ + λ/
√
n)Mn(θ, λ)

∥∥2

+
, (4.3)

whereMn(θ, λ) := Gnmθ+λ/
√
n+Π(θ̄n)λ+

√
nE(mθ), Gnmθ :=

√
n(Ên[mθ]−E[mθ]) is an empirical

process indexed by θ ∈ Θ, and θ̄n is a mean value which lies between θ and θ + λ/
√
n. One may

then show that `n converges to the following limit in the mode required by Theorem 3.1:

`∞(θ, λ) = ‖W 1/2(θ)M(θ, λ)‖2
+, (θ, λ) ∈ ∂ΘI × Rd , (4.4)

whereM(θ, λ) = G(θ) + Π(θ)λ+ ς(θ), G(·) is a Gaussian process on Θ, and ς(θ) is a vector whose

j-th component is such that, for any θ ∈ ∂ΘI , ςj(θ) = −∞ when the population constraint is

slack, i.e. E(mj,θ) < 0, and ςj(θ) = 0 when the population constraint binds, i.e. E(mj,θ) = 0.

The following theorem shows that our previously stated high-level conditions are satisfied under

Assumptions 4.1-4.4.
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Theorem 4.1. Suppose Assumptions 4.1-4.4 hold. Then Assumptions 2.1-2.4 and B.1 are satisfied

with `∞ in (4.4).

Theorem 3.1 then applies. Therefore, the normalized support function Zn(·, t) converges in law

to the following process:

Z(p, t) = sup
θ∈H(p,ΘI)

sup
λ∈{λ:‖W 1/2(θ)M(θ,λ)‖2+≤t}

〈p, λ〉. (4.5)

Hence, we have obtained a characterization of the limiting distribution for the normalized support

function. This has two implications. First, the existence of the limiting distribution allows one

to employ the Wald-type methods developed in Section 3 to make inference within models defined

by convex moment inequalities. Second, (4.5) is also useful for establishing a further connection

between the support function and criterion function approaches, which we elaborate below.

4.2 Asymptotic Equivalence of Wald and QLR Statistics

We use (4.5) to show that, under additional assumptions, the Wald statistic (squared directed

Hausdorff distance) and CHT’s QLR statistic are asymptotically equivalent. Although this requires

additional restrictions, they allow us to establish a conceptually important connection between the

two approaches. Toward this end, we introduce additional notation to denote active and slack

moment inequalities. For each θ ∈ ∂ΘI , let J (θ) := {j ∈ {1, · · · , J} : E(mj,θ) = 0} be the set of

indices associated with active moment inequalities, and let J(θ) be the number of elements in J (θ).

Let ΠJ (θ)(θ) denote the J(θ)×d matrix that stacks rows of Π(θ) whose indices belong to J (θ). Let

GJ (θ) denote the J(θ)× 1 vector of Gaussian processes that stacks components of G whose indices

belong to J (θ). Finally, let WJ (θ) denote the J(θ) × J(θ) matrix that collects (i, j) elements of

W (θ) for i, j ∈ J (θ).

In the current setting, the support function s(·,ΘI) of the identified set is the optimal value

function of the following problem:

sup 〈p, θ〉 (4.6)

s.t. E(mj,θ) ≤ 0, for j = 1, · · · , J.

Eq. (4.5) implies that the limiting distribution of Zn(·, t) can be studied by analyzing the following

approximating problem for each p ∈ Sd−1 and θ ∈ H(p,ΘI):

sup
λ
〈p, λ〉 (4.7)

s.t. ‖W 1/2
J (θ)(θ)[GJ (θ)(θ) + ΠJ (θ)(θ)λ]‖2

+ ≤ t.

Here, we note that the only binding constraints, i.e. j ∈ J (θ), are relevant in (4.7). This is because

the slack inequalities are dropped because ςj(θ) = −∞ for any j /∈ J (θ), and the criterion function

discards negative moments. Solving the optimization problem in (4.7) then gives a closed form for
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Z(p, t). For this, we add the following assumption to simplify the limiting distribution.

Assumption 4.5. For each θ ∈ ∂ΘI , rank(ΠJ (θ)) = J(θ), i.e. the rows of the Jacobian matrices

are linearly independent.

In Assumption 4.5, we assume that the gradients of the binding moment inequalities are linearly

independent at each boundary point. This, for example, excludes the case where some boundary

point is formed by the intersection of more than d inequalities. Using this assumption and (4.7),

one can then simplify the representation of the limiting distribution, which allows to compare the

weak limit of the Wald statistic with that of CHT’s QLR statistic: supΘI
anQn(θ).

Corollary 4.1 (Asymptotic Equivalence for Moment Inequalities). Suppose Assumptions 4.1-4.5

and E.1 in the appendix hold. Suppose W (θ) satisfies WJ (θ)(θ) = [ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1 for each

θ ∈ ∂ΘI . Suppose ΘI is strictly convex. For each p ∈ Sd−1, let θI(p) ∈ ∂ΘI be such that H(p,ΘI) =

{θI(p)}.

Then, (i) supp∈Sd−1{−Zn(p, t) + t1/2}2
+

d→ Z and supΘI
nQn(θ)

d→ Z, where

Z := sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+
;

(ii) Further, it holds that t∗1−α = τ ∗1−α.

Corollary 4.1 shows that the Wald statistic (squared directed Hausdorff distance) and CHT’s

QLR statistic are asymptotically equivalent in the sense that they converge in distribution to the

same limit, a continuous functional of a Gaussian process. The second result implies the asymptotic

equivalence of the Wald and QLR confidence sets for ΘI . When t∗1−α = τ ∗1−α for α ∈ (0, 1/2),

Theorem 3.3 implies that for all t ∈ [0, τ ∗1−α),11

dH

(
C1n(t), Θ̂n(τ ∗1−α)

)
= op(n

−1/2) .

This means that the Wald confidence set, which is an expansion of the set estimator is asymptotically

equivalent to the QLR confidence set, a level set using an asymptotic quantile of the QLR statistic

as a level.

Remark 4.1. Corollary 4.1 can be viewed as a generalization, to the convex moment inequal-

ity models, of Theorem 3.1 in BM who establish an asymptotic equivalence of Wald and QLR

statistics for models in which the identified set for a scalar parameter θ is defined by two moment

inequalities E(X1) ≤ θ ≤ E(X2). BM use an estimator Θ̃n based on the average of set-valued

random variables, which is not necessarily a level-set estimator in general. However, in this special

case, BM’s estimator can be shown to coincide with the set of minimizers of the criterion function

Qn(θ) = (Ên[X1i] − θ)2
+ + (θ − Ên[X2i])

2
+; this therefore becomes a level-set estimator with t = 0.

Hence, the “exact” equivalence of our Wald statistic Wn :=
√
n~dH(ΘI , Θ̂n(0)) and BM’s Wald

11Theorem 3.3 is applicable with c̃n,b,k(t) = ĉn,b,k(t). This is because, for α ∈ (0, 1/2), the continuity of the limiting
distribution Z follows from Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998).
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statistic W̃n :=
√
n~dH(ΘI , Θ̃n) holds. Corollary 4.1 then implies that our Wald statistic, CHT’s

QLR statistic and BM’s Wald statistic are all asymptotically equivalent in this special case.

5 Monte Carlo Experiments

We use Example 1 to examine the performance of our inference procedure. Let Zi ≡ (Z1,i, Z2,i)
′

where Z1,i = 1 and Z2,i is uniformly distributed on a set of K equally spaced points on [−5, 5]. For

θ0 = (1, 2)′ we generate:

Yi = Z ′iθ0 + εi i = 1, . . . , n , (5.1)

where εi is a standard normal random variable independent of Zi. We then create upper and lower

bounds (YL,i, YU,i) such that YL,i ≤ Yi ≤ YU,i by:

YL,i = Yi − C − ViZ2
i i = 1, . . . , n

YU,i = Yi + C + ViZ
2
i i = 1, . . . , n , (5.2)

where C = 1 and Vi is uniformly distributed on [0, 0.2] independently of (Yi, Zi). Using the notation

introduced in Section 2.3, one may then define a sample criterion function as follows (see also (3.7)

and subsequent discussions):

Qn(θ) =
2K∑
k=1

σ̂−1
k,n

(
a′kθ − Fk(Ên[m(Xi)]

)
+
, (5.3)

For x ∈ R2K , we use the criterion function
∑2K

k=1(xk)+ to aggregate binding moments instead of

‖x‖2
+ used in Section 4.1. This is to make a comparison to the bootstrap procedure by Bugni (2010)

who uses this criterion function. Given a level set estimator Θ̂n(t) of the sample criterion function

in (3.7), the Wald-statistic is defined by T→n := supp∈Sd−1{
√
n(s(p, Θ̂n(t))− s(p,ΘI))}+. The Wald

approach obtains a confidence set by expanding the set estimator Θ̂n(t) by the amount ĉn,b,1−α(t)/
√
n

computed by subsampling the Wald statistic. The QLR statistic is defined by Sn = supΘI
Qn(θ).

The QLR approach constructs a confidence set by taking a level set Θ̂n(τ̂n,b,1−α), where the right

level τ̂n,b,1−α is computed by resampling the QLR statistic (CHT, 2007, Bugni, 2009).

We report the coverage probabilities of the following four confidence sets. The first confidence

set CWald is a Wald-type confidence set defined as in (3.14) with t = ln(ln(n))
1
2 and δ = 0. The

second confidence set CIter is defined in the same manner but uses Algorithm 3.2 to update the

initial level. CCHT-Sub is CHT’s confidence set with a subsampling critical value, and CCHT-Boot is

also a CHT-type confidence set with a critical value computed by a bootstrap procedure proposed

by Bugni (2010). Details on the implementation of these procedures are discussed in Appendix F.

Table 1 and 2 report the results of the Monte Carlo experiments. Table 1 shows the coverage

probabilities of the four confidence sets, and Table 2 reports the median of the Hausdorff distances

between the identified set and each of the four confidence sets. For the first three confidence sets, we

report the results under three different values of subsamples: (e.g. b = 100, 150, 200 for n = 1, 000).

20



For the last confidence set CCHT-Boot, the procedure requires a tuning parameter κn, which is used

to select moments that are relevant for the calculation of the critical value. We set this parameter

to three different values: ln(ln(n))
1
2 , ln(n)

1
2 , and n1/8.

For n = 1, 000, the coverage probability of Wald confidence set CWald tends to be slightly under

the nominal level 0.95, but the size distortion is limited (0.1-4%) across all values of K. The size

distortion, however, tends to become larger (2.1-5.3%) with a smaller sample size: n = 500. The

coverage probability of CIter is higher than that of CWald and has a better size control property

although it is fairly conservative under some choice of subsample sizes. This can also be seen from

Table 2, which shows that the median Hausdorff loss of CIter is larger than that of CWald. One thing

to note is that when the number of moment inequalities is large (30 inequalities), CWald tends to be

quite conservative for some subsample sizes (e.g. b = 100, 150 with n = 500). This indicates that the

asymptotic approximation with a subsampling critical value may not provide a good approximation

to the finite sample distribution when the number of inequalities is large.

The coverage probabilities of the CHT confidence sets vary with subsample sizes. CCHT-Sub has

size distortion in some settings (e.g. K = 5). As pointed out by Bugni (2009), a better size control

is achieved by using a suitable bootstrap procedure. The coverage probability of CCHT-Boot controls

the size across all values of K, which therefore shows the uniform validity of the procedure. The

result is also robust over the set of values of tuning parameters, while in some cases the procedure is

conservative. Overall, the size of Wald confidence set CWald is not as good as the CHT’s confidence

set with a suitable bootstrap procedure. The confidence set CIter with the iterative algorithm has a

better size control property than CWald, but it is conservative in some settings.

6 Conclusion

This paper introduces a framework for partially identified econometric models that unifies two

general approaches recently proposed in the literature: the criterion function approach and the

support function approach. We consider the general case where the convex identified set ΘI is the

set of minimizers of a criterion function, estimated as an appropriate level set of a sample criterion

function, following CHT, and represented as a support function, as in BM. Our main duality result

shows that the support function of CHT’s level set estimator converges to a well-defined limit

when a localized criterion function converges in a suitable manner. This yields Wald-type inference

methods based on the estimated support function for general models whose identified sets can be

characterized as the set of minimizers of convex criterion functions, which therefore allow to study

examples that do not belong to the models studied by BM and Bontemps, Magnac, and Maurin

(2012).

We highlight the duality result within the class of moment inequality models by establishing

the asymptotic equivalence of our Wald statistic and CHT’s QLR statistic. We further show that

this implies the asymptotic equivalence of the Wald confidence set and CHT’s confidence set. For
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inference on the identified set and points inside it, we propose a general subsampling procedure. This

procedure is valid pointwise, as we derive our results under a fixed probability measure. Establishing

the uniform asymptotic validity of subsampling is important for partially identified models and is

one of our future tasks.

References

Aliprantis, C. D., and K. C. Border (2006): Infinite Dimensional Analysis – A Hitchhiker’s
Guide. Springer-Verlag, Berlin.

Andrews, D. W. K., and P. J. Barwick (2012): “Inference for Parameters Defined by Moment
Inequalities: A Recommended Moment Selection Procedure,” Econometrica, 80(6), 2805–2826.

Andrews, D. W. K., and P. Guggenberger (2009): “Validity of Subsampling and ’Plug-In
Asymptotic’ Inference for Parameters Defined by Moment Inequalities,” Econometric Theory,
25(3), 669–709.

Andrews, D. W. K., and G. Soares (2010): “Inference for Parameters Defined by Moment
Inequalities Using Generalized Moment Selection,” Econometrica, 78(1), 119–157.

Beresteanu, A., and F. Molinari (2008): “Asymptotic Properties for a Class of Partially
Identified Models,” Econometrica, 76(4), 763–814.

Blundell, R., D. Kristensen, and R. L. Matzkin (2014): “Bounding quantile demand
functions using revealed preference inequalities,” Journal of Econometrics, 179(2), 112–127.

Bontemps, C., T. Magnac, and E. Maurin (2012): “Set Identified Linear Models,” Econo-
metrica, 80(3), 1129–1155.

Boyd, S., and L. Vandenberghe (2004): Convex Optimization. Cambridge University Press,
Cambridge.

Bugni, F. A. (2010): “Bootstrap Inference in Partially Identified Models Defined by Moment
Inequalities: Coverage of the Identified Set,” Econometrica, 78(2), 735–753.

Canay, I. (2010): “EL inference for partially identified models: large deviations optimality and
bootstrap validity,” Journal of Econometrics, 156(2), 408–425.

Chernozhukov, V., H. Hong, and E. Tamer (2007): “Estimation and Confidence Regions for
Parameter Sets in Econometric Models,” Econometrica, 75(5), 1243–1284.

Chesher, A. (2009): “Single Equation Endogenous Binary Response Models,” Discussion paper,
Cemmap working paper.

Davydov, I. A., M. A. Lifshits, and N. V. Smorodina (1998): Local Properties of Distri-
butions of Stochastic Functionals (Translations of Mathematical Monographs). American Mathe-
matical Society.

Fan, Y., and S. S. Park (2010): “Confidence Sets for Some Partially Identified Parameters,”
Discussion Paper, Vanderbilt University.

Galichon, A., and M. Henry (2009): “A Test of Non-identifying Restrictions and Confidence
Regions for Partially Identified Parameters,” Journal of Econometrics, 152(2), 186 – 196.

22



Guggenberger, P., J. Hahn, and K. Kim (2008): “Specification testing under moment in-
equalities,” Economics Letters, 99(2), 375–378.

Kaido, H., and A. Santos (2014): “Asymptotically Efficient Estimation of Models Defined by
Convex Moment Inequalities,” Econometrica, 82(1), 387–413.

Kaido, H., and H. White (2009): “Inference on Risk Neutral Measures for Incomplete Markets,”
Journal of Financial Econometrics, 7(3), 199–246.

Knight, K. (1999): “Epi-convergence in Distribution and Stochastic Equi-semicontinuity,” Dis-
cussion Paper, University of Tronto.

Lehmann, E., and J. P. Romano (2005): Testing Statistical Hypotheses (Springer Texts in
Statistics). Springer-Verlag, Berlin, 3rd edn.

Li, S., Y. Ogura, and V. Kreinovich (2002): Limit Theorems and Applications of Set-Valued
and Fuzzy Set-Valued Random Variables (Theory and Decision Library B). Kluwer Academic
Publishers, Dordrecht.

Luttmer, E. (1996): “Asset Pricing in Economies with Frictions,” Econometrica, 64(6), 1439–
1467.

Magnac, T., and E. Maurin (2008): “Partial Identification in Monotone Binary Models: Dis-
crete Regressors and Interval Data,” Review of Economic Studies, 75(3), 835–864.

Manski, C. F. (2003): Partial Identification of Probability Distributions (Springer Series in Statis-
tics). Springer-Verlag, Berlin.

Manski, C. F., and E. Tamer (2002): “Inference on Regressions with Interval Data on a Re-
gressor or Outcome,” Econometrica, 70(2), 519–546.

Molchanov, I. (2005): Theory of Random Sets. Springer-Verlag, Berlin.

Moon, H. R., and F. Schorfheide (2012): “Bayesian and frequentist inference in partially
identified models,” Econometrica, 80(2), 755–782.

Newey, W. K. (1991): “Uniform Convergence in Probability and Stochastic Equicontinuity,”
Econometrica, 59(4), 1161–1167.

Pakes, A. (2010): “Alternative Models for Moment Inequalities,” Econometrica, 78(6).

Pakes, A., J. Porter, K. Ho, and J. Ishii (2011): “Moment Inequalities and Their Applica-
tion,” Discussion Paper, Harvard University.

Politis, D., J. Romano, and M. Wolf (1999): Subsampling. Springer-Verlag, Berlin.

Rockafellar, R. T. (1970): Convex Analysis. Princeton University Press, Princeton.

Rockafellar, R. T., and R. J.-B. Wets (2005): Variational Analysis, Second Edition.
Springer-Verlag, Berlin.

Rosen, A. M. (2008): “Confidence Sets for Partially Identified Parameters that Satisfy a Finite
Number of Moment Inequalities,” Journal of Econometrics, 146(1), 107 – 117.

Shapiro, A. (1991): “Asymptotic analysis of stochastic programs,” Annals of Operations Research,
30(1), 169–186.

23



Tsirel’son, V. (1976): “The density of the distribution of the maximum of a Gaussian process,”
Theory of Probability & Its Applications, 20(4), 847–856.

van der Vaart, A., and J. Wellner (2000): Weak Convergence and Empirical Processes: With
Applications to Statistics. Springer-Verlag, Berlin.

Yildiz, N. (2012): “Consistency of Plug-In Estimators of Upper Contour and Level Sets,” Econo-
metric Theory, 28(02), 309–327.

Zalinescu, C. (2002): Convex Analysis in General Vector Spaces. World Scientific Publishing
Company, Singapore.

Supplemental Appendix

In this supplemental appendix, we include additional conditions and the proofs of the results stated in

the main text. The contents of the supplemental appendix are organized as follows. Appendix A collects

notation and definitions used throughout the appendix. Appendix B gives the local process regularity, and

Appendix C contains the proof of Theorem 3.1 and auxiliary lemmas. Appendix D contains the proof of

Theorems 3.2, 3.3, 3.4, Corollary 3.2, and auxiliary lemmas. Appendix E contains the proof of Theorem

4.1, Corollaries E.1 and 4.1. Appendix F collects details on the Monte Carlo experiments.

Appendix A: Notation and Definitions

The following is a list of notations and definitions used throughout the appendix.

`n : Localized criterion function defined as `n(θ, λ) = anQn(θ + λ/a
1/γ
n ).

`∞ : Limit of `n in the mode of Assumption B.1 (ii).

Λθ,t : The level set Λθ,t = {λ ∈ Rd : `∞(θ, λ) ≤ t}.
H(p,ΘI) : The support set H(p,ΘI) = {θ : 〈p, θ〉 = s(p,ΘI)} ∩ΘI .

Ku,p,K
o
u,p : The half spaces Ku,p := {x ∈ Rd : 〈p, x〉 ≥ u} and Ko

u,p = {x ∈ Rd : 〈p, x〉 > u}.
Ru,p, R

o
u,p : The sets Ru,p = H(p,ΘI)×Ku,p and Rou,p = H(p,ΘI)×Ko

u,p.

Rn,u,p, R
o
n,u,p : The sets Rn,u,p = {(θ, λ) : θ ∈ H(p,ΘI), λ ∈ Ku,p ∩ a1/γ

n (Θ− θ)}
and Ron,u,p = {(θ, λ) : θ ∈ H(p,ΘI), λ ∈ Ko

u,p ∩ a
1/γ
n (Θ− θ)}.

J (θ) : The set of indices associated with binding moment inequalities at θ ∈ Θ.

J(θ) : The number of elements in J (θ).

ΠJ (θ) : The J(θ)× d matrix that stacks rows of Π(θ) whose indices belong to J (θ).

GJ (θ): The J(θ)× 1 vector that stacks components of G whose indices belong to J (θ).

WJ (θ): J(θ)× J(θ) matrix that collects (i, j) elements of W (θ) for i, j ∈ J (θ).

Appendix B: Local Process Regularity

In this Appendix, we first give additional regularity conditions on the local criterion function used to prove

Theorem 3.1.
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Assumption B.1 (Local Process Regularity). (i) For any ε > 0 and (u, p) ∈ R× Sd−1,

P
(
| inf
Rn,u,p

`n(θ, λ)− inf
Ru,p

`n(θ, λ)| ≥ ε
)
≤ ε

for n sufficiently large, where Ru,p := H(p,ΘI)×Ku,p. (ii) `n converges to a convex lower semicontinuous function

`∞ in the following sense; for any (uj , pj), j = 1, · · · ,m

lim inf
n→∞

P ( inf
Ru1,p1

`n(θ, λ) > t, · · · , inf
Rum,pm

`n(θ, λ) > t) ≥ P ( inf
Ru1,p1

`∞(θ, λ) > t, · · · , inf
Rum,pm

`∞(θ, λ) > t) (B.1)

lim sup
n→∞

P ( inf
Rou1,p1

`n(θ, λ) ≥ t, · · · , inf
Roum,pm

`n(θ, λ) ≥ t) ≤ P ( inf
Rou1,p1

`∞(θ, λ) ≥ t, · · · , inf
Roum,pm

`∞(θ, λ) ≥ t), (B.2)

where Rou,p := H(p,ΘI)×Ko
u,p, and Ko

u,p := {λ : 〈p, λ〉 > u}. (iii) For each (u, p) ∈ R× Sd−1, `∞(θ, ·) achieves its

minimum on Ru,p. For each t ∈ R+ and p ∈ Sd−1, the set Λθ,t ≡ {λ : `∞(θ, λ) ≤ t} satisfies supθ∈H(p,ΘI) s(p,Λθ,t) <

∞.

Assumption B.1 (i) requires the sequence of sets Rn,u,p to converge to a limit Ru,p. This is satisfied, for example, if

the identified set is in the interior of the parameter space. Assumption B.1 (ii) gives the precise notion of convergence

required for `n, which adapts the concept of weak epiconvergence in Knight (1999) and Molchanov (2005). This

assumption is satisfied, for example, if the infimum of `n and `∞ over Ru,p is approximated by its infimum over

some compact subset R̃u,p ⊂ Ru,p and infR̃u,p `n converges weakly to infR̃u,p `∞. Details on the relationship between

Assumption B.1 (ii) and other convergence concepts are discussed in the online addendum. Assumption B.1 (iii)

requires `∞’s minimum on Ru,p and 〈p, θ〉’s maximum over Λt,θ to be well-defined.

Appendix C: Proof of Theorem 3.1

In this appendix, we establish Theorem 3.1 in multiple steps, which we outline below.

Step 1: We first establish a duality relation between the support function s(·, Θ̂n) and the sample criterion function

Qn (Lemma C.1)

Step 2: Using Lemma C.1, we then show that the finite-dimensional limit of the normalized support function

Zn(p, t) = a
1/γ
n (s(p, Θ̂n)− s(p,ΘI)) can be related to that of inf(θ,λ)∈Ru,p `n(θ, λ) (Lemma C.2)

Step 3: In Lemma C.3, we further show that the finite-dimensional distribution of the limiting localized function

inf(θ,λ)∈Ru,p `∞(θ, λ) can be related to that of the limiting process Z(p, t)

Step 4: Combining Steps 2-3, we then show Zn(·, t) converges weakly in finite dimension to Z(·, t). We further

strengthen this convergence to weak convergence in C(Sd−1) using Lemma C.4

Lemma C.1 (Duality 1). Suppose that Assumption 2.1 holds. Let n ∈ N and t ∈ R+ be given. Then, for any u ∈ R
and p ∈ Sd−1

s(p, Θ̂n(t)) < u ⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t (C.1)

s(p, Θ̂n(t)) ≤ u ⇒ inf
θ∈Ko

u,p∩Θ
anQn(θ) ≥ t (C.2)

with probability 1, where Ku,p is the half space Ku,p := {θ ∈ Rd : 〈p, θ〉 ≥ u}.

Proof of Lemma C.1. The equivalence (C.1) holds trivially when Ku,p ∩ Θ = ∅ because then the half space {θ ∈
Rd : 〈p, θ〉 < u} contains Θ and hence also contains Θ̂n(t), which in turn implies that s(p, Θ̂n(t)) < u must be true.

Further, the statement infθ∈∅ anQn(θ) =∞ > t is always true. Hence (C.1) holds. Below, we assume Ku,p ∩Θ 6= ∅.
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It then follows that

s(p, Θ̂n(t)) < u⇔ 〈p, θ〉 < u, ∀θ ∈ Θ̂n(t)

⇔ Θ̂n(t) ⊆ Θ \Ku,p

⇔ Ku,p ∩Θ ⊆ Θ \ Θ̂n(t)

⇔ anQn(θ) > t, ∀θ ∈ Ku,p ∩Θ

⇔ inf
θ∈Ku,p∩Θ

anQn(θ) > t, (C.3)

where the first equivalence holds because sufficiency is immediate from s(p, Θ̂n(t)) = supθ∈Θ̂n(t)〈p, θ〉, and the

necessity follows from the maximum being achieved on Θ̂n(t) by compactness of Θ̂n(t) ensured by Assumption 2.1.

Similarly, the last equivalence follows from Qn being lower semicontinuous with probability 1 and Ku,p ∩Θ being a

nonempty compact set.

Similarly, (C.2) holds trivially when Ko
u,p ∩ Θ = ∅. Assuming Ko

u,p ∩ Θ 6= ∅ and arguing as in (C.3), it follows

that

s(p, Θ̂n(t)) ≤ u⇔ anQn(θ) > t, ∀θ ∈ Ko
u,p ∩Θ. (C.4)

Since t is a lower bound for the set {anQn(θ) : θ ∈ Ko
u,p∩Θ}, the right hand side of (C.4) implies infθ∈Ko

u,p∩Θ anQn(θ) ≥
t. Hence, (C.2) holds. This establishes the claim of the Lemma.

Lemma C.2 (Duality 2). Suppose that Assumptions 2.1 and B.1 (i) hold. Let t ∈ R+ be given. Then, for any finite

m-tuple {(uj , pj) ∈ R× Sd−1}mj=1,

lim inf
n→∞

P (Zn(p1, t) < u1, ...,Zn(pm, t) < um)

≥ lim inf
n→∞

P
(

inf
(θ,λ)∈Ru1,p1

`n(θ, λ) > t, ..., inf
(θ,λ)∈Rum,pm

`n(θ, λ) > t
)

(C.5)

lim sup
n→∞

P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um)

≤ lim sup
n→∞

P
(

inf
(θ,λ)∈Rou1,p1

`n(θ, λ) ≥ t, ..., inf
(θ,λ)∈Roum,pm

`n(θ, λ) ≥ t
)
. (C.6)

Proof of Lemma C.2. We first note that the following equivalence relations hold:

Zn(p, t) < u⇔ s(p, Θ̂n(t)) < s(p,ΘI) + u/a1/γ
n

⇔ inf
θ′∈K

s(p,ΘI )+u/a
1/γ
n ,p

∩Θ
anQn(θ′) > t⇔ inf

θ∈H(p,ΘI),λ∈Ku,p∩a1/γ
n (Θ−θ)

anQn(θ + λ/a1/γ
n ) > t , (C.7)

where the second equivalence follows from Lemma C.1, and the third equivalence follows from the following equality

K
s(p,ΘI)+u/a

1/γ
n ,p

∩Θ = {θ + λ/a1/γ
n : θ ∈ H(p,ΘI), λ ∈ Ku,p ∩ a1/γ

n (Θ− θ)}. (C.8)

We show (C.8) below. First, suppose θ ∈ H(p,ΘI) and λ ∈ Ku,p ∩ a1/γ
n (Θ− θ). Then,

〈p, θ + λ/a1/γ
n 〉 = 〈p, θ〉+ a−1/γ

n 〈p, λ〉 ≥ s(p,ΘI) + u/a1/γ
n ,

where the last inequality follows from θ ∈ H(p,ΘI) and λ ∈ Ku,p. Further, θ+ λ/a
1/γ
n ∈ Θ because λ ∈ a1/γ

n (Θ− θ).
Hence, θ+λ/a

1/γ
n ∈ K

s(p,ΘI)+u/a
1/γ
n ,p

∩Θ. This establishes that the set on the right hand side of (C.8) is a subset of

K
s(p,ΘI)+u/a

1/γ
n ,p

∩ Θ. For the reverse inclusion, let θ′ ∈ K
s(p,ΘI)+u/a

1/γ
n ,p

∩ Θ and pick any θ ∈ H(p,ΘI). We then

let λ := a
1/γ
n (θ′ − θ). By construction, we have λ ∈ a1/γ

n (Θ− θ). Further,

〈p, λ〉 = 〈p, a1/γ
n (θ′ − θ)〉 = a1/γ

n (〈p, θ′〉 − 〈p, θ〉) ≥ a1/γ
n (s(p,ΘI) + u/a1/γ

n − s(p,ΘI)) = u,

where the inequality follows from θ′ ∈ K
s(p,ΘI)+u/a

1/γ
n
∩ Θ. Therefore, the reverse inclusion holds. This in turn

establishes (C.8).
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Now, by (C.7) and the definition of `n and Rn,u,p, we obtain Zn(p, t) < u ⇔ infRn,u,p `n(θ, λ) > t. Since this

holds for any finite m-tuple {(uj , pj)}mj=1, it follows that

P (Zn(p1, t) < u1, · · · ,Zn(pm, t) < um) = P
(

inf
Rn,u1,p1

`n(θ, λ) > t, · · · , inf
Rn,um,pm

`n(θ, λ) > t
)
. (C.9)

Note that, for any ε > 0, we have

P
(

inf
Ru1,p1

`n(θ, λ) > t+ ε, · · · , inf
Rum,pm

`n(θ, λ) > t+ ε
)

≤ P
(

max
1≤j≤m

∣∣∣ inf
Ruj,pj

`n(θ, λ)− inf
Rn,uj,pj

`n(θ, λ)
∣∣∣ ≥ ε)+ P

(
inf

Rn,u1,p1

`n(θ, λ) > t, · · · , inf
Rn,um,pm

`n(θ, λ) > t
)
, (C.10)

where we used the fact that, for any random vectors Yn, Xn : Ω → Rm, an open set G ⊂ Rm, and its ε-contraction

G−ε := {x ∈ G : ρ(x,Gc) ≥ ε}, we have P (Yn ∈ G−ε) ≤ P (ρ(Xn, Yn) ≥ ε) + P (Xn ∈ G). Specifically, we used the

metric ρ(Xn, Yn) = max1≤j≤m |Xj,n− Yj,n| and the open set G = (t,∞)m. Assumption B.1 (i) ensures that the first

term on the right hand side of (C.10) becomes arbitrarily small as n gets large. Therefore,

lim inf
n→∞

P
(

inf
Ru1,p1

`n(θ, λ) > t+ ε, · · · , inf
Rum,pm

`n(θ, λ) > t+ ε
)

≤ lim inf
n→∞

P
(

inf
Rn,u1,p1

`n(θ, λ) > t, · · · , inf
Rn,um,pm

`n(θ, λ) > t
)
. (C.11)

Since ε is arbitrary, (C.5) then follows from (C.9) and (C.11).

Similarly, by Lemma C.1 and an argument as in (C.7), it follows that Zn(p, t) ≤ u⇒ infRon,u,p `n(θ, λ) ≥ t. Since

this holds for any finite m-tuple {(uj , pj)}mj=1, we have

P (Zn(p1, t) ≤ u1, · · · ,Zn(pm, t) ≤ um) ≤ P
(

inf
Ron,u1,p1

`n(θ, λ) ≥ t, · · · , inf
Ron,um,pm

`n(θ, λ) ≥ t
)
. (C.12)

Note that, for any ε > 0, we have

P
(

inf
Ron,u1,p1

`n(θ, λ) ≥ t, · · · , inf
Ron,um,pm

`n(θ, λ) ≥ t
)

≤ P
(

max
1≤j≤m

∣∣∣ inf
Rouj,pj

`n(θ, λ)− inf
Ron,uj,pj

`n(θ, λ)
∣∣∣ ≥ ε)+ P

(
inf

Rou1,p1

`n(θ, λ) ≥ t− ε, · · · , inf
Roum,pm

`n(θ, λ) ≥ t− ε
)
,

(C.13)

where we used the fact that, for any random vectors Yn, Xn : Ω → Rm, a closed set F ⊂ Rm, and its ε-expansion

F ε := {x ∈ F : ρ(x, F ) ≤ ε}, we have P (Yn ∈ F ) ≤ P (ρ(Xn, Yn) ≥ ε) + P (Xn ∈ F ε). By Assumption B.1 (i),

lim sup
n→∞

P
(

inf
Ron,u1,p1

`n(θ, λ) ≥ t, · · · , inf
Ron,um,pm

`n(θ, λ) ≥ t
)

≤ lim sup
n→∞

P
(

inf
Rou1,p1

`n(θ, λ) ≥ t− ε, · · · , inf
Roum,pm

`n(θ, λ) ≥ t− ε
)
. (C.14)

Since ε is arbitrary, (C.6) then follows from (C.12) and (C.14). This completes the proof.

Lemma C.3. Suppose Assumption B.1 holds. Let t ∈ R+ be given. Then, for any finite m-tuple {(uj , pj) ∈
R× Sd−1}mj=1,

P
(
Z(p1, t) < u1, · · · ,Z(pm, t) < um

)
≤ P

(
inf

(θ,λ)∈Ru1,p1

`∞(θ, λ) > t, · · · , inf
(θ,λ)∈Rum,pm

`∞(θ, λ) > t
)

(C.15)

P
(
Z(p1, t) ≤ u1, · · · ,Z(pm, t) ≤ um

)
≥ P

(
inf

(θ,λ)∈Rou1,p1

`∞(θ, λ) ≥ t, · · · , inf
(θ,λ)∈Roum,pm

`∞(θ, λ) ≥ t
)
. (C.16)

Proof of Lemma C.3. Let p ∈ Sd−1. We first note that supθ∈H(p,ΘI) s(p,Λθ,t) <∞ by Assumption B.1 (iii). Arguing
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as in (C.3), we then obtain

sup
θ∈H(p,ΘI)

s(p,Λθ,t) < u⇒ 〈p, λ〉 < u, ∀θ ∈ H(p,ΘI) and λ ∈ Λθ,t,

⇔ Λθ,t ⊆ Rd \Ku,p, ∀θ ∈ H(p,ΘI)

⇔ Ku,p ⊆ Rd \ Λθ,t, ∀θ ∈ H(p,ΘI)

⇔ `∞(θ, λ) > t, ∀θ ∈ H(p,ΘI) and λ ∈ Ku,p

⇔ inf
(θ,λ)∈Ru,p

`∞(θ, λ) > t, (C.17)

where the last equivalence follows from Assumption B.1 (iii). Since this holds for any finite m-tuple {(uj , pj), j =

1, · · · ,m}, (C.15) holds.

Let Λoθ,t := {λ ∈ Rd : `∞(θ, λ) < t}. We then have

inf
(θ,λ)∈Rou1,p1

`∞(θ, λ) ≥ t⇒ `∞(θ, λ) ≥ t, ∀θ ∈ H(p,ΘI) and λ ∈ Ko
u,p

⇔ Λoθ,t ⊆ Rd \Ko
u,p, ∀θ ∈ H(p,ΘI)

⇒ s(p,Λθ,t) ≤ u, ∀θ ∈ H(p,ΘI)

⇒ sup
θ∈H(p,ΘI)

s(p,Λθ,t) ≤ u, (C.18)

where the second equivalence follows from the definition of Λoθ,t, the second implication follows because Rd \Ko
u,p =

{λ : 〈p, λ〉 ≤ u} is closed hence contains Λθ,t = cl(Λoθ,t), implying Λθ,t’s support function being weakly dominated by

u. Since this holds for any finite m-tuple {(uj , pj), j = 1, · · · ,m}, (C.16) holds.

Lemma C.4. Let E be a compact set in a metric space. Let h : [0,∞) → [0,∞) be a function such that h(0) = 0

and h is continuous at 0. There is Bn such that Bn = Op(1). If for all x, y ∈ E, |ξn(x) − ξn(y)| ≤ Bnh(‖x − y‖),
then {ξn} is stochastically equicontinuous.

Proof of Lemma C.4. The result immediately follows from Assumption 3A and Corollary 2.2 in Newey (1991).

Proof of Theorem 3.1. By Assumption B.1 (ii), Lemmas C.2 and C.3, it follows that, for any {(uj , pj)}mj=1,

lim inf
n→∞

P (Zn(p1, t) < u1, ...,Zn(pm, t) < um)

≥ lim inf
n→∞

P
(

inf
(θ,λ)∈Ru1,p1

`n(θ, λ) > t, ..., inf
(θ,λ)∈Rum,pm

`n(θ, λ) > t
)

≥ P
(

inf
(θ,λ)∈Ru1,p1

`∞(θ, λ) > t, · · · , inf
(θ,λ)∈Rum,pm

`∞(θ, λ) > t
)

≥ P
(
Z(p1, t) < u1, · · · ,Z(pm, t) < um

)
. (C.19)

Similarly, by Assumption B.1 (ii), Lemmas C.2 and C.3, it follows that

lim sup
n→∞

P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um)

≤ lim sup
n→∞

P
(

inf
(θ,λ)∈Rou1,p1

`n(θ, λ) ≥ t, ..., inf
(θ,λ)∈Roum,pm

`n(θ, λ) ≥ t
)

≤ P
(

inf
(θ,λ)∈Rou1,p1

`∞(θ, λ) ≥ t, · · · , inf
(θ,λ)∈Roum,pm

`∞(θ, λ) ≥ t
)

≤ P
(
Z(p1, t) ≤ u1, · · · ,Z(pm, t) ≤ um

)
. (C.20)
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By (C.19) and (C.20), it follows that for any continuity point (u1, · · · , um) of (Z(p1, t), · · · ,Z(pm, t))
′,

lim sup
n→∞

P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um) ≤ P (Z(p1, t) ≤ u1, · · · ,Z(pm, t) ≤ um)

= P (Z(p1, t) < u1, · · · ,Z(pm, t) < um)

≤ lim inf
n→∞

P (Zn(p1, t) < u1, ...,Zn(pm, t) < um)

≤ lim inf
n→∞

P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um). (C.21)

Since lim infn→∞ P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um) ≤ lim supn→∞ P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um) always

holds, (C.21) ensures that limn→∞ P (Zn(p1, t) ≤ u1, ...,Zn(pm, t) ≤ um) = P (Z(p1, t) ≤ u1, ...,Z(pm, t) ≤ um) at

any continuity point (u1, · · · , um) of (Z(p1, t), · · · ,Z(pm, t))
′. Therefore Zn(·, t) converges weakly in finite dimension

to Z(·, t). This establishes (i).

For (ii), it then suffices to show the tightness of Zn(·, t). We now show the required conditions for Lemma C.4

using an expansion of the support function. In the following, we extend s(·,ΘI) and s(·, Θ̂n) from Sd−1 to Rd. Under

our assumptions, ΘI is a compact convex set, and Θ̂n(t) is a compact convex set almost surely. This ensures that

p 7→ s(p,ΘI) is convex, and p 7→ s(p, Θ̂n(t)) is convex a.s. Now, take an open convex set O such that Sd−1 ⊂ O. Let

p, q ∈ Sd−1. Then, by Theorem 10.48 in Rockafellar and Wets (2005), for some p̄n and p̄ on the line segment that

connects p and q, there exist v̂n ∈ ∂s(p̄n, Θ̂n(t)) and w ∈ ∂s(p̄,ΘI) such that

s(p, Θ̂n(t))− s(q, Θ̂n(t)) = 〈v̂n, p− q〉 (C.22)

s(p,ΘI)− s(q,ΘI) = 〈w, p− q〉 (C.23)

Subtracting (C.23) from (C.22) and multiplying both sides by a
1/γ
n yields

Zn(p, t)−Zn(q, t) = a1/γ
n 〈v̂n − w, p− q〉. (C.24)

Note that, under Assumptions 2.2-2.3, CHT’s Theorem 3.2 and Theorem 1.1.12 in Li, Ogura, and Kreinovich (2002)

imply Zn(p, t) = Op(1) for any p ∈ Sd−1. Therefore a
1/γ
n 〈v̂n − w, p − q〉 = Zn(p, t) − Zn(q, t) = Op(1) for any

p, q ∈ Sd−1. Since this holds for any p and q, each component of a
1/γ
n (v̂n−w) must beOp(1). Therefore, a

1/γ
n ‖v̂n−w‖ =

Op(1).

Applying the Cauchy-Schwarz inequality to (C.24), we obtain

|Zn(p, t)−Zn(q, t))| ≤ a1/γ
n ‖v̂n − w‖‖p− q‖.

Now, we apply Lemma C.4 with Bn = a
1/γ
n ‖v̂n−w‖ and h(x) = x. This ensures that {Zn(·, t), n ≥ 1} is stochastically

equicontinuous. Thus, {Zn(·, t), n ≥ 1} is tight. Note that a tight sequence that is weakly converging in finite

dimension weakly converges in the uniform metric (van der Vaart and Wellner, 2000). Thus, we obtain Zn(·, t) u.d.→
Z(·, t). The weak convergence of the Hausdorff distances then follow from (2.7) and the continuous mapping theorem.

Appendix D: Proof of Theorems 3.2, 3.3 3.4 and Corollaries 3.1-3.2

In this section, we give the proof of Theorems 3.2, 3.3 and 3.4, Corollaries 3.1, 3.2 and auxiliary lemmas. Theorem

3.4 is proved using a functional δ-method for directionally differentiable functionals. For this, we need a suitable

differentiability concept of the map s(·,ΘI) 7→ supp∈Sd−1〈p, θ0〉 − s(p,ΘI). The following definition is based on

Shapiro (1991).

Definition D.1. Let X and Y be normed vector spaces. A map g : X → Y is said to be Hadamard directionally

differentiable at µ if for every sequence {tn} of positive numbers converging to 0 and any sequence {xn} converging
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to x, the limit

ġ(x) = lim
n→∞

g(µ+ tnxn)− g(µ)

tn
(D.1)

exists. If ġ is linear in x, then g is said to be Hadamard differentiable at µ.

Proof of Theorem 3.2. For each t ∈ R+ and p ∈ Sd−1, let Z∗n,b,k(t) := a
1/γ
b [s(p, Θ̂n,b,k(t))− s(p,ΘI)]. For each x ∈ R

and t ∈ R+, let

Un,b(x, t) := N−1
n,b

Nn,b∑
k=1

1
{

sup
p∈Ψ0

Υ(Z∗n,b,k(p, t)) ≤ x
}
. (D.2)

Let ε, δ > 0, and let K be the Lipschitz constant of Υ. Suppose that supp∈Ψ0
Υ(Zn,b,k(p, t)) ≤ x, a

1/γ
b dH(Θ̂n(t),ΘI) ≤

ε/2K, dH(Ψ̂n,Ψ0) ≤ δ, and sup‖p−p′‖≤δ |Zn,b,k(p, t)−Zn,b,k(p, t)| ≤ ε/2K. Then, it follows that

| sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Z∗n,b,k(p, t))|

≤ | sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Zn,b,k(p, t))|+ | sup
p∈Ψ0

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Z∗n,b,k(p, t))|

≤ | sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Zn,b,k(p, t))|+ sup
p∈Sd−1

|Υ(Zn,b,k(p, t))−Υ(Z∗n,b,k(p, t))|. (D.3)

Let p̂n ∈ arg maxp∈Ψ̂n
Υ(Zn,b,k(p, t)), which is well defined by the compactness of Ψ̂n and the continuity of the map

p 7→ Υ(Zn,b,k(p, t)). Let ΠΨ0 p̂n be the projection of p̂n on Ψ0 and note that ‖p̂n − ΠΨ0 p̂n‖ ≤ dH(Ψ̂n,Ψ0) ≤ δ. We

then obtain,

sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Zn,b,k(p, t))

≤ Υ(Zn,b,k(p̂n, t))−Υ(Zn,b,k(ΠΨ0
p̂n, t)) ≤ sup

‖p−p′‖≤δ
|Υ(Zn,b,k(p, t))−Υ(Zn,b,k(p′, t))|. (D.4)

A similar argument gives

sup
p∈Ψ0

Υ(Zn,b,k(p, t))− sup
p∈Ψ̂n

Υ(Zn,b,k(p, t)) ≤ sup
‖p−p′‖≤δ

|Υ(Zn,b,k(p, t))−Υ(Zn,b,k(p′, t))|. (D.5)

(D.4) and (D.5) then imply

| sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Zn,b,k(p, t))|

≤ sup
‖p−p′‖≤δ

|Υ(Zn,b,k(p, t))−Υ(Zn,b,k(p′, t))| ≤ K sup
‖p−p′‖≤δ

|Zn,b,k(p, t)−Zn,b,k(p′, t)| ≤ ε

2
, (D.6)

by the Lipschitz continuity of Υ and the hypothesis. Furthermore, the Lipschitz continuity of Υ and the hypothesis

that a
1/γ
b dH(Θ̂n(t),ΘI) ≤ ε/2K ensure

sup
p∈Sd−1

|Υ(Zn,b,k(p, t))−Υ(Z∗n,b,k(p, t))| ≤ K sup
p∈Sd−1

a
1/b
b |s(p, Θ̂n(t))− s(p,ΘI)| ≤

ε

2
. (D.7)

Combining Eqs. (D.3)-(D.7) yields | supp∈Ψ̂n
Υ(Zn,b,k(p, t)) − supp∈Ψ0

Υ(Z∗n,b,k(p, t))| ≤ ε. Therefore, we have

supp∈Ψ0
Υ(Z∗n,b,k(p, t)) ≤ x+ ε. Now define the following event:

En,b(t, ε, δ) :=
{
ω ∈ Ω : a

1/γ
b dH(Θ̂n(t),ΘI) ≤ ε/2K, dH(Ψ̂n,Ψ0) ≤ δ, sup

‖p−p′‖≤δ
|Zn,b,k(p, t)−Zn,b,k(p, t)| ≤ ε/2K

}
.

(D.8)

The arguments above ensure that the following inequality holds:

F̂n,b(x, t)1En,b(t,ε,δ) ≤ Un,b(x+ ε, t). (D.9)
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Now, suppose on the other hand that supp∈Ψ0
Υ(Z∗n,b,k(p, t)) ≤ x− ε and that ω ∈ En,b(t, ε, δ). Then, using the

same argument as above, it is straightforward to show that

| sup
p∈Ψ̂n

Υ(Zn,b,k(p, t))− sup
p∈Ψ0

Υ(Z∗n,b,k(p, t))| ≤ ε. (D.10)

Hence, we have supp∈Ψ̂n
Υ(Zn,b,k(p, t)) ≤ x. Therefore, we obtain the following inequality:

Un,b(x− ε, t)1En,b(t,ε,δ) ≤ F̂n,b(x, t)1En,b(t,ε,δ). (D.11)

By CHT’s Theorem 3.1 (1), the assumption that dH(Ψ̂n,Ψ0) = op(1), and the stochastic equicontinuity of {Zn,b,k(·, t)},
(D.9) and (D.11) hold for any ε, δ > 0 and P (En,b(t, ε, δ))→ 1 as n→∞ and b→∞. Hence, for any ε > 0, we have

Un,b(x− ε, t) ≤ F̂n,b(x, t) ≤ Un,b(x+ ε, t), (D.12)

with probability tending to 1. Now it is straightforward to show Un,b(x− ε, t) = F (x, t) + op(1) for each continuity

point x of F (·, t) by an argument similar to the proof of Theorem 2.2.1 (i) in Politis, Romano, and Wolf (1999).

Therefore,

F (x− ε, t)− ε ≤ F̂n,b(x, t) ≤ F (x+ ε, t) + ε,

with probability tending to 1 for any ε > 0. Now, let ε ↓ 0 so that x± ε are continuity points of F→(·, P ). Then, the

conclusion follows.

Proof of Corollary 3.1. (i) Let F̂→n (·, t) be the empirical cdf of T→n (t). Similarly, for each t, let F→(·, t) be the cdf

of supp∈Sd−1{−Z(p, t)}+. Let Υ(x) = {−x}+ and Ψ0 = Ψn = Sd−1. By Theorem 3.2, it follows that F̂→n (x, t) −
F→(x, t) = op(1) at every continuity point of F→(·, t).

Note that the map x 7→ F→(x, t) is right continuous with a left limit. Hence, for any ε > 0, there is ηε > 0 such

that

|F→(x, t)− F→(c→1−α(t), t)| < ε, ∀x ∈ (c→1−α(t), c→1−α(t) + ηε) (D.13)

|F→(x, t)− L| < ε, ∀x ∈ (c→1−α(t)− ηε, c→1−α(t)) , (D.14)

where L = limc↑c→1−α(t) F
→(c, t) is the left limit of F→ at c→1−α(t). Hence, there are continuity points c0, c1 of F→(·, t)

such that c1 < c→1−α(t) < c0. Below, we take c0 and c1 such that c0 − c1 = δ, where δ is the constant specified in the

corollary. By c1 < c→1−α(t), it must be the case that

F→(c1, t) < 1− α, (D.15)

because otherwise we must have c1 ≥ c→1−α(t) by c→1−α(t) being the infimum of c such that F→(c, t) ≥ 1−α. Since c1

is a continuity point of F→(·, t) and F̂→n (x, t)−F→(x, t) = op(1) at each continuity point of F→(·, t), it then follows

that

F̂→n (c1, t) < 1− α , wp→ 1 . (D.16)

This in turn implies

c1 < inf{c ∈ R : F̂→n (c, t) ≥ 1− α} = ĉ→n,b,1−α(t), wp→ 1. (D.17)

For each n, let An be defined by

An := {ω ∈ Ω : c1 < ĉ→n,b,1−α(t)} = {ω ∈ Ω : c0 < ĉ→n,b,1−α(t) + δ} , (D.18)

where the second equality follows from c1 = c0 − δ. Now note that:

P (T→n (t) > ĉ→n,b,1−α(t) + δ) ≤ P ({T→n (t) > ĉ→n,b,1−α(t) + δ} ∩An) + P (Acn) ≤ P (T→n (t) > c0) + P (Acn). (D.19)

31



Then, we obtain

lim sup
n→∞

P (T→n (t) > ĉ→n,b,1−α(t) + δ) ≤ lim sup
n→∞

P (T→n (t) > c0) + lim sup
n→∞

P (Acn)

≤ lim sup
n→∞

P (T→n (t) ≥ c0) + lim sup
n→∞

P (Acn)

(1)

≤ P (sup
p∈Sl
{−Z(p, t)}+ ≥ c0)

(2)
= P (sup

p∈Sl
{−Z(p, t)}+ > c0) = 1− F→(c0, t) ≤ 1− F→(c→1−α(t), t) ≤ α. (D.20)

where (1) follows from T→n (t)
d→ supp∈Sl{−Z(p, t)}+ and P (Acn)→ 0 by (D.17)-(D.18). Equality (2) follows from c0

being a continuity point of F→(·, t), and the rest follows from c0 > c→1−α(t) and the definition of c→1−α(t).

Part (ii) follows from the fact that T→n (t) = supp∈Sl{−Zn(p, t) + a
1/γ
n (s(p,Θ0)− s(p,ΘI))}+

p→∞ under a fixed

alternative and that c̃n,b,1−α(t) = Op(1).

We use the following two lemmas (Lemmas D.1 and D.2) to show Theorem 3.3.

Lemma D.1. Suppose the conditions of Theorem 3.1 are satisfied. Then, for any 0 ≤ t < t′ ≤ t∗1−α,

0 = c→1−α(t∗1−α) ≤ c→1−α(t′) ≤ c→1−α(t) ≤ c→1−α(0). (D.21)

Proof of Lemma D.1. First, c→1−α(t∗1−α) = 0 follows from the definition of t∗1−α. For the conclusion of the lemma,

it suffices to show that P
(
supp∈Sd−1{−Z(p, t)}+ ≤ x

)
is non-decreasing in t for each x. As this is a distributional

property of the process Z(p, t), it suffices to show that the statement above holds for the following representation:

−Z(p, t) = − sup
θ∈H(p,ΘI)

sup
λ∈{λ:`∞(θ,λ)≤t}

〈p, λ〉. (D.22)

As {λ : `∞(θ, λ) ≤ t} ⊆ {λ : `∞(θ, λ) ≤ t′} for any 0 ≤ t < t′ ≤ t∗1−α and for each p ∈ Sd−1, −Z(p, t) is non-increasing

in t. This implies that supp∈Sd−1{−Z(p, t)}+ is non-increasing in t for any ω. Thus, P
(
supp∈Sd−1{−Z(p, t)}+ ≤ x

)
is non-decreasing in t ∈ [0, t∗1−α] for each x.

Lemma D.2. Suppose the conditions of Theorem 3.3 hold. Then, for any α ∈ (0, 1) and 0 ≤ t < t′ ≤ t∗1−α,

c→1−α(t)− c→1−α(t′) = µ(t′)− µ(t).

Proof of Lemma D.2. First, c→1−α(t) can be written as

c→1−α(t) = inf
{
x : P

(
sup

p∈Sd−1

{−Z(p, t)}+ ≤ x
)
≥ 1− α

}
= inf

{
x : P

(
sup

p∈Sd−1

{µ(t′)− µ(t)− µ(t′)−Z∗(p)}+ ≤ x
)
≥ 1− α

}
. (D.23)

Let ∆(t, t′) := µ(t′)− µ(t). Then, for any x ≥ ∆(t, t′), it follows that

P
(

sup
p∈Sd−1

{µ(t′)− µ(t)− µ(t′)−Z∗(p)}+ ≤ x
)

= P
(

sup
p∈Sd−1

{∆(t, t′)−Z(p, t′)}+ ≤ x
)

= P
(

sup
p∈Sd−1

{−Z(p, t′)}+ ≤ x−∆(t, t′)
)
. (D.24)

Substituting Eq. (D.24) into Eq. (D.23) yields

c→1−α(t) = inf
{
x : P

(
sup

p∈Sd−1

{−Z(p, t′)}+ ≤ x−∆(t, t′)
)
≥ 1− α

}
= c→1−α(t′) + ∆(t, t′). (D.25)

This establishes the claim of the lemma.
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Proof of Theorem 3.3. By Theorem in 1.1.12 in Li, Ogura, and Kreinovich (2002),

a1/γ
n dH

(
C1n(t), Θ̂n(t∗1−α)

)
= a1/γ

n sup
p∈Sd−1

|s(p, Θ̂n(t)) + ĉ→n,b,1−α(t)/a1/γ
n − s(p, Θ̂n(t∗1−α))|

= sup
p∈Sd−1

|a1/γ
n [s(p, Θ̂n(t))− s(p,ΘI)]− a1/γ

n [s(p, Θ̂n(t∗1−α))− s(p,ΘI)] + c̃→n,b,1−α(t)|

(1)
= sup

p∈Sd−1

|Zn(p, t)−Zn(p, t∗1−α) + c→1−α(t) + op(1)|

(2)
= sup

p∈Sd−1

|µ(t)− µ(t∗1−α)− (c→1−α(t∗1−α)− c→1−α(t)) + op(1)| = op(1), (D.26)

where (1) follows from c̃→n,b,1−α(t) = ĉ→n,b,1−α(t) by assumption and ĉ→n,b,1−α(t) = c→1−α(t) + op(1) by F→(·, t) being

assumed to be continuous and strictly increasing at c→1−α(t) and Lemma 11.2.1 in Lehmann and Romano (2005). In

(2), we used the fact that c→1−α(t∗1−α) = 0. The last equality follows from Lemma D.2.

For (ii), the result immediately follows from Theorem 3.3 (i) and the triangle inequality:

dH
(
C1n(t), C1n(t′)

)
≤ dH

(
C1n(t), Θ̂n(t∗1−α))

)
+ dH

(
C1n(t′), Θ̂n(t∗1−α))

)
. (D.27)

This establishes the claim of the theorem.

We use the following two lemmas (Lemmas D.3 and D.4) to show Theorem 3.4.

Lemma D.3. Let S be a compact subset of a finite dimensional Euclidean space. Let B ≡ C(S) be the space of

continuous functions on S. For a given g ∈ B, let φg : B→ R be defined pointwise by φg(x) := supp∈S g(p)− x(p).

Then, for any x ∈ B, φg is Hadamard directionally differentiable at x, and its directional derivative φ̇g : B → R is

given pointwise by

φ̇g(y) := sup
p∈Ψ(g−x)

−y(p), (D.28)

where for each z ∈ B, Ψ(z) := argmaxp∈Sz(p). Furthermore, if Ψ(g − x) is singleton-valued, φg is Hadamard

differentiable at x.

Proof of Lemma D.3. The proof is a modification of Theorem 3.1 in Shapiro (1991). First, we show that φ̇g is a

continuous functional. Let {yn} be a sequence such that yn → y for some y ∈ B. Note that Ψ(g − x) is nonempty

and compact by Theorem 17.31 in Aliprantis and Border (2006). Since −yn converges uniformly to −y on Ψ(g− x),

maxp∈Ψ(g−x)−yn(p)→ maxp∈Ψ(g−x)−y(p). Since the choice of y was arbitrary, φ̇g is continuous at every point.

For each p, let fp : B→ R be defined pointwise by fp(x) := g(p)− x(p). This is a convex functional on B. Since

φg is a pointwise supremum of a family of convex functionals, it is convex. Let B∗ be the dual space of B. For each

p, the subdifferential of fp at y is defined as ∂fp(y) := {f ′p ∈ B∗ : fp(z) ≥ fp(y) + f ′p(z − y),∀z ∈ B}. We claim that

for every y, ∂fp(y) = {−ep}, where ep is the evaluation map defined by ep(z) = z(p) for every z ∈ B. To prove this

claim, first note that −ep ∈ ∂fp(z) is obvious. Now suppose there exists f ′p ∈ ∂fp(y) such that f ′p 6= −ep. Then,

fp(z) ≥ fp(y) + f ′p(z − y) implies that y(p)− z(p) ≥ f ′p(z − y). Since z can be taken arbitrarily, we must have

w(p) ≥ f ′p(−w) for all w ∈ B. (D.29)

Furthermore, since f ′p 6= −ep, there exists a w ∈ B such that w(p) > f ′p(−w). Let w′ := y − w. Then, w′(p) =

y(p) − w(p) < y(p) − f ′p(−w) = y(p) + f ′p(w) = y(p) + f ′p(y − w′), which contradicts (D.29). Therefore, −ep is the

unique element of ∂fp(y).

Fix y ∈ B. We note that S is a compact subset of a Hausdorff space and that fp is continuous for every p ∈ S.

Furthermore, for any p ∈ S and {pn} ⊂ S such that pn → p, it follows that fpn(y) = y(pn) → y(p) = fp(y) by the

continuity of y. Therefore p 7→ fp(y) is continuous at every y. Now the conditions of Theorem 2.4.18 in Zalinescu
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(2002) are satisfied. This implies that the subdifferential of φg at y takes the form:

∂φg(y) = co(∪fp=supp∈S fp∂fp(y)) = co(∪p∈Ψ(g−x){−ep}), (D.30)

where co(A) and co(A) denote the closed convex hull and convex hull of a set A respectively. Here, the closure is taken

with respect to the weak-∗ topology. In the above expression, we used the fact that the set C := co(∪p∈Ψ(g−x){−ep})
is closed, which we prove below. Let {ẽn} be a sequence such that ẽn ∈ C,∀n and ẽn → ẽ for some ẽ ∈ B∗.

Then, by the convexity of C, we may write ẽn = λn(−epn) + (1 − λn)(−ep′n) for some sequence {(λn, pn, p′n) ∈
[0, 1]×Ψ(g − x)2}. Since [0, 1]×Ψ(g − x)2 is compact, for any subsequence of {(λn, pn, p′n)}, there exists a further

subsequence {(λnkj , pnkj , p
′
nkj

)} such that (λnkj , pnkj , p
′
nkj

)→ (λ∗, p∗, p∗∗) for some (λ∗, p∗, p∗∗) ∈ [0, 1]×Ψ(g−x)2.

For each y ∈ B, it follows that

ẽnkj (y) = λnkj (−y(pnkj )) + (1− λnkj )(−y(p′nkj
))

→ λ∗(−y(p∗)) + (1− λ∗)(−y(p∗∗)) = λ∗(−ep∗(y)) + (1− λ∗)(−ep∗∗(y)) ∈ C, (D.31)

where the convergence follows from the continuity of y. Since the choice of the subsequence and y was arbitrary, this

ensures that the limit ẽ belongs to C. Hence, C is closed.

By Theorem 23.2 in Rockafellar (1970), the Gateaux directional derivative φ̇Gg : B→ R of φg satisfies

φ̇Gg (y) = sup
φ′g∈∂φg

φ′g(y) = sup
λ∈[0,1]

sup
p,p′∈Ψ(g−x)

λ(−y(p)) + (1− λ)(−y(p′)). (D.32)

Now suppose that argmaxΨ(g−x) − y(p) = {p̄} for some p̄ ∈ Ψ(g − x), then the right hand side of (D.32) is equal

to −y(p̄). Therefore, in this case φ̇Gg (y) = −y(p̄) = supp∈Ψ(g−x)−y(p). Similarly if argmaxΨ(g−x) − y(p) is not

a singleton, then again the right hand side of (D.32) is equal to −y(p̄) for some p̄ ∈ Ψ(g − x) because −y(p̄) ≥
λ(−y(p̄)) + (1 − λ)(−y(p)) for all λ ∈ [0, 1] and p, and equality holds only if p is also in argmaxΨ(g−x) − y(p).

Therefore, it follows again that φ̇Gg (y) = supp∈Ψ(g−x)−y(p). This establishes that φ̇g in (D.28) is the Gateaux

directional derivative of φg.

Now we show that the Gateaux directional derivative is actually the Hadamard directional derivative. For any

x, y ∈ B, if ‖x−y‖∞ ≤ δ, then g(p)−x(p)−δ ≤ g(p)−y(p) ≤ g(p)−x(p)+δ uniformly. Therefore, |φg(x)−φg(y)| ≤ δ.
This ensures that φg is Lipschitz with Lipschitz constant 1. Let {tn} be a sequence such that tn ↓ 0. Let K be a

compact subset of B. For each y ∈ K, it follows that hn(y) := [φg(x+ tny)− φg(x)]/tn − φ̇Gg (y) = o(1) because φ̇Gg
is the Gateaux directional derivative. Furthermore, for any y, y′ ∈ K,

|hn(y)− hn(y′)| = |[φg(x+ tny)− φg(x+ tny
′)]/tn − φ̇Gg (y − y′)|

≤ ‖x+ tny − (x+ tny
′)‖∞/tn + ‖y − y′‖∞ = 2‖y − y′‖∞. (D.33)

Therefore, hn is also Lipschitz. This implies that the family {hn} is equicontinuous on K. Since hn → 0 pointwise,

this ensures hn → 0 uniformly over K. Since K was arbitrary, this ensures that φ̇Gg is the Hadamard directional

derivative of φg. This completes the proof of the first claim.

If Ψ(g − x) is singleton-valued, then φ̇g(az + by) = −az(p∗) − by(p∗) = aφ̇g(z) + bφ̇g(y) for all a, b ∈ R and

z, y ∈ B, where p∗ is the unique element of Ψ(g − x). Therefore, the second claim follows.

Lemma D.4. Let m ∈ N. Let D ⊂ Rm be a compact convex set with a nonempty interior. Let K0 be a nonempty

closed convex subset of D and {K̂n} be a sequence of measurable closed convex subsets of D. Given a positive sequence

{τn} such that τn →∞, let Wn := τn(s(·, K̂n)− s(·,K0)). Given x0 ∈ ∂K0, let

S→n,x0
:= τn sup

p∈Sm−1

{〈p, x0〉 − s(p, K̂n)}+ (D.34)

34



and

L0 := arg max
p∈Sm−1

〈p, x0〉 − s(p,K0). (D.35)

Suppose that Wn converges weakly to a tight random element W as n→∞. Then,

S→n,x0

d→ sup
p∈L0

{−W(p)}+. (D.36)

Proof of Lemma D.4. We first note that x0 ∈ ∂K0 implies supp∈Sm−1〈p, x0〉 − s(p,K0) = 0. Let φx0
: C(Sm−1)→ R

be defined pointwise by φx0(f) := supp∈Sm−1〈p, x0〉 − f(p). Now the statistic can be written as

S→n,x0
= max{τn(φx0

(s(·, K̂n))− φx0
(s(·,K0)), 0}. (D.37)

By Lemma D.3, φx0 is Hadamard directionally differentiable at s(·,K0) with Hadamard directional derivative

φ̇x0
(y) = supp∈L0

−y(p). This and the assumption that Wn
u.d.→ W ensure the conditions of Theorem 2.1 in Shapiro

(1991). It follows that

τn(φx0(s(·, K̂n))− φx0(s(·,K0))
d→ sup
p∈L0

−W(p). (D.38)

The conclusion of the Lemma now follows from (D.37), (D.38), and the continuous mapping theorem.

Proof of Theorem 3.4. Let t ≥ 0. We apply Lemma D.4 with D = Θ, K0 = ΘI , K̂n = Θ̂n(t), and τn = a
1/γ
n . Under

our hypothesis, Theorem 3.1 holds. The conclusion of Theorem 3.1 ensures that Wn = a
1/γ
n (s(p, Θ̂n(t)) − s(p,Θ0))

converges weakly to a tight limit W = Z(·, t). By setting x0 = θ0 and L0 = Ψ0, Lemma D.4 then ensures

T→n,θ0
d→ supp∈Ψ0

{−Z(p, t)}+. This completes the proof.

Lemma D.5. Let m ∈ N. Let D ⊂ Rm be a compact convex set with a nonempty interior. Let K0 be a nonempty

closed convex subset of D and {K̂n} be a sequence of measurable closed convex subsets of D such that

dH(K̂n,K0) = Op(a
−1/γ
n ), (D.39)

for some constant γ > 0 and positive sequence {an} such that an →∞. Given x0 ∈ D, let

L0 := arg max
p∈Sm−1

〈p, x0〉 − s(p,K0). (D.40)

Given a positive sequence {κn}, let

L̂n := {p ∈ Sm−1 : 〈p, x0〉 − s(p, K̂n) ≥ sup
p′∈Sm−1

[〈p′, x0〉 − s(p′, K̂n)]− κn/a1/γ
n }. (D.41)

Suppose κn →∞ and κn/a
1/γ
n → 0. Then, dH(L̂n, L0) = op(1).

Proof of Lemma D.5. We use Theorem 3.1 in Chernozhukov, Hong, and Tamer (2007) to prove the claim. First

note that Sm−1 is nonempty and compact. Let Q and Qn be defined pointwise by Q(p) := [s(p,K0) − 〈p, x0〉] −
infp′∈Sm−1 [s(p′,K0)− 〈p′, x0〉] and Qn(p) := [s(p, K̂n)− 〈p, x0〉]− infp′∈Sm−1 [s(p′, K̂n)− 〈p′, x0〉]. We here note that

infp′∈Sm−1 [s(p′,K0)−〈p′, x0〉] is finite, and infp′∈Sm−1 [s(p′, K̂n)−〈p′, x0〉] is finite almost surely due to the continuity

of the objective functions (almost surely for the latter) and Sm−1 being compact. Note also that L0 and L̂n can be

equivalently written as

L0 = arg min
p∈Sm−1

Q(p) = {p ∈ Sm−1 : Q(p) = 0}, L̂n = {p ∈ Sm−1 : Qn(p) ≤ κn/a1/γ
n }. (D.42)

Since s(p,K0) is continuous by Theorem 1.1.12 in Li, Ogura, and Kreinovich (2002), Q is continuous. Similarly,

since s(p, K̂n) is continuous in p for each ω ∈ Ω and measurable for each p, s(p, K̂n) is jointly measurable by Lemma
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4.51 in Aliprantis and Border (2006). Furthermore, infp′∈Sm−1 [s(p′, K̂n) − 〈p′, x0〉] is measurable by Theorem 2.27

(i) in Molchanov (2005). Thus, Qn is jointly measurable.

By (D.39) and Theorem 1.1.12 in Li, Ogura, and Kreinovich (2002), s(·, K̂n) − s(·,K0) = op(1) uniformly.

Therefore, for any ε > 0, supp∈Sm−1 |s(·, K̂n) − s(·,K0)| < ε/2 with probability approaching 1. This implies that,

with probability approaching 1,

sup
p∈Sm−1

|Qn(p)−Q(p)| ≤ sup
p∈Sm−1

|s(·, K̂n)− s(·,K0)|+ | inf
p′∈Sm−1

[s(p′, K̂n)− 〈p′, x0〉]− inf
p′∈Sm−1

[s(p′,K0)− 〈p′, x0〉]|

<
ε

2
+ | inf

p′∈Sm−1
[s(p′,K0) +

ε

2
− 〈p′, x0〉]− inf

p′∈Sm−1
[s(p′,K0)− 〈p′, x0〉]| = ε. (D.43)

Thus Qn − Q = op(1) uniformly. Furthermore, uniformly over L0, Qn(p) = [s(p,K0) + Op(a
−1/γ
n ) − 〈p, x0〉] −

infp′∈Sm−1 [s(p′,K0) +Op(a
−1/γ
n )−〈p′, x0〉] = Op(a

−1/γ
n ), where the first equality follows from (D.39), and the second

equality follows from the construction of L0. Hence, under our hypothesis, κn ≥ supp∈L0
a

1/γ
n Qn(p) with probability

approaching 1. Therefore, all required conditions for Theorem 3.1 (1) in Chernozhukov, Hong, and Tamer (2007) are

satisfied. This ensures the claim of the lemma.

Proof of Corollary 3.2. (i) Let F̂→n (x, θ0, t) be the empirical cdf of T→n,θ0(t). Similarly, let F→(x, θ0, t) be the cdf of

supp∈Ψ0
{−Z(p, t)}+. Note that dH(Ψ0, Ψ̂n) = op(1) by Theorem 3.1 of CHT and Lemma D.5 applied with K0 = ΘI ,

K̂n = Θ̂n(t), L0 = Ψ0, and L̂n = Ψ̂n. Thus, by Theorem 3.2 with Υ(x) = {−x}+, Ψ0 = arg maxp〈p, θ0〉 − s(p,ΘI),

and Ψ̂n as in (3.21), F̂→n (x, θ0, t)−F→(x, θ0, t) = op(1) at each continuity point of F→(·, θ0, t). The rest of the proof

is similar to that of Corollary 3.1 and is therefore omitted.

Appendix E: Proof of Theorem 4.1 and Corollaries E.1 and 4.1

In this section, we give the proof of Theorem 4.1, Corollaries E.1 and 4.1 and auxiliary lemmas. In what follows,

we use the notation introduced in Section 4.1. Recall that Π(θ) = ∇θE[mθ], and G(θ) is a vector of Gaussian

processes on Θ whose covariance kernel is K(θ, θ′) = E[(mθ − E[mθ])(mθ′ − E[mθ′ ])
′]. ς is a J-dimensional vector

whose j-th component is such that ςj(θ) = 0 if E[mj,θ] = 0, ςj(θ) = −∞ if E[mj,θ] < 0, and ςj(θ) =∞ if E[mj,θ] > 0,

and W (θ) is a J × J positive definite matrix.

Lemma E.1. Define

fn(θ, λ, x) ≡ ‖W 1/2(θ){(G(θ) + Π(θ)λ+
√
nEmθ) + x}‖2+,

g(θ, λ, x) ≡ ‖W 1/2(θ){(G(θ) + Π(θ)λ+ ς(θ)) + x}‖2+.

Then, the following approximation holds.

inf
Rn,u,p

`n(θ, λ)
d
= inf
Rn,u,p

fn(θ, λ, op(1)) = inf
Ru,p

g(θ, λ, op(1)). (E.1)

Proof of Lemma E.1. The proof is analogous to that of Lemma A.1 in CHT. The first equality in (E.1) follows by

arguing as in Step 2 in the proof of Theorem 4.2 in CHT. For the second equality, we take the following three steps.

Step 1: For any ε > 0, by Step 1 in the proof of Lemma A.1 in CHT, we have

g(θ, λ,−ε) ≤ fn(θ, λ,−ε) ≤ `n(θ, λ) ≤ fn(θ, λ, ε),

with probability approaching 1. Therefore, for some εn ↓ 0, infRn,u,p g(θ, λ,−εn) ≤ infRn,u,p fn(θ, λ, εn) with proba-

bility approaching 1.

Step 2: For any εn ↓ 0 or εn ↑ 0, we have infRn,u,p g(θ, λ, εn) ≥ infRu,p g(θ, λ, εn) by Rn,u,p ⊂ Ru,p for all n.
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Step 3: The claim of this step is that for some ε′n ↓ 0,

inf
Rn,u,p

fn(θ, λ, ε′n) ≤ inf
Ru,p

g(θ, λ, ε′n), wp→ 1.

The proof is by contradiction. For this, we note that for any θn → θ ∈ ΘI , it holds that

lim sup
n→∞

√
nE[mj,θn ] ≤ ςj(θ), if ςj(θ) = 0

= ςj(θ), if ςj(θ) = −∞. (E.2)

Now suppose that the claim of this step does not hold. Then, there exist a constant ε > 0 and a subsequence {n′}
of {n} such that

lim
n′→∞

[fn′(θn′ , λn′ , ε
′
n′)− inf

Ru,p
g(θ, λ, ε)] > 0 (E.3)

with probability 1. Passing to a further subsequence if necessary, we may let (θn′ , λn′) be such that (θn′ , λn′) converges

to some (θ∗, λ∗) ∈ Ru,p. By the definition of fn and g, the inequality in (E.3) only occurs if lim supn′→∞
√
n
′
E[mj,θn′ ] >

ςj(θ
∗) for some j, which is a contradiction to (E.2).

Finally, combining Steps 1-3, the claim of the Lemma follows.

Lemma E.2. Suppose Assumptions 4.1-4.4 hold. Let {δn} be a sequence {δn ∈ RJ} such that ‖δn‖ = op(1). Then,

for each (u, p) ∈ R× Sd−1 and any ε > 0, there exists a compact set R̄u,p ⊂ Ru,p and Nε such that

P (| inf
Ru,p

g(θ, λ, δn)− inf
R̄u,p

g(θ, λ, δn)| ≥ ε) ≤ ε, for all n ≥ Nε.

Proof of Lemma E.2. Let An ≡ arg minRu,p g(θ, λ, δn). For any (θ∗, λ∗) ∈ An, we therefore have

inf
Ru,p

g(θ, λ, δn) = ‖W 1/2(θ∗){(G(θ∗) + Π(θ∗)λ∗ + ς(θ∗)) + δn}‖2+. (E.4)

Let δj,n be the j-th component of δn. Since ςj(θ
∗) = −∞ for all j /∈ J (θ∗), it follows that

Πj(θ
∗)λ∗ = vj,n, vj,n := −Gj(θ∗)− δj,n ∀j ∈ J (θ∗). (E.5)

Since Assumption 4.4 (iii) ensures the Slater condition for the convex programming problem in (4.6), there exist

Karush-Kuhn-Tucker multipliers {ηj(θ∗)}j∈J (θ∗) such that p =
∑
j∈J (θ∗) ηj(θ

∗)Πj(θ
∗)′. This and (E.5) imply that

〈p, λ∗〉 =
∑

j∈J (θ∗(p))

ηj(θ
∗)Πj(θ

∗)λ∗ =
∑

j∈J (θ∗)

ηj(θ
∗)vj,n. (E.6)

Hence, for any (θ∗, λ∗) ∈ An, λ∗ is on the hyperplane defined by (E.6). In particular, the minimum norm solution

λ∗∗ ≡
∑
j∈J (θ∗) ηj(θ

∗)vj,np is also on this hyperplane, and (θ∗, λ∗∗) ∈ An. Note that ‖λ∗∗‖ = |
∑
j∈J (θ∗) ηj(θ

∗)vj,n| =
Op(1) by δj,n = op(1) and G being tight by Assumption 4.2. Let BM = {λ : ‖λ‖ ≤ M} with M > 0 and let R̄u,p ≡
H(p,ΘI)×(Ku,p∩BM ). Then, by taking M sufficiently large, one may let P (An∩R̄u,p) ≥ P ((θ∗, λ∗∗) ∈ R̄u,p) ≥ 1−ε
for n sufficiently large. This means that the infimum of g(θ, λ, δn) over Ru,p is also achieved on R̄u,p with probability

approaching 1. Therefore, there exists Nε such that

P (| inf
Ru,p

g(θ, λ, δn)− inf
R̄u,p

g(θ, λ, δn)| ≥ ε) ≤ ε, for all n ≥ Nε.

This establishes the claim of the lemma.

Proof of Theorem 4.1. It is straightforward to show that Assumptions 4.1-4.3 imply Assumptions 2.1-2.3 using the

argument in the proof of Theorem 4.2 in CHT. Hence, it is omitted for brevity. We now show Assumption B.1 below.

First, by Assumption 4.4 (iii), for any θ ∈ ΘI , we have Ku,p ∩
√
n(Θ− θ)→ Ku,p. Hence, Assumption B.1 (i) holds

with Ru,p = H(p,ΘI)×Ku,p.
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Assumption B.1 (ii) then follows from the following steps.

Step 1: Let {δn} be a sequence {δn ∈ RJ} such that ‖δn‖ = op(1). The claim of this step is that for compact set

R̄u,p and ε > 0, we may approximate inf(θ,λ)∈R̄u,p g(θ, λ, δn) by inf(θ,λ)∈M(ε) g(θ, λ, δn) where M(ε) is a finite set.

Note that

inf
R̄u,p

g(θ, λ, δn) = inf
(θ,λ)∈R̄u,p

‖W 1/2(θ){G(θ) + Π(θ)λ+ ς(θ) + δn}‖2+

= min
J

inf
(θ,λ)∈R̄u,p,J

‖W 1/2
J (θ){GJ (θ) + ΠJ (θ)λ+ δJ ,n}‖2+.

By the stochastic equicontinuity of (θ, λ) 7→ (G(θ),Π(θ)λ,W (θ)), there is a finite subset M(ε) of R̄u,p such that

P (| inf
(θ,λ)∈R̄u,p

g(θ, λ, δn)− inf
(θ,λ)∈M(ε)

g(θ, λ, δn)| ≥ ε) ≤ ε

for all n sufficiently large.

Step 2: Now let (u, p) ∈ R× Sd−1. Then, for some {δn} be a sequence {δn ∈ RJ}, we have

lim inf
n→∞

P ( inf
Ru,p

`n(θ, λ) > t)
(i)
= lim inf

n→∞
P ( inf

Ru,p
g(θ, λ, δn) > t)

(ii)

≥ lim inf
n→∞

P ( inf
R̄u,p

g(θ, λ, δn) > t+ ε/2)− ε/2

(iii)

≥ lim inf
n→∞

P ( inf
M(ε)

g(θ, λ, δn) > t+ ε)− ε
(iv)

≥ P ( inf
M(ε)

`∞(θ, λ) > t+ ε)− ε
(v)

≥ P ( inf
Ru,p

`∞(θ, λ) > t+ ε)− ε, (E.7)

where (i) follows from Lemma E.1, (ii) follows from Lemma E.2, (iii) follows from Step 2 (finite-dimensional ap-

proximability), (iv) follows from the fact that g(θ, λ, δn) converges to `∞ in finite dimension, and (v) follows from

M(ε) ⊂ R̄u,p ⊂ Ru,p. Since ε is arbitrary, we have lim infn→∞ P (infRu,p `n > t) ≥ P (infRu,p `∞ > t). Similarly, one

may show lim supn→∞ P (infRou,p `n ≥ t) ≤ P (infRou,p `∞ ≥ t). The joint convergence of {infRu,pj `n,m = 1, · · · ,M}
follows similarly. This establishes Assumption B.1 (ii).

Finally, we may write

`∞(θ, λ) = ‖W 1/2(θ){G(θ) + Π(θ)λ+ ς(θ)}‖2+ = ‖W 1/2
J (θ)(θ){GJ (θ)(θ) + ΠJ (θ)(θ)λ}‖2+, (θ, λ) ∈ ΘI × Rd. (E.8)

This implies that, for each θ ∈ H(p,ΘI), the set of directions of recessions (see Rockafellar, 1970, Sec. 27) for

λ 7→ `∞(θ, λ) is {λ : Πj(θ)
′λ ≤ 0, j ∈ J (θ)}. The first order condition to the convex programming problem (4.6)

implies that there exists positive constants (KKT multipliers) {ηj(θ∗)}j∈J (θ∗(p)) such that p =
∑
j∈J (θ) ηj(θ)Πj(θ)

′.

Hence, Πj(θ)
′λ ≤ 0, j ∈ J (θ) implies 〈p, λ〉 ≤ 0. This and the compactness of ΘI imply that the set of directions of

recessions is a subset of {0}×{λ : 〈p, λ〉 ≤ 0}. Again, by compactness of H(p,ΘI), the the set of directions of recessions

of Ru,p is {0} × {λ : 〈p, λ〉 ≥ 0}. By Theorem 27.3 in Rockafellar (1970), `∞ then achieves its minimum on Ru,p.

Similarly, the set {(θ, λ) : θ ∈ H(p,ΘI), `∞(θ, λ) ≤ t, } has the set of directions of recessions {0} × {λ : 〈p, λ〉 ≤ 0}
by the compactness of H(p,ΘI) and (E.8). On the other hand, the objective function (θ, λ) 7→ −〈p, λ〉 has the set of

directions of recessions Rd×{λ : 〈p, λ〉 ≥ 0}. Hence, by Theorem 27.3 in Rockafellar (1970), infθ∈H(p,ΘI),λ∈Λθ,t −〈p, λ〉
is finite and achieves its minimum. Hence, supθ∈H(p,ΘI) s(p,Λθ,t) <∞. This establishes Assumption B.1 (iii).

Corollary E.1. Suppose Assumptions 4.1-4.5 hold. Then the limiting process Z(·, t) can be represented as

Z(p, t) = sup
θ∈H(p,ΘI)

{
‖R(p, θ)‖t1/2 − 〈R(p, θ),W

1/2
J (θ)(θ)GJ (θ)〉

}
, (E.9)

where R(p, θ) := W
−1/2
J (θ)

(
ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1
ΠJ (θ)(θ)p. Furthermore, if the weighting matrix satisfies WJ (θ)(θ) =

[ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1 for any θ ∈ ∂ΘI , the limiting process takes the form Z(p, t) = µ(t) + Z∗(p) with µ(t) = t1/2

and

Z∗(p) = sup
θ∈H(p,ΘI)

−〈[ΠJ (θ)(θ)ΠJ (θ)(θ)
′]−1ΠJ (θ)(θ)p,GJ (θ)(θ)〉.
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Proof of Corollary E.1. Let s : ∂Θ × Rd → RJ(θ) be a vector-valued mapping whose j-th component is sj(θ, λ) =

1{Gj(θ) + 〈Πj(θ), λ〉 > 0}. The solution λ∗ to the minimization problem (4.7) satisfies the following Karush-Kuhn-

Tucker (KKT) conditions with probability 1, with a Lagrange multiplier µ > 0:

p = 2µΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) (E.10)

t = ‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2. (E.11)

We can then solve (E.10) to obtain(
W

1/2
J (θ)(θ)ΠJ (θ)(θ)ΠJ (θ)(θ)

′W
1/2
J (θ)(θ)

)−1
W

1/2
J (θ)(θ)ΠJ (θ)(θ)p = 2µW

1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗).
(E.12)

Let R(p, θ) be the left hand side of the equation above. Take squared norms both sides to obtain

‖R(p, θ)‖2 = |2µ|2‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖2 = |2µ|2t,

where the second equality follows from (E.11). Hence, we obtain

2µ = ‖R(p, θ)‖t−1/2. (E.13)

Plugging this into (E.12) gives

W
1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) =
R(p, θ)

‖R(p, θ)‖
t1/2. (E.14)

Substituting (E.13) and (E.14) into (E.10) yields

p = Π′J (θ)W
1/2
J (θ)R(p, θ). (E.15)

Now, we can use this result to obtain

V(p, θ, t) = 〈p, λ∗〉

=
〈

Π′J (θ)W
1/2
J (θ)R(p, θ), λ∗

〉
=
〈
R(p, θ),W

1/2
J (θ)ΠJ (θ)λ

∗
〉

=
〈
R(p, θ),W

1/2
J (θ)(ΠJ (θ)λ

∗ ◦ s(θ, λ∗))
〉

=

〈
R(p, θ),

R(p, θ)

‖R(p, θ)‖
t1/2 −W 1/2

J (θ)(θ)(GJ (θ) ◦ s(θ, λ∗))
〉

= ‖R(p, θ)‖ t1/2 −
〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)

〉
, (E.16)

where the fourth equality follows from the fact that R(p, θ) = R(p, θ) ◦ s(θ, λ∗) by (E.12), and the fifth equality

follows from (E.14). Note that ΠJ (θ)(θ)ΠJ (θ)(θ)
′ is invertible by Assumption 4.5. Hence, if W (θ) satisfies WJ (θ)(θ) =

(ΠJ (θ)(θ)ΠJ (θ)(θ)
′)−1 for any θ ∈ ∂ΘI , then

‖R(p, θ)‖2 = p′ΠJ (θ)(θ)
′(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p. (E.17)

Note that Eq. (E.15) implies that p′p = p′ΠJ (θ)(θ)
′(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p = 1. Combining the results

above establishes ‖R(p, θ)‖ = 1. Therefore, the limiting process takes the form Z(p, t) := µ(t) + Z∗(p) with

µ(t) = t1/2 and

Z∗(p) = sup
θ∈H(p,ΘI)

−〈R(p, θ),W
1/2
J (θ)(θ)GJ (θ)(θ)〉 = sup

θ∈H(p,ΘI)

−〈(ΠJ (θ)(θ)ΠJ (θ)(θ)
′)−1ΠJ (θ)(θ)p,GJ (θ)(θ)〉. (E.18)

This establishes the claim of the Corollary.

For deriving the limiting distribution of CHT’s statistic, we require the following regularity conditions.
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Assumption E.1 (Local Process Regularity for QLR Statistic). (i) For any finite sets U ⊂ R and S ⊂ Sd−1,

(supR−u,p `n, (u, p) ∈ U × S)
d→ (supR−u,p `∞, (u, p) ∈ U × S). (ii) For any 0 < ε, there exists δ > 0 such that

lim
n→∞

P
(

sup
‖p−q‖<δ

∣∣∣ sup
R−u,p

`n(θ, λ)− sup
R−u,q

`n(θ, λ)
∣∣∣ ≥ ε) ≤ ε, (E.19)

where R−u,p := H(p,ΘI)×K−u,p.

Assumption E.1 (i) requires that the finite dimensional distribution of the supremum of `n over a class of sets

converges to that of `∞. This is analogous to weak epiconvergence. We call this version “weak supconvergence” as

it is close in spirit to Condition S.2 of CHT. CHT’s QLR statistic can be written as

sup
θ∈ΘI

anQn(θ) = max

{
sup
θ∈∂ΘI

anQn(θ), sup
θ∈ΘoI

anQn(θ)

}
.

As the second term on the right hand side asymptotically vanishes by Assumption 4.3, it suffices to study the first

term. Using the local process `n, define

Ln(p, u) := sup
θ∈H(p,ΘI)

sup
λ∈K−u,p

`n(θ, λ),

where K−u,p := {λ ∈ Rd : 〈p, λ〉 ≤ u}. Note that supp∈Sd−1 Ln(p, 0) = supθ∈∂ΘI anQn(θ). We therefore study the

asymptotic behavior of the process Ln(·, u) to study that of the QLR statistic.

Lemma E.3. Suppose the conditions of Corollary E.1 hold. Suppose Assumption E.1 holds. Then Ln(·, u)
u.d.→ L(·, u)

for each u, and the process L can be represented as

L(p, u) = sup
θ∈H(p,ΘI)

‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)2

+
. (E.20)

Proof of Lemma E.3. First, by the hypothesis that `n weakly supconverges to `∞, we have Ln(·, u)
f.d.→ L(·, u) where

L(p, u) := sup
θ∈H(p,ΘI)

sup
λ∈K−u,p

‖W 1/2(θ)(G(θ) + Π(θ) + ς(θ))‖2+. (E.21)

The tightness of {Ln(·, u)} follows from the assumption of the corollary, and these results imply Ln(·, u)
u.d.→ L(·, u)

for each u.

Now we derive the representation of L given in the theorem. Below, we fix p ∈ Sd−1 and θ ∈ ∂ΘI . As θ ∈ ∂ΘI ,

the components of M(θ, λ) for j ∈ J c(θ) are irrelevant. To obtain a closed form for L, consider the following

optimization problem

C(θ, p, u) := sup
λ
‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ)‖2+ (E.22)

s.t.〈p, λ〉 ≤ u.

Similar to the proof of Corollary E.1, the solution λ∗ of the problem above satisfies the following KKT conditions

with for some Lagrange multiplier ν > 0 with probability 1:

νp = 2ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗) (E.23)

〈p, λ∗〉 = u. (E.24)

We can solve (E.23) to obtain

νR(p, θ) = 2W
1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗). (E.25)
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Taking squared norms both sides, we obtain

ν2‖R(p, θ)‖2 = 4‖W 1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗)‖24C(θ, p, u). (E.26)

Plugging in ν = 2C(θ, p, u)1/2/‖R(p, θ)‖ back to (E.23), we obtain

p = ‖R(p, θ)‖C(θ, p, u)−1/2ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗). (E.27)

Now, substitute this into (E.24),

u = ‖R(p, θ)‖C(θ, p, u)−1/2
〈

ΠJ (θ)(θ)
′WJ (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗), λ∗
〉

= ‖R(p, θ)‖C(θ, p, u)−1/2
〈
W

1/2
J (θ)(θ)(GJ (θ)(θ) + ΠJ (θ)(θ)λ

∗) ◦ s(θ, λ∗),W 1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉

= ‖R(p, θ)‖C(θ, p, u)−1/2
〈ν

2
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉

=
〈
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉
, (E.28)

where the second equality follows from (E.25). Using (E.25) and the result above, the right hand side of (E.26) can

be alternatively written as

2ν
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+
〈
R(p, θ),W

1/2
J (θ)(θ)ΠJ (θ)(θ)λ

∗
〉)

= 2ν
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)
.

(E.29)

Therefore, from (E.26), we obtain

ν = 2‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)

= 2‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)

+
, (E.30)

where the second equality follows from the fact ν > 0. As C(θ, p, u) = ‖R(p, θ)‖ν2/4, we have

C(θ, p, u) = ‖R(p, θ)‖−1
(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉
+ u
)2

+
. (E.31)

Take the supremum over H(p,ΘI). The result then follows.

Proof of Corollary 4.1. We first analyze the Wald statistic supp∈Sd−1{−Zn(p, t) + t1/2}2+. By Corollary E.1 and the

continuous mapping theorem, we may write its weak limit as

sup
p∈Sd−1

{−Z(p, t) + t1/2}2+ = sup
p∈Sd−1

{
inf

θ∈H(p,ΘI)

〈
(ΠJ (θ)(θ)ΠJ (θ)(θ)

′)−1ΠJ (θ)(θ)p,GJ (θ)(θ)
〉}2

+

= sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+
= Z, (E.32)

where we used H(p,ΘI) = {θI(p)} to obtain the second equality. For the QLR statistic,

sup
θ∈ΘI

nQn(θ)
d→ sup
p∈Sd−1

L(p, 0) (E.33)

by Lemma E.3 and the continuous mapping theorem. By Lemma E.3, this limit can be represented as

sup
p∈Sd−1

sup
θ∈H(p,ΘI)

(〈
R(p, θ),W

1/2
J (θ)(θ)GJ (θ)(θ)

〉)2

+

= sup
p∈Sd−1

〈(
ΠJ (θI(p))(θI(p))ΠJ (θI(p))(θI(p))

′)−1
ΠJ (θI(p))(θI(p))p,GJ (θI(p))(θI(p))

〉2

+
= Z. (E.34)

This establishes the first claim.

For the second part, note that τ∗1−α is the 1 − α quantile of Z. Therefore, it suffices to show that t∗1−α is also
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the 1− α quantile of Z under our hypotheses. For this, we can write

t∗1−α = inf
{
t : P

(
sup

p∈Sd−1

{−Z(p, t)}+ ≤ 0
)
≥ 1− α

}
= inf

{
t : P

(
sup

p∈Sd−1

{−t1/2 −Z∗(p)}+ ≤ 0
)
≥ 1− α

}
= inf

{
t : P

(
sup

p∈Sd−1

{−Z∗(p)}+ ≤ t1/2
)
≥ 1− α

}
= inf

{
t : P (Z ≤ t) ≥ 1− α

}
, (E.35)

where the third equality follows from the fact that for any x ≥ 0 and a continuous function f , supp∈Sd−1{−x+f(p)}+ ≤
0⇔ supp{f(p)}+ ≤ x, and the last equality follows from (E.32). Therefore, the second claim follows.

Appendix F: Monte Carlo Experiments

The Wald confidence set CWald is defined by

CWald := {θ ∈ Θ : d(θ, Θ̂n(t)) ≤ ĉ→n,b,1−α(t)/a1/γ
n },

where t = ln(lnn)
1
2 . To construct this confidence set, we must compute the support function of the set estimator

Θ̂n(t) and the critical value ĉ→n,b,1−α(t). For this, we first solve the following problem for a grid of points ph ∈
Sd−1, h = 1, · · · , H:

max
θ
〈ph, θ〉

s.t.
√
n

2K∑
k=1

σ̂−1
k,n

(
a′kθ − Fk(Ên[m(Xi)]

)
+
≤ t. (F.1)

We set H to 100. The problem above is a linear programming problem that can be solved by common soft-

wares. We use Matlab and a high-speed solver generated by a free software CVXGEN.12 The optimized values

then give s(ph, Θ̂n(t)), h = 1, · · · , H. We then generate subsamples of size b using Algorithm 3.1 and also com-

pute s(ph, Θ̂n,b,k(t)), h = 1, · · · , H similarly. The subsampling critical value ĉ→n,b,1−α(t) is then obtained as the

1 − α-quantile of maxh=1,···H
√
b{s(ph, Θ̂n,b,k(t)) − s(ph, Θ̂n(t))}+. The critical value for CIter is computed sim-

ilarly while updating the initial level using Algorithm 3.2. The coverage is checked by comparing the support

function of the identified set to that of the confidence set. Specifically, we interpret ΘI being covered by CWald

when s(ph,ΘI) ≤ s(ph, Θ̂n(t)) + ĉ→n,b,1−α(t)/
√
n for all h. The Hausdorff loss is then calculated as dH(CWald,ΘI) =

maxh=1,··· ,H |s(ph,ΘI)− s(ph, Θ̂n(t)) + ĉ→n,b,1−α(t)/
√
n|.

CHT’s confidence set CCHT-Sub with a subsampling critical value is defined as

CCHT-Sub = {θ ∈ Θ :
√
n

2K∑
k=1

σ̂−1
k,n

(
a′kθ − Fk(Ên[m(Xi)])

)
+
≤ τ̂n,b,1−α}, (F.2)

where τ̂n,b,1−α is calculated as follows.13 First, we obtain the boundary of the initial estimator Θ̂n(t) using (F.1).

We then introduce a grid of points (10, 000 points) inside Θ̂n(t). For each subsample of size b, we then compute:

Γn,b =

supθ∈Θ̂n(t)

√
b
∑2K
k=1 σ̂

−1
k,b

(
a′kθ − Fk(Êb[m(Xi)])

)
+
, if Θ̂n(t) 6= ∅,

0, if Θ̂n(t) = ∅.

12CVXGEN generates compiled (mex) solvers for linear and quadratic programs and is available for academic
purposes. See details at http://cvxgen.com/docs/index.html.

13This procedure follows the one in Bugni (2010), which is called Subsampling 2.
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The subsampling critical value τ̂n,b,1−α is then computed as the 1−α quantile of Γn,b. CHT’s confidence set CCHT-Boot

with a bootstrap critical value is defined as in (F.2) but replacing τ̂n,b,1−α with a bootstrap critical value τ̂∗n,1−α
computed as follows. First, generate a bootstrap sample {X∗i , i = 1, · · · , n} from the empirical distribution. Compute

the bootstrap sample moments Ên[m(X∗i )] and the weights σ̂∗n. Given Θ̂n, compute

Γ∗n =


supθ∈Θ̂n(t)

√
n
∑2K
k=1(σ̂∗k,n)−1

(
{a′kθ − Fk(Ên[m(X∗i )])} − {a′kθ − Fk(Ên[m(Xi)])}

)
+

×1{|a′kθ − Fk(Ên[m(Xi)])| ≤ κn/
√
n} if Θ̂n(t) 6= ∅,

0, if Θ̂n(t) = ∅.,

where κn is one of the following values: ln(ln(n))
1
2 , ln(n)

1
2 , and n1/8. Γ∗n therefore differs from Γn,b in the following

respects. First, it uses the bootstrapped samples instead of subsamples. Second, it re-centers the bootstrapped

sample moment a′kθ − Fk(Ên[m(X∗i )]) in the criterion function by a′kθ − Fk(Ên[m(Xi)]). Third, the term 1{|a′kθ −

Fk(Ên[m(Xi)])| ≤ κn/
√
n} selects the moments that are close to be binding but drops others (see detailed discussions

in Bugni, 2010). τ̂∗n,1−α is then computed as the 1−α quantile of Γ∗n. For both CCHT-Sub and CCHT-Boot, we compute

their support functions again using (F.2) replacing t with τ̂n,b,1−α and τ̂∗n,1−α respectively. The coverage and the

Hausdorff loss are then computed by the same procedure used for the Wald confidence sets.
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Table 1: The Coverage Probabilities of Confidence Sets

n = 1000 n = 500
K = 5 K = 9 K = 15 K = 5 K = 9 K = 15

CWald b = 100 0.935 0.949 1.000 b = 75 0.927 0.954 1.000
b = 150 0.927 0.936 0.941 b = 100 0.916 0.929 1.000
b = 200 0.922 0.922 0.910 b = 150 0.897 0.902 0.904

CIter b = 100 0.938 0.962 1.000 b = 75 0.982 0.991 1.000
b = 150 0.980 0.982 0.985 b = 100 0.992 0.991 1.000
b = 200 0.994 0.991 0.989 b = 150 0.998 0.996 0.998

CCHT-Sub b = 100 0.760 0.866 1.000 b = 75 0.893 0.983 1.000
b = 150 0.850 0.879 0.965 b = 100 0.912 0.970 1.000
b = 200 0.877 0.899 0.950 b = 150 0.932 0.969 0.992

CCHT-Boot κn = ln(ln(n))
1
2 0.990 0.994 0.998 κn = ln(ln(n))

1
2 0.994 0.999 0.999

κn = ln(n)
1
2 0.995 0.996 0.998 κn = ln(n)

1
2 0.997 0.999 0.999

κn = n
1
8 0.995 0.996 0.998 κn = n

1
8 0.996 0.999 0.999

Table 2: The Median Hausdorff Loss of Confidence Sets

n = 1000 n = 500
K = 5 K = 9 K = 15 K = 5 K = 9 K = 15

CWald b = 100 0.186 0.268 0.986 b = 75 0.262 0.382 1.841
b = 150 0.183 0.259 0.313 b = 100 0.257 0.353 2.039
b = 200 0.180 0.252 0.293 b = 150 0.247 0.332 0.391

CIter b = 100 0.187 0.278 1.781 b = 75 0.321 0.472 1.941
b = 150 0.217 0.302 0.377 b = 100 0.359 0.479 2.658
b = 200 0.248 0.330 0.397 b = 150 0.416 0.523 0.647

CCHT-Sub b = 100 0.196 0.260 0.426 b = 75 0.321 0.429 0.857
b = 150 0.222 0.263 0.290 b = 100 0.333 0.399 0.640
b = 200 0.234 0.270 0.279 b = 150 0.352 0.397 0.423

CCHT-Boot κn = ln(ln(n))1/2 0.331 0.340 0.292 κn = ln(ln(n))1/2 0.490 0.449 0.386

κn = ln(n)1/2 0.351 0.352 0.303 κn = ln(n)1/2 0.527 0.471 0.406

κn = n1/8 0.345 0.350 0.301 κn = n1/8 0.514 0.465 0.400

Note: For Wald-type confidence sets (CWald, CIter) and CHT’s confidence set with a subsampling critical
value (CCHT-Sub), the table reports coverage probabilities and median Hausdorff losses under different
subsample sizes. For CHT’s confidence set with a bootstrap critical value (CCHT-Boot), the table reports
results under different values of κn used for moment selection.

44


	Introduction
	General Setup
	Criterion Functions and Set Estimator
	Support Function
	Examples

	Inference
	Duality and the Asymptotic Distribution of Zn
	Inference
	Inference for the Identified Set
	Inference for Points in the Identified Set


	Moment Inequality Models
	Inference for Moment Inequality Models
	Asymptotic Equivalence of Wald and QLR Statistics

	Monte Carlo Experiments
	Conclusion

