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Hippocampal region CA3 contains strong recurrent exci- 
tation mediated by synapses of the longitudinal associa- 
tion fibers. These recurrent excitatory connections may 
play a dominant role in determining the information pro- 
cessing characteristics of this region. However, they result 
in feedback dynamics that may cause both runaway excit- 
atory activity and runaway synaptic modification. Previous 
models of recurrent excitation have prevented unbounded 
activity using biologically unrealistic techniques. Here, the 
activation of feedback inhibition is shown to prevent un- 
bounded activity, allowing stable activity states during re- 
call and learning. In the model, cholinergic suppression of 
synaptic transmission at excitatory feedback synapses is 
shown to determine the extent to which activity depends 
upon new features of the afferent input versus components 
of previously stored representations. Experimental work in 
brain slice preparations of region CA3 demonstrates the 
cholinergic suppression of synaptic transmission in stra- 
tum radiatum, which contains synapses of the longitudinal 
association fibers. 

[Key words: associative memory, presynaptic inhibition, 
medial septum, feedback attractor dynamics] 

Hippocampal region CA3 contains extensive recurrent excita- 
tion, mediated by synapses of the longitudinal association fibers 
that arise from region CA3 pyramidal cells and terminate on 
other pyramidal cells along the septotemporal axis of the hip- 
pocampus (see Amaral and Witter, 1989, for review). Extensive 
recurrent excitation also appears in other cortical structures, such 
as the piriform (olfactory) cortex (Haberly, 1985; Haberly and 
Bower, 1989) and the neocortex, where the majority of excitato- 
ry synapses on pyramidal cells arise from other cortical pyra- 
midal cells, rather than from thalamic afferents (Douglas and 
Martin, 1990). Thus, recurrent excitation may have a predomi- 
nant role in determining the dynamics of activity in many cor- 
tical structures. However, this strong recurrent excitation has the 
potential to cause serious problems for maintaining bounded ac- 
tivity. Positive feedback can result in exponential increases in 
the activity of individual neurons, and can cause activity to 
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spread to a large percentage of neurons within a cortical region 
(Minai and Levy, 1994). In addition, the spread of activity across 
previously modified synapses during learning could result in ex- 
cessive enhancement of synaptic strength within a cortical re- 
gion (Hasselmo et al., 1992; Hasselmo, 1994a). 

In models of the cortex with recurrent excitatory synapses, 
these problems have been avoided with unrealistic features. 
Models that use excitatory feedback to perform associative 
memory function commonly prevent runaway excitatory activity 
by limiting neuronal output with sigmoid input-output functions 
(Anderson, 1983; Hopfield, 1984; Amit, 1988). Maximum neu- 
ronal firing rate is, indeed, limited by the dynamics of voltage- 
dependent channels, but this theoretical limitation is consider- 
ably higher than the maximal firing rate observed in awake be- 
having animals during recording from the hippocampus (Muller 
et al., 1987; Eichenbaum et al., 1988; Otto and Eichenbaum, 
1992; Wilson and McNaughton, 1993) or neocortical structures 
(Hasselmo et al., 1989a,b). A large number of models have ad- 
dressed the problem of low firing rates in networks performing 
associative memory function with attractor dynamics (Amit and 
Treves, 1989; Treves, 1990; Treves, 1991). The most biologi- 
cally realistic solutions to this modeling problem incorporate 
shunting inhibition (Abbott, 1991, 1992). Shunting inhibition 
has also been utilized to limit network activity in models focused 
on sequences rather than fixed point attractors (Minai and Levy, 
1994; Prepscius and Levy, 1994). Here, a novel network that 
maintains bounded, stable attractor states with feedback inhibi- 
tion is analyzed. 

In previous models of learning in networks with recurrent 
excitation, runaway synaptic modification was prevented by 
clamping the activity of the network to the input pattern during 
learning. Though this technique was used in a large number of 
models, no physiological mechanism was presented. Recently, it 
has been shown that the selective suppression of synaptic trans- 
mission at excitatory feedback synapses can provide such a 
mechanism (Hasselmo et al., 1992; Hasselmo, 1993, 1994; Has- 
selmo and Schnell, !994). Selective suppression of excitatory 
recurrent synapses has been shown for substances that activate 
muscarinic cholinergic receptors (Hasselmo and Bower, 1992; 
Hasselmo et al., 1994a), GABA, receptors (Ault and Nadler, 
1982; Tang and Hasselmo, 1994) and noradrenergic receptors 
(Vanier and Bower, 1992; Scanziani et al., 1993). Here, it is 
shown that regulating the level of cholinergic modulation deter- 
mines the extent to which storage of new afferent input patterns 
depends upon previously stored patterns. For low levels of cho- 
linergic modulation, the network recalls previously stored pat- 
terns unaltered by the new input. For high levels of cholinergic 
modulation, the network learns the new pattern with no elements 
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Figure 1. Schematic representation of the auto-associative network 
described here. A, Full network connectivity. Excitatory neurons with 
membrane potential a, receive afferent input A,. Inhibitory interneurons 
with membrane potential h, receive afferent input A’, (not shown). Ex- 
citatory neurons contact each other via an excitatory feedback matrix 
W,,. Excitatory neurons contact inhibitory interneurons via connectivity 
matrix W’, and receive inhibitory input via connectivity matrix H,,. 
Inhibitory neurons receive inhibitory input via the connectivity matrix 
H’,,. Feedback regulation of cholinergic modulation is mediated via 
excitatory connections to an inhibitory neuron with membrane potential 
h,, which inhibits activity of the chohnergic neuron with membrane 
potential CL Output from the cholinergic neuron $ influences a range of 
parameters in the network. B, For certain conditions, the dynamics of 
a population of neurons can be simplified as coupled equations with the 
membrane potentials of a single excitatory neuron (a) and a single in- 
hibitory neuron (h) representing the activity of populations of excitatory 
and inhibitory neurons. Synaptic connectivity can be represented as an 

from previously stored patterns. For intermediate levels of cho- 
linergic modulation, the network stores representations that 
chunk the new pattern together with previously stored patterns. 

Materials and Methods 

Computational modeling 
Interaction of excitation and inhibition. Bounded self-sustained excit- 
atory activity can be obtained in a network with the following equations 
for the membrane depolarization of excitatory pyramidal cells (a) and 
the membrane depolarization of inhibitory interneurons (h): 

Aa, = A, - w, + c Wv[aj - 0,1+ - 2 H,,th, - %,I+, 
I I 

Ah = Ai - ~‘4 + 2 %,[a, - %I+ - c H’,,[h, - o,],, (1) 
I i 

where A represents the afferent input to a neuron, ?a represents the 
passive decay of membrane potential proportional to the difference from 
resting potential, [a - 01, is a threshold linear output function of mem- 
brane potential, with zero output for values below 8. W represents the 
matrix of excitatory synapses arising from cortical pyramidal cells, and 
H represents the matrix of inhibitory synapses arising from cortical 
inhibitory interneurons. For inhibitory interneurons, the membrane po- 
tential is represented by h. W’ represents the matrix of excitatory syn- 
apses arising from cortical pyramidal cells and synapsing on inhibitory 
interneurons and H’ represents the matrix of inhibitory synapses be- 
tween inhibitory neurons. The architecture of the full network is shown 
in Figure 1A. For mathematical analysis, the network was reduced to 
two neurons, one excitatory and one inhibitory, as shown in Figure lB, 
allowing solution of the coupled pair of differential equations. Note that 
the simulations described here are fully connected, with synapses be- 
tween all existing neurons. In addition, most simulations used a single 
feedback neuron to represent the population of neurons mediating feed- 
back inhibition. These physiologically unrealistic features allow the 
model to function with smaller numbers of neurons. Variations in the 
percentage connectivity of the network does not prevent attractor dy- 
namics until connectivity reaches sufficiently low values (Van Vrees- 
wijk and Hasselmo, unpublished data). Thus, the fully connected net- 
work here is used as an approximation to a much larger network with 
smaller percent connectivity. 

The linear representation above does not take into account the re- 
versal potentials of ionic currents. The equations can be modified in a 
simple manner to incorporate these reversal potentials, as follows: 

Aa, = A, - w, + (ENa - a,) c Wg[a, - O,l, 
I 

+ (EC, - 4 c H,,[h, - %I+ 

Ah, = A; - rlh, + @G.,, ~ h,) 2 %,[a, - %I, 
I 

+ 6% - 4) T H;,h - %I+ (2) 

The linear form was used in the mathematical analysis and in the 
simulations shown in Figures 3 and 4. The nonlinear form was used in 
the network simulations shown in Figures 5-7. Reversal potentials for 
membrane currents were expressed relative to the resting potential. 
Thus, ENn = 70, EC, = 0, & = - 10. Threshold potentials were equiv- 
alent for all neurons: 8, = Clh = 8.0. Afferent input was scaled to the 
magnitude of the decay constant allowing afferent input to depolarize 
the neurons to 10.0 (when n = 0.1, A = 1.0, when rl = 0.01, A = 0.1). 
All passive decay parameters n were set to the same value for an in- 
dividual simulation (q = n’ = n,,,). Synaptic connectivity strengths 
varied in different simulations as described below. 

Adaptation in excitatory neurons. The model included the phenom- 
enon of adaptation observed in most cortical pyramidal cells (Barkai 

t 

excitatory feedback synapse W, an excitatory input to the inhibitory 
interneuron W’, an inhibitory input to the excitatory neuron H and an 
inhibitory input to the inhibitory neuron H’. The membrane potential 
of the excitatory and inhibitory neurons decays in proportion to the 
constants n and n’, respectively. The excitatory neuron is shown re- 
ceiving afferent input A. 
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and Hasselmo, 1994). This requires a simplified representation of intra- 
cellular calcium concentration in excitatory neurons. The adaptation 
characteristics of a single excitatory neuron were represented in the 
following highly simplified form: 

Au, = A, - w, + FM& - a,), 
AC, = da, - @,I+ - %, (3) 

where c is the intracellular calcium concentration, p, represents the 
strength of the calcium-dependent potassium current, y  represents the 
strength of voltage-dependent calcium currents, 0 is the constant for 
diffusion of intracellular calcium, and 0, is the threshold for activation 
of voltage-dependent calcium currents. Note that these equations de- 
scribe just the intrinsic properties of an individual neuron, neglecting 
the terms for synaptic interactions. In simulations incorporating adap- 
tation, the parameters were set to p, = 0.01, y  = 0.001, 0 = 0.001, 
and 0, = 8.0. This gave a reasonable simplified representation of the 
output characteristics of cortical pyramidal cells in response to intra- 
cellular current injection (Barkai and Hasselmo, 1994). The adaptation 
characteristics of a single neuron are shown in Figure 6. 

Feedback regulation of cholinergic modulation. The model contained 
a representation of the level of acetylcholine + within the entire cortical 
region, which varied between 0 and 1. In addition, it incorporated sev- 
eral different effects of cholinergic modulation demonstrated experi- 
mentally. This included the selective suppression of excitatory intrinsic 
synaptic transmission (1 - x&), for which considerable experimental 
data exists (Hasselmo and Bower, 1992; Hasselmo and Schnell, 1994). 
In addition, it included the suppression of inhibitory synaptic transmis- 
sion (1 - xH+) (Pitler and Alger, 1992), the enhancement of excitatory 
synaptic modification (Burgard and Sarvey, 1990; Huerta and Lisman, 
1993), the direct depolarization of inhibitory and excitatory neurons 
(Benardo and Prince, 1982; Madison and Nicoll, 1984; Barkai and Has- 
selmo, 1994), and the suppression of currents underlying adaptation 
(Barkai and Hasselmo, 1994; Madison and Nicoll, 1984). Simulations 
used the values xw = xH = xH. = 0.73, X~ = 0.8, xAHp = 1.0 and 
depolarizing input xdepu, sufficient to bring resting potential to 4.0. With 
inclusion of cholinergic effects, the activation equations took the fol- 
lowing form. 

Aa, = A, - w, + xdepo,+ 

+ (&.,a - a,> C (1 - xdkW& - %I+ 

+ (Ec, - 4 T (1 - X”*Yf,,h - %!I+ 

+ (E, - a,)(1 - xaH)w 

Ah, = A: - q’k, + xdepod 

+ (EN, - 4) c (1 - x,4~W’l,b, - e,l, 

+ 6% - 4) c (1 -x,A+%,b, - ‘%I+ 

AC, = ~[a, - O,], - Rc, (4) 
Experimental evidence suggests that increased activity in cortical 

structures such as the hippocampus reduce the cholinergic modulation 
arising from basal forebrain structures such as the medial septum 
(McLennan and Miller, 1974). In the model, cholinergic modulation 
decreased due to the summed output from all neurons in the network, 
through the use of a feedback circuit in which single units represented 
the activation dynamics of basal forebrain populations of GABAergic 
neurons and cholinergic neurons. The GABAergic neurons had the same 
activation dynamics as the interneurons mediating feedback inhibition 
in the network, with the same parameters. The following activation 
dynamics applied for the cholinergic neuron output rate $ and mem- 
brane potential CX: 

d’ = *[a - %I+, Aor = A,, - qa - H,,[h - e,,],, (5) 
where 8, is the output threshold for the cholinergic neuron, A,, is tonic 
input to the cholinergic neuron present at all times during simulations 
to ensure continuous output in the absence of inhibition, and He is the 
inhibitory synapse from GABAergic neurons. Simulations used the val- 
ues 8, = 8.0 and 8, = 8. Other parameters varied as described below. 
The feedback regulation of cholinergic modulation is also summarized 
in Figure 1A. 

Modi’cution ofexcitatory synapses. Excitatory synapses between py- 

Stim. 

CA1 

(al 

Rec. 
Figure 2. Electrode placement in the brain slice preparation of the 
hippocampus for recording of synaptic potentials at excitatory recurrent 
synapses. Stimulating electrodes (Stim.) were placed in stratum radia- 
turn near region CA2, to activate the longitudinal association fibers 
mediating recurrent excitation in hippocampal region CA3. Recording 
electrodes (Rec.) were placed in stratum radiatum of region CA3. la$ 
longitudinal association fibers; SC, schaffer collaterals; sp, stratum pyr- 
amidale; s. l-m, stratum lacunosum-moleculare; pp, perforant path; s. 
rad, stratum radiatum; s. ZUC, stratum lucidum. 

ramidal cells in the model were modified continuously according to 
learning rules dependent upon postsynaptic activity a, and presynaptic 
activity a,, in keeping with experimental evidence on the Hebbian na- 
ture of long-term potentiation (Kelso et al., 1986; Wigstrom et al., 
1986). However, two versions were used, one of which depended upon 
the instantaneous levels of activity, the other that depended upon cu- 
mulative build-up of pre- and postsynaptic variables s, and s,, which 
increased with separate dynamics. This could be construed as the build- 
up of pre- and postsynaptic calcium, or activation of pre- and postsyn- 
aptic second messengers such as protein kinase C. Both rules also con- 
tained synaptic decay proportional to the current strength W,, and pre- 
or postsynaptic activity (scaled with the constants wpre and opOJ, as a 
representation of long-term depression (Levy et al., 1990). Each rule 
had parameters for the overall modification rate K and the postsynaptic 
modification threshold 0,. The rate of synaptic modification was also 
scaled to the level of cholinergic modulation, as suggested by experi- 
ments showing cholinergic enhancement of long-termpotentiation (Bur- 
gard and Sarvey, 1990; Huerta and Lisman, 1993). The cumulative 
learning rule took the form 

AW, = K(1 ~ xw[l - ‘kl)([s, - %I+ - qmwq:,, 
x (b, - %I+ ~ ~,“stw,)~ 

As, = +[a, - %I+ - Ps,, 
As, = Na, - %I+ - Ps,. (6) 

The instantaneous learning rule took the form 

AW,, = ~(1 - x,,J - MMa, - %J+ - w,,,WJ 
X (Ia, ~ fLl+ - y,o.tWq). (7) 

Connections to and from inhibitory interneurons were not modified 
in these simulations. In most simulations, weights were clipped at spe- 
cific values to maintain them within the region of stable attractor dy- 
namics. In this case, runaway synaptic modification applies not to the 
exponential enhancement of a single connection, but to the enhancement 
of additional undesired synapses. This clipping allowed stable learning 
for a broader range of parameters, but may not be physiologically re- 
alistic. Additional simulations demonstrated that stable synaptic modi- 
fication in response to new patterns could be obtained with synaptic 
enhancement limited only by decay proportional to synaptic strength. 
However, this required the use of much larger decay constants, which 
resulted in a loss of completion in response to degraded patterns, since 
the decay would delete additional synapses before the spread of activity 
could sufficiently activate neurons not receiving direct afferent input. 
This suggests that memory function in real physiological networks may 
require limits on synaptic modification that do not involve decay of this 
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A 0” type. Another possibility is that real physiological networks may contain 
- W = 0.016, H = 0 considerably longer delays in the implementation of synaptic modifi- 

02” cation relative to the spread of activity. This would allow sufficient time 
for activation dynamics to approach a stable state before synaptic mod- 
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Figure 3. Capability for bounded, self-sustained activity in the net- 
work from Equation 1. Identical traces were obtained for a neuron in a 
network with multiple excitatory neurons, and for a single excitatory 
neuron coupled with one inhibitory neuron with parameters scaled to 
match the network. A, The membrane potential (a) of an excitatory 
neuron plotted against time (t) before, during, and after a square pulse 
of afferent input (from t = 50 to 1000). B, For the same traces as A, 
the membrane potential (a) of the excitatory neuron is plotted against 
the membrane potential (h) of an inhibitory neuron to yield a phase 

Bruin slice physiology 

Cholinergic modulation was studied in brain slice preparations of hip- 
pocampal region CA3 to determine the whether suppression appears in 
this region similar to the suppression in region CAl. Cholinergic sup- 
pression of synaptic transmission was tested in stratum radiatum of 
region CA3 at the synapses of the excitatory recurrent longitudinal as- 
sociation fibers. 

Using previously presented techniques (Hasselmo and Schnell, 1994) 
slices of the hippocampus were prepared from 21 albino Sprague-Daw- 
ley rats. Brains were removed from rats anesthetized with Halothane 
and rapidly immersed in chilled modified Ringer’s solution with the 
following components: NaHCO, 26, NaCl 124, KC1 2.5, KH,PO, 1.2, 
CaCl, 2.4, MgSO, 1.3, and glucose 10 mM. This same solution was 
used for storage of slices at least 1 hr prior to recording in vials bubbled 
with 95% 0,/5% CO,. 

For recording from region CA3, slices were mounted on nylon mesh 
in a submersion-type slice chamber perfused with Ringer’s solution (36 
? l.O”C) at 4 mllmin. Slices were transilluminated to allow visually 
guided placement of recording electrodes in stratum radiatum of region 
CA3. See Figure 2 for summary of electrode placement. For activation 
of synaptic potentials, stimulating electrodes were placed in stratum 
radiatum near region CA2, except in the case of synaptic potentials 
recorded before, during, and after perfusion with 20 FM carbachol, 
which were activated with stimulating electrodes placed between the 
dentate gyrus and the recording electrode. Bipolar stimulating electrodes 
consisted of twisted strands of teflon-insulated 0.002” diameter plati- 
num-iridium wire (A-M Systems, Inc.). 

Stimulation pulses of 0.1 msec duration were delivered at 5 set in- 
tervals using a Neurodata PG4000 stimulator with stimulus isolation 
units. Evoked potentials were amplified using a custom built extracel- 
lular amplifier and recorded using custom written software on a Gate- 
way 2000 386SX computer. After synaptic potentials were initially ob- 
tained, they were observed regularly to determine stability. Experimen- 
tal procedures were commenced when the amplitude of the EPSP did 
not change for a 10 min period. Perfusion protocols were then com- 
menced. Averages of 10 successive digitized traces in a given layer 
were obtained before, during, and after perfusion of the cholinergic 
agonist carbamylcholine chloride (Carbachol), obtained from Sigma 
Chemicals (St. Louis, MO). 

Effects of cholinergic modulation on synaptic potentials in stratum 

t 

plane representation. Parameters took the values W’ = 0.0042, H’ = 0, 
n = n’ = 0.01. Different values of W and H determined the behavior 
of the network as listed below: W = 0: with no feedback excitation, 
the neuron shows only passive membrane properties, charging up as- 
ymptotically to A/q during afferent input, then decaying passively to 
zero after input is terminated. W = 0.016, H = 0: with feedback ex- 
citation in the absence of feedback inhibition, presentation of supra- 
threshold afferent input causes the membrane potential to grow rapidly 
to large values. This will occur for: W > q + HW’I(H’ + q’) or W > 
n + n’ + H’. W = 0.0085, H = 0.06: feedback inhibition keeps activity 
bounded, but insufficient excitatory feedback (W < n) prevents sus- 
tained activity. The membrane potential decays to zero after afferent 
input ceases. W = 0.016, H = 0.06: for certain parameters, the network 
reaches a stable, self-sustained activity level. During afferent input, the 
activity rises to a stable equilibrium. After afferent input ceases, the 
equilibrium changes slightly, but the network displays persistent supra- 
threshold activity. These parameters satisfy q < W < -q + HW’I(H’ + 
n’) and W < IJ + n’ + H’. For the simulation, self-sustained activity 
appears in a more restricted range of parameters, because the stability 
criteria described mathematically apply to a network starting with initial 
conditions sufficiently near the equilibrium point that activity does not 
fall below threshold. C, Addition of inhibitory feedback to the inhibi- 
tory neurons makes for a more rapid approach to the equilibrium state 
at low membrane potential values. The membrane potential dynamics 
are shown for the parameters W = 0.016, W’ = 0.0042, and H = 0.06, 
with H’ = 0.03 or 0.1. 
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Figure 4. Dynamics of recall in a network of neurons. A, The mem- 
brane potentials a, of eight excitatory neurons plotted against time be- 
fore, during, and after presentation of different amplitudes of afferent 
input to five neurons (from t = 50 to 1000). The neurons are connected 
by nonuniform excitatory connections, with five neurons strongly in- 
terconnected. Note that two neurons that do not receive afferent input 
increase to high activity levels, while two neurons receiving afferent 
input are inhibited to levels below zero. This demonstrates that recall 
dynamics driven by feedback inhibition and excitation can dominate 
over the features of afferent input. Upon removal of afferent input, the 
five active neurons settle to uniform membrane potentials despite non- 
uniform excitatory connectivity. B, Plot of the same data shown in A 
with size of black squares representing amplitude of membrane poten- 
tial. C, Phase plane plot of the membrane potential of 18 excitatory 
neurons plotted against a single inhibitory neuron. Nine neurons are 
connected by uniform excitatory connections, while the other nine are 

radiatum were tested with perfusion of carbachol at 1 KM, 5 FM, 20 
FM, and 100 pM. Once carbachol reached its maximal effect, washout 
was commenced with normal perfusant. Carbachol was considered to 
have reached its peak effect when the (altered) size of the EPSP re- 
mained stable for at least 3 min following the onset of drug perfusion, 
or no effect was observed for 10 min. A slice was never tested at the 
same drug concentration more than once. EPSPs were verified using a 
solution with low calcium (200 pM CaCl,, 8 mM MgSO,). 

Synaptic potentials were digitized for measurement of the exact value 
for the peak negative deflections of both the initial slope and the EPSP 
of a given trace by manual placement of a cursor. The slope calculation 
was performed manually on that portion of the synaptic potential for 
which the slope was essentially linear. The effect of carbachol was 
calculated for the percent change in both amplitude and slope of EPSPs. 

Results 
Stable attractor states with recurrent excitation 
The interaction of pyramidal cells and inhibitory interneurons 
allows the network to show stable attractor states, as shown in 
Figure 3. For certain parameters, afferent input causes the net- 
work to enter a nonzero attractor state, showing neither un- 
bounded exponential increases, nor decay back to zero activity. 
In addition, when afferent input was removed, this network was 
capable of maintaining a stable nonzero attractor state, avoiding 
decay back to zero activity. Thus, without using an explicit max- 
imum activity level, a simple network with feedback inhibition 
can enter stable activity states. 

Analysis of the equations allows estimation of conditions in 
which activity will enter a stable nonzero attractor state. We can 
approximate the network of neurons with distributed excitatory 
and inhibitory connections shown in Equation 1 and Figure 1A 
as a pair of neurons, one excitatory and one inhibitory, with the 
connectivity shown in Figure IB (see appendix). For example, 
when the values of all the parameters are homogeneous (e.g., 
the strength of individual synaptic connections are all the same), 
then the network of neurons in Equation 1 can be represented 
as a single excitatory and inhibitory neuron with excitatory con- 
nections with synaptic strength W = N*W, and W’ = N*W’,,. 
The traces shown in Figure 3 are equivalent for a single neuron 
with excitatory feedback and a population of neurons with ex- 
citatory and inhibitory connections scaled in this manner. The 
solution to the coupled equations with excitatory feedback W is 
shown in the appendix. 

Although this analysis represents a simplification, the dynam- 
ics of a network with more broadly distributed synaptic weights, 
intrinsic parameters, and initial conditions consistently tend to- 
ward the mean dynamics expressed by these equations, as shown 
in Figure 4. With heterogeneity in various parameters such as 
afferent input and excitatory connectivity, the activity of indi- 
vidual neurons can still be described in terms of these coupled 
equations, with different scaling of the constants. With a range 
of values of afferent input or initial conditions, the network tends 
toward stable homogeneous attractor values, particularly after 
afferent input has ceased. 

The equilibrium state of the network can be obtained by set- 
ting da = dh = 0. This allows computation of the excitatory 
neuron equilibrium state a = Q, shown in the appendix. Note 
that for activity to persist after removal of the afferent input, the 

t 

connected by much weaker excitatory connections. The initial condi- 
tions for each neuron range from 0 to 45, but the dynamics result in 
the nine neurons with weak connections decaying to zero, and the nine 
neurons with stronger excitatory interconnectivity approaching a stable 
equilibrium state at about 30. 
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equilibrium state Q must be larger than the output threshold of 
the pyramidal cell equation 0,. Otherwise, as the network ap- 
proaches its equilibrium state, it falls below threshold and the 
activity decays to zero. 

Ability to hold a stable recall state without afferent input. As 
shown in the appendix, computation of the eigenvalues of Equa- 
tion 1 yields a notion of how the stability of nonzero activity 
states depends upon the relative magnitude of excitatory syn- 
aptic feedback W and other synaptic and intrinsic parameters in 
the linear portions where a > 8, and h > 8,. In particular, this 
allows analysis of the range of parameters within which the net- 
work can maintain stable excitatory activity without afferent in- 
put A. The parameters used here are the synaptic connectivity 
parameters shown in Figure 1B. The different conditions de- 
scribed below correspond to different traces in Figure 3. 

(1) For W < n. Excitatory feedback does not overcome the 
passive decay of the membrane potential. Without afferent input 
A, the network will decay back to an equilibrium state at resting 
membrane potential (a = 0). For example, W = 0 and W = 
0.0085 in Figure 3A. 

(2) For W > +IJ + HW’I(H’ + 9’) or W > TJ + q’ + H’. At 
least one of the eigenvalues is greater than zero, and the activity 
of the network will move away from the equilibrium point Q, 
showing exponential increases, or oscillations of increasing am- 
plitude. This increased activity may correspond to the develop- 
ment of epileptic seizure activity in cortical networks. For ex- 
ample, the trace for W = 0.016, H = 0 shows runaway excit- 
atory activity in Figure 3A. 

(3) For TJ < W < TJ + HW’I(H’ + n’) and W < T) + q’ + 
H’. Both eigenvalues are less than zero, and the system remains 
bounded. At the same time, excitatory feedback gives the net- 
work the capacity to hold a particular recall state in the absence 
of afferent input A. Given these conditions, the values of differ- 
ent parameters determine whether the system will approach the 
equilibrium point with exponential decay, or with oscillations. 
If [(W - I$ + (-H’ - T)‘)]~ < 4((W - q)(-H’ - q’) + W’H), 
the network will approach a stable activity state with a damped 
oscillation, such as those seen in Fig. 3A and B for the trace 
with the parameters W = 0.016 and H = 0.06. (Other parameters 
in this figure were W’ = 0.0042 and H’ = 0, q = 0.01, n’ = 
0.01, A = 0.1, 8, = 8.0, 8, = 8.0.) The damped oscillations 
apparent in the figure do not appear for higher values of the 
equilibrium state, but simulations are shown for lower values 
because of the low firing rates of most cortical neurons. As 
shown in Figure 3C, adding inhibitory feedback to inhibitory 
interneurons (H’ = 0.03) causes a more rapid approach to equi- 
librium state, though higher values (H’ = 0.1) reintroduce 
damped oscillations as the equilibrium point decreases in am- 
plitude. The approach is also more rapid for the nonlinear ver- 
sion of the equations, as shown in Figures 5 and 7. 

The equilibrium state held by the network in the absence of 
afferent input can be determined from the equilibrium equation 
Q, with A = A’ = 0. This equilibrium state can be the same as 
the equilibrium state with afferent input if feedforward activa- 
tion of inhibition (A’) satisfies the following requirement: 

A, = A(rl’ + H’) 

H 

For the network to hold this equilibrium state, the equilibrium 
state Q must be higher than the output threshold. Solving for Q 
> 0,, demonstrates that this requires the following: 

The capacity to hold a particular activity state without external 
input may reflect an important processing characteristic of cor- 
tical structures, which here depends upon inhibition to maintain 
stability. 

Dynamics of learning and recall in the network 

As described in previous publications, associative memory func- 
tion with recurrent excitation requires different dynamics during 
learning than during recall (Hasselmo et al., 1992; Hasselmo, 
1993, 1994; Hasselmo and Bower, 1993). Here, a mechanism is 
proposed that allows internal self-regulation of the dynamics of 
learning and recall. This mechanism uses the summed output of 
the modeled cortical pyramidal cells to decrease the cholinergic 
modulation of the region, as described in Materials and Methods. 

Equilibrium during learning and recall. In this framework for 
feedback control, cholinergic modulation is strong when there is 
no activity within the network, resulting in tonic suppression of 
intrinsic excitatory synapses. When a new afferent input pattern 
is first presented to the network, the input does not match the 
pattern of intrinsic connectivity. Activity of individual neurons 
may cross threshold due to afferent input, but recurrent excita- 
tion does not drive the activity to higher values. This means that 
cholinergic modulation remains strong. For example, in the sim- 
plified scheme presented above, imagine that the excitatory feed- 
back starts with a weak connectivity W(O), and in addition is 
suppressed by cholinergic modulation (1 - c,,,). This results in 
an initial equilibrium, which is smaller than the threshold for 
decreasing cholinergic modulation (u). If W(0) is smaller than 
q, the excitatory feedback does not drive the network to an 
equilibrium, which will persist without afferent input. However, 
as the intrinsic feedback connectivity W increases, the value of 
the equilibrium increases, eventually surpassing the threshold for 
feedback regulation of cholinergic modulation. As this threshold 
is passed, the suppression of excitatory feedback is discontinued, 
and the equilibrium potential increases further. Now the activity 
in the network is dominated by excitatory feedback, and the 
network has made the transition from learning to recall. 

Presentation of a familiar pattern to the network results in a 
level of activity that immediately surpasses the threshold for 
feedback regulation of cholinergic modulation. In this case, cho- 
linergic modulation is immediately suppressed, before any syn- 
aptic modification takes place. The network immediately goes 
to a recall equilibrium dominated by the excitatory recurrent 
synapses. 

Even without cholinergic modulation, the network with re- 
current excitation described here is already more resistant to 
runaway synaptic modification than the simpler networks de- 
scribed in previous articles (Hasselmo et al., 1992, 1993, 1994). 
This is because the absence of attractor dynamics in those pre- 
vious networks allowed partial activity from several different 
patterns to persist in the neurons. In contrast, the feedback in- 
hibition in the network described here can eliminate most diffuse 
activity, preventing undesired neuronal activity and, hence, pre- 
venting undesired synaptic enhancement. However, cholinergic 
modulation provides a broader variety of dynamical character- 
istics within the network, as described in the next section. 

Cholinergic levels determine state of pure learning, chunking, 
or pure recall. The network can show different patterns of re- 
sponse to afferent input, dependent upon the level of tonic ac- 
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Figure 5. Self-regulated learning and recall of two highly overlapping 
patterns in the auto-associative network. Afferent input patterns are 
shown at top, with black squares representing active input lines. Pattern 
I and 2 each contain four active input lines, with two lines in common 
between the patterns. Degraded versions of the input patterns are lack 
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tivation of cholinergic innervation. With no afferent input to the 
cholinergic neuron, cholinergic modulation is absent. In this 
case, the network can learn the initial presentation of a novel 
pattern, but any subsequent presentation of a similar pattern re- 
sults in recall of the initially learned pattern, as shown in Figure 
5A. The representation of the pattern is not modified, but this 
previously stored representation dominates recall dynamics. 
Only presentation of orthogonal patterns will allow storage of a 
completely new representation. This could correspond to behav- 
ioral situations in which no learning is deemed necessary, and 
all behavior is guided by how much sensory stimuli resemble 
previously learned stimuli. 

In contrast, with somewhat stronger input to the cholinergic 
neuron (AI) = 0.15), the network shows different dynamics, as 
shown in Figure 5B. In this case, recall of the previously learned 
pattern is partially suppressed, allowing components of the new 
overlapping pattern to modify the representation. Components 
of both patterns become simultaneously active, and associations 
are formed between every element of each pattern. In previous 
articles (Hasselmo et al., 1992; Hasselmo, 1993, 1994; Hasselmo 
and Bower, 1993), this has been described as interference during 
learning and avoided as a problem, but in some cases, this com- 
bination of elements of different patterns can be useful to en- 
hance the learning of new information. This phenomenon could 
be interpreted as chunking behavior. The ability to control 
whether chunking would be utilized may be an important role 
of cholinergic modulation. 

Finally, if input to the cholinergic neuron is increased further, 
recall is completely suppressed, and the network can separately 
learn even patterns which strongly overlap with previous pat- 
terns, as shown in Figure 5C. Here, input to the cholinergic 
neuron is set to A+ = 0.3. In this case, after learning of the first 
pattern, a degraded version of the first pattern can still recall the 
first pattern, but presentation of a second strongly overlapping 
pattern does not have sufficient overlap to cause recall of the 
first pattern. Instead, the second pattern is learned as a novel 
representation. In this case, strong cholinergic modulation com- 
pletely prevents recall of previously learned patterns from inter- 
fering with the learning of new patterns. The level of input to 

t 

ing two active input lines. A-C, Pattern of activity in the network during 
sequential presentation of pattern 1, degraded pattern 1, pattern 2, and 
degraded pattern 2. The activity of each of 10 excitatory neurons (Ex- 
tit), two inhibitory neurons (In!&), and one cholinergic neuron (ACh) 
is shown for every 50th simulation step, with size of black squares 
representing activity level. A, With no cholinergic modulation activity 
tends toward previously stored patterns (input to ACh neuron = 0.0). 
During presentation of pattern 1, the network shows lower activity until 
synaptic calcium crosses threshold, strengthening excitatory feedback, 
and causing an increase in activity. Subsequent presentation of a de- 
graded version of pattern 1 rapidly evokes the full stored pattern. Sub- 
sequent presentation of overlapping pattern 2 initially evokes a different 
pattern of activity, but eventually the network settles to the previously 
stored pattern 1. B, With moderate cholinergic modulation, overlapping 
patterns are chunked together. Learning of pattern 1 is followed by 
presentation of pattern 2. In this case, feedback regulation of cholinergic 
modulation allows both activity patterns to be evoked, causing a com- 
bined representation of both patterns to be stored, such that the degraded 
version of pattern 2 evokes elements of both pattern 1 and 2. C, With 
strong cholinergic modulation, new overlapping patterns can be stored 
without interference from previous patterns. After learning of pattern 1, 
presentation of pattern 2 initially evokes a small portion of pattern 1, 
but the suppression of synaptic transmission prevents this from domi- 
nating, and the network now stores pattern 2. Subsequent presentation 
of the degraded version of pattern 2 evokes only pattern 2. 



5256 Hasselmo et al. * Learning and Recall in Hippocampal Region CA3 

the cholinergic neuron has a similar role to that of the vigilance 
parameter in adaptive resonance theory, though the structure of 
the network differs radically (Carpenter and Grossberg, 1993). 
The parameters used in the simulations shown in Figure 5 were 
as follows: n = 0.01 (all neurons), A = 0.1, starting W = 
0.000002, maximum W = 0.00055, W’ = 0.0008, H = -0.0035, 
H’ = -0.0055, W’, = 0.001, H’, = -0.0055, H+ = -0.0008, 
* = 0.1. The cumulative version of the learning rule was used 
with the parameters: $ = 0.5, B = 0.001, mpre = 0.002, ~~~~~ = 
0.00002, K = 0.5, 8, = 0.05. Note that the adaptation parameter 
lt was set to zero for this simulation, preventing any adaptation. 

Adaptation allows transitions between stable recall states. 
The interaction of feedback excitation and inhibition alone can 
cause the network to enter a stable attractor state, but cannot 
remove the network from that state. In single-unit recording, 
neurons of CA3 do not show long-term persistent activity in the 
absence of afferent input. Thus, once an attractor state has been 
approached, it must be terminated. This is where slower pro- 
cesses mediated by potassium currents might play a role in net- 
work dynamics. The activation of the calcium-dependent potas- 
sium current, or of GABA, potassium currents may play the 
role of pushing the network out of stable attractor states, allow- 
ing presentation of additional input to determine the response of 
the network. 

Figure 6 shows the approximation of neuronal adaptation 
characteristics using the simplified representation presented in 
Equation 3. Incorporation of a variable representing intracellular 
calcium concentration and effects of this variable on calcium- 
dependent potassium currents provides a simple model of both 
the adaptation of firing rate, and the afterhyperpolarization pres- 
ent after suprathreshold current injection ceases. The simulation 
shown in Figure 6 used parameters listed in the methods section 
for the characteristics of adaptation. There were no synaptic con- 
nections in this simulation, and n = 0.1. 

Incorporation of these effects in the simulation allow termi- 
nation of the attractor states, as shown in Figure 7. Each new 
input pattern is learned, and after removal of afferent input, the 
activity persists for a period of time. However, eventually the 
adaptation currents decrease activity to below the output thresh- 
old and the network becomes inactive. Subsequent presentation 
of another pattern allows learning or recall without interference 
from the previous stable activity state. During recall, degraded 
patterns set different initial conditions, but after removal of af- 
ferent input, activity approaches the same stable states ap- 
proached during learning before adaptation terminates activity. 
The simulation shown in Figure 7 used the following parame- 
ters: q = 0.1 (all neurons), A = 1, starting W = 0.000002, 
maximum W = 0.003, W’ = 0.005, H = -0.015, H’ = -0.025, 
W’, = 0.005, H’, = -O.O25,A,, = 0.9, H+ = -0.004, q = 1.0. 
The instantaneous learning rule was used with the parameters: 
0 P’C = 0, mpost = 0, K = 0.5, 0, = 8.0. The adaptation parameters 
took the values listed in Materials and methods. 

Cholinergic suppression of synaptic transmission in region 
CA3 

Computational modeling demonstrates that cholinergic suppres- 
sion of synaptic transmission can determine whether afferent 
input that overlaps with previously learned patterns will evoke 
just the previously stored pattern, will cause chunking of new 
information with previously learned information, or will result 
in learning of the afferent input as novel, with no component of 
the previously learned pattern. This requires cholinergic sup- 
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Figure 6. A, Adaptation characteristics of a single simulated neuron, 
with the dynamics shown in Equation 3. The membrane potential of the 
neuron is plotted against time before, during, and after a simulated 
current injection (from 50 to 1000 msec). The membrane potential 
shows an initial sharp increase followed by an exponential decay due 
to increased intracellular calcium concentration and activation of cal- 
cium-dependent potassium currents. The rate of adaptation shown here 
corresponds to a typical pattern of adaptation found in recordings from 
a population of piriform cortex pyramidal cells (see B). Following the 
end of the simulated current injection, the membrane potential goes to 
values below zero, due to persistent activation of potassium currents. 
This corresponds to the slow afterhyperpolarization found in cortical 
pyramidal cells (see C). B, Adaptation in a real cortical pyramidal cell. 
The initial high firing rate of the neuron drops off in a manner similar 
to the decrease in suprathreshold membrane potential in the simulated 
neuron. C, Afterhyperpolarization in a real cortical pyramidal cell. Fol- 
lowing a short current injection, which evokes strong spiking activity, 
the neuron shows a slowly decaying afterhyperpolarization similar to 
that in the simulated neuron. 
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Figure 7. Sequential learning and recall of afferent input patterns in 
the auto-associative network, with termination of activity due to adap- 
tation. The activity of 10 excitatory neurons, 2 inhibitory neurons, and 
1 cholinergic neuron is shown during sequential presentation of com- 
plete and degraded afferent input patterns. Width of the black line rep- 
resents level of activity in each neuron. Arrows indicate which neurons 
are receiving afferent input for each pattern (for 100 msec). Subsequent 
activity is self-sustaining until adaptation becomes sufficiently strong to 
knock the network out of its current activity state. On the left, the 
synaptic connectivity within the network is shown after presentation of 
each new afferent input pattern. 

pression of synaptic transmission at the synapses of the longi- 
tudinal association fibers terminating in stratum radiatum of 
CA3. Physiological recording demonstrates that the cholinergic 
agonist carbachol strongly suppresses extracellularly recorded 
synaptic potentials in stratum radiatum of hippocampal region 
CA3. As shown in Figure 8, 100 pM carbachol results in reduc- 

The Journal of Neuroscience, July 1995, 15(7) 5257 

tion of the height and rising slope of stratum radiatum synaptic 
potentials by about 80%. 

The dose-response curve for suppression of synaptic poten- 
tials in region CA3 is shown in Figure 9. The average suppres- 
sion of the rising slope of synaptic potentials was 16.8 + 9.8% 
at 1 FM (percent change ? standard error) (n = 5), 40.5 ? 
7.7% at 5 PM (n = S), 65.8 2 3.7% at 20 pM (n = 5), and 
76.7 ? 4.3% at 100 pM (n = 12). The dose-response curve for 
stratum radiatum in region CA3 resembles that obtained in stra- 
tum radiatum of hippocampal region CAl. Data from paired 
pulse stimulation was gathered for measurement of the change 
in paired-pulse facilitation during suppression of synaptic trans- 
mission. During suppression of synaptic transmission by 100 yM 

carbachol, the percent paired-pulse facilitation increased by 
3 1.4%. This increase in paired-pulse facilitation has been taken 
to suggest that suppression is mediated by presynaptic receptors 
(see Hasselmo and Bower, 1992). 

Discussion 

In the network presented here, the interaction of feedback ex- 
citation and feedback inhibition allows the network to show 
bounded, stable activity patterns that could represent memory 
states. This network allows analysis of the function of the cho- 
linergic suppression of synaptic transmission at excitatory feed- 
back synapses, as demonstrated in the experimental data from 
hippocampal region CA3 presented here. The level of cholin- 
ergic suppression of feedback excitation determines the extent 
to which the network learns components of new afferent input 
patterns. With high levels of cholinergic modulation, the net- 
work learns the new afferent pattern with no element of previous 
overlapping patterns. With low levels of cholinergic modulation, 
the network recalls previously stored patterns that overlap with 
the afferent input, without incorporating any new elements. With 
levels of cholinergic modulation in an intermediate range in 
which the feedback regulation of cholinergic modulation be- 
comes influential, the network stores a combination of the ele- 
ments of the new and old patterns. 

The network shows the basic property of auto-associative 
memory function, responding to degraded versions of previously 
stored patterns with a stable attractor state matching the origi- 
nally stored pattern (once afferent input is removed). Auto-as- 
sociative memory function has been proposed for hippocampal 
region CA3 by a variety of researchers (Marr, 197 1; McNaugh- 
ton and Morris, 1987; Eichenbaum and Buckingham, 1991; 
Treves and Rolls, 1991), but few models have been presented 
to demonstrate how recurrent excitation in this region could me- 
diate recall without resulting in runaway excitatory activity. Re- 
current excitatory synapses in region CA3 have also been pro- 
posed to store sequences of activity states (Marr, 1971; Levy, 
1989; Minai and Levy, 1994; Prepscius and Levy, 1994). How- 
ever, simulations of this activity must address the same difficulty 
of controlling network activity with feedback inhibition (Minai 
and Levy, 1994), and controlling the spread of activation across 
previously modified synapses during the storage of new se- 
quences. 

Similar to this model, a previously published model of the 
connections from region CA3 to region CA1 (the Schaffer col- 
laterals) also demonstrates the importance of suppressing excit- 
atory transmission at modifiable synapses during learning of new 
associations (Hasselmo and Schnell, 1994). In that previous ar- 
ticle, modeling showed that heteroassociative memory function 
was most effective with strong cholinergic suppression at Schaf- 
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Figure 8. Cholinergic suppression of synaptic transmission in stratum radiatum of hippocampal region CA3. Synaptic potentials recorded in two 
different slices (examples A and B) are shown before, during, and after perfusion of 100 FM carbachol. Carbachol causes a strong decrease in the 
height and the rising slope of synaptic potentials. 

fer collateral synapses in stratum radiatum and weak suppression 
at the synapses from entorhinal cortex in stratum lacunosum- 
moleculare. Experimental evidence demonstrated a laminar se- 
lectivity of cholinergic suppression in region CA1 that matched 
the requirements of the model. 
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Figure 9. Dose-response curve for the cholinergic suppression of syn- 
aptic transmission in stratum radiatum of hippocampal region CA3. The 
relative height of synaptic potentials (% standard error) in the presence 
of carbachol is shown for carbachol concentrations of 1 PM, 5 PM, 20 
PM, and 100 )*M. Relative height is in proportion to the height of syn- 
aptic potentials before perfusion of carbachol. 

Data presented here demonstrates that the cholinergic sup- 
pression of synaptic transmission in stratum radiatum of region 
CA3 has a very similar dose-response curve to the cholinergic 
suppression shown previously in stratum radiatum of region 
CA1 (Hasselmo and Schnell, 1994). This suggests that the re- 
quirements for effective memory function are similar whether 
the connectivity is suggestive of autoassociative or heteroasso- 
ciative function. The similar dose-response curve could result 
from similar receptor properties at synapses in stratum radiatum, 
since the longitudinal association fibers mediating recurrent ex- 
citation in region CA3 and the Schaffer collaterals connecting 
CA3 with region CA1 both arise from the same set of neurons. 
Cholinergic suppression of synaptic transmission in hippocam- 
pal region CA3 has been mentioned previously as being similar 
to that in region CA1 (Valentino and Dingledine, 1981), but 
supporting data was not presented. As in region CAl, cholin- 
ergic suppression of synaptic transmission appears to be weaker 
in stratum lacunosum-moleculare of region CA3 (Hasselmo et 
al., 1994a). Cholinergic suppression may also be weaker in stra- 
tum lucidum of region CA3 (Hasselmo and Schnell, unpublished 
data). The weaker cholinergic effect in layers providing afferent 
input from the entorhinal cortex and the dentate gyms means 
that, in the presence of acetylcholine, input to region CA3 would 
remain stronger relative to the recurrent excitation in stratum 
radiatum (Hasselmo, 1995). 

The effects of cholinergic modulation in region CA3 and re- 
gion CA1 have been combined in a full model of the hippocam- 
pal formation (Hasselmo et al., 1994a), as summarized in Figure 
10. The patterns of neuronal activity in the full model are de- 
termined by rapid self-organization of input from the entorhinal 
cortex to the dentate gyrus and region CAl. The dentate gyrus 
representation triggers recall in region CA3 based on previously 
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Figure 10. Schematic representation of a model of the hippocampus, 
showing the proposed function of individual anatomical subregions. 
Synaptic connections within this mode1 mediate the following functions: 
I, Perforant path synapses in the dentate gyrus undergo self- organi- 
zation to form new representations of input from entorhinal cortex. 2, 
Mossy fibers from dentate gyrus to CA3 induce a sparse pattern of 
activity for autoassociative storage. 3, Excitatory recurrent connections 
in stratum radiatum mediate auto-associative storage and recall of these 
patterns. 4, Schaffer collaterals from region CA3 to CA1 mediate het- 
eroassociative storage and recall of associations between activity pat- 
terns in CA3 and the activity patterns induced by entorhinal input to 
region CAl. 5, Perforant path inputs to region CA1 undergo self- or- 
ganization, forming new representations of entorhinal cortex input for 
comparison with recall from CA3. The comparison of recall activity in 
region CA3 with direct input to region CA1 regulates cholinergic mod- 
ulation, allowing a mismatch between recall and input to increase ACh, 
and a match between recall and input to decrease ACh. 

stored patterns. The recall activity mediated by region CA3 
reaches region CA1 via the Schaffer collaterals, where the levels 
of activity correspond to a matching of CA3 recall with the 
direct input from entorhinal cortex to region CAl. This com- 
parison function regulates the level of cholinergic modulation in 
the network. If recall does not match direct input, cholinergic 
modulation is increased, setting appropriate dynamics for learn- 
ing novel information. If recall matches direct input, cholinergic 
modulation is decreased, allowing activity to be dominated by 
recall. In this manner, the cholinergic levels in region CA3 could 
be externally regulated, depending on how well recall matches 
the properties of sensory input. 

Excitatory intrinsic synapses have also been proposed to me- 
diate associative memory function in the piriform (olfactory) 
cortex (Hasselmo et al., 1992; Hasselmo, 1993; Hasselmo and 
Bower, 1993). Similar to region CA3, the piriform cortex con- 
tains excitatory recurrent synapses, but these appear to be less 
prevalent than in region CA3. Thus, the piriform cortex appears 
to have potential for both autoassociative memory function due 
to recurrent synapses, and heteroassociative memory function 
due to modifiable excitatory synapses between different subre- 
gions (for example, rostra1 and caudal piriform cortex). Similar 
to regions CA1 and CA3, the piriform cortex also demonstrates 
a laminar selectivity of the cholinergic suppression of synaptic 
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transmission, with strong suppression at intrinsic and association 
fibers in layer Ib and an absence of suppression at afferent fibers 
in layer Ia (Hasselmo and Bower, 1992). The piriform cortex 
differs physiologically from hippocampal subregions in that it 
shows weaker feedback inhibition and does not contain bursting 
pyramidal cells. The’bursting and stronger inhibition in the hip- 
pocampus may be required to maintain stability in the presence 
of stronger excitatory feedback. 

The hippocampus and piriform cortex both play a role in the 
processing of olfactory information. Lesions of the fornix impair 
the learning of odor discriminations in which two odors are pre- 
sented simultaneously, but not when single odors are presented 
sequentially (Eichenbaum et al., 19SS), suggesting that this le- 
sion impairs the encoding of relations between odor stimuli (Ei- 
chenbaum et al., 1991). Fornix lesions destroy most of the cho- 
linergic innervation of the hippocampus, without damaging con- 
nections between the hippocampus and the entorhinal cortex. 
This indicates that the encoding of relations may specifically 
depend upon cholinergic innervation. The work presented here 
suggests that without cholinergic suppression of recall, it may 
be difficult to form distinct new representations of separate be- 
havioral parameters or events during training. This effect would 
be particularly striking when many of the dimensions of the 
sensory stimulation appear in each training cycle-for example, 
in a task requiring the learning of a response to simultaneously 
presented odors rather than sequentially presented odors (Ei- 
chenbaum et al., 1988). 

Though their position relative to the olfactory epithelium sug- 
gests a sequential processing of olfactory information, single 
unit recordings from the hippocampus and the piriform cortex 
during performance of an olfactory discrimination task suggests 
more interactive processing. Neurons in the piriform cortex do 
not only respond during sampling of olfactory cues, but also 
respond to other factors such as the initial approach to odor ports 
and to reward (Schoenbaum and Eichenbaum, 1994). Apart from 
a greater specificity for individual odors, these response char- 
acteristics resemble those in the hippocampus (Eichenbaum et 
al., 1989). This suggests a continuous dynamical interaction be- 
tween the hippocampus and piriform cortex, in which individual 
attractors associated with components of behavior may involve 
excitatory feedback between simultaneously active neurons in 
both regions. Rather than processing information and passing it 
on to the hippocampus, the piriform cortex may provide addi- 
tional components of a broadly distributed attractor, thereby en- 
hancing the ability to separately represent a wide range of com- 
plex odor stimuli. 

Bounded attractor dynamics during recall in associative 
memory models 

The model presented here differs from most previous models in 
its ability to approach stable attractor states without use of sig- 
moid input-output functions, which limit activity at a maximal 
firing rate. These stable attractor states allow activity induced by 
input patterns resembling the stored pattern to result in a con- 
sistent final response. Even if neuronal adaptation or inhibition 
mediated by GABA, receptors causes these attractor states to 
decay, they still provide a mechanism for storage and recall of 
memory states that do not differ even with high variance in the 
afferent input. 

Recurrent excitation can easily lead to exponential increases 
of excitatory activity within a region, as shown in Figure 3. This 
has been prevented using a variety of techniques in various mod- 
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els. In simple linear associative memories, recall consisted of analysis of the network dynamics underlying the decrease in 
only one step of activation, equivalent to matrix multiplication neuronal firing associated with repeated presentation of a novel 
(Kohonen et al., 1977; Anderson, 1983; Kohonen, 1984). In later visual stimulus (Rolls et al., 1989). In the simulations presented 
attractor neural networks, the maximal firing rate of neurons was here, repeated presentation of a stimulus results in decreased 
limited by use of sigmoid input-output functions, such that dur- response due to the currents underlying adaptation. Clearly, the 
ing recall neurons would fire near their maximal firing rate (Hop- actual physiological mechanisms for storage of memory states 
field, 1984; Amit, 1988). More recent efforts have focused on in cortical structures will prove to be considerably more com- 
methods of attaining recall attractor states with low firing rates. plex. However, the model presented here provides a mathemat- 
This has been attained using threshold linear neurons by includ- ical framework for more detailed biophysical models exploring 
ing normalization of total network activity (Treves, 1990, 1991). the mechanisms underlying this function. 

Here, feedback inhibition provides a mechanism for prevent- 
ing exponential increases in excitatory activity in the network. 
A simplified representation of shunting inhibition has previously 
been used to attain stable attractor states at low firing rates (Ab- 
bott, 1991, 1992). The use of shunting inhibition may provide 
even greater stability, and applies directly to the electrotonic 
structure of cortical pyramidal cells, but the framework present- 
ed here may be sufficiently realistic and has simpler threshold 
linear characteristics. The previous simulations of shunting in- 
hibition did not address problems of learning, though it was 
noted that familiar patterns caused greater levels of activity (Ab- 
bott, 1992). The interaction of excitation and inhibition plays a 
role in a wide range of other abstract cortical models (Grossberg, 
1970, 1972; Wilson and Cowan, 1972). 

Appendix 

For a homogeneous population of excitatory and inhibitory neu- 
rons, the system of differential equations shown in Equation 1 
can be represented as a single excitatory neuron with excitatory 
synaptic feedback and inhibitory synaptic input, and a single 
inhibitory neuron with inhibitory synaptic feedback and excit- 
atory synaptic input, both of which receive direct afferent input, 
as summarized in Figure 1B. This representation takes the fol- 
lowing form: 

daldt 1 I[ W - q 

dhldt = W’ 

Issues of physiological realism 

The model presented here uses a continuous representation of 
firing rate. The validity of this analysis for the function of a 
network of spiking neurons depends upon the firing rates of 
neurons in attractor states being essentially asynchronous 
(Treves, 1993; Van Vreeswijk and Abbott, 1993) and the pop- 
ulation of neurons being very large, particularly as the time con- 
stants of synaptic transmission become progressively smaller. 
Given these limitations, however, this simplified representation 
has advantages over networks using sigmoid input-output func- 
tions, including other attractor neural networks and networks 
trained with backpropagation of error, in that it does not artifi- 
cially constrain the activity of neurons. This allows analysis of 
how various physiologically realistic features such as adaptation 
and feedback inhibition influence the firing rate of neurons, and 
how these influences affect the stable states of the network. Most 
existing models of attractor neural networks do not have a direct 
one to one correspondence with features of cortical networks. 
In addition, as mentioned above, the network presented here 
explicitly deals with the issue of learning, which has been large- 
ly ignored in attractor neural networks, and which relies upon a 
range of unphysiological processes in networks using backpro- 
pagation of error. 

Note that this is only valid for values of a above 0, and values 
of h above 0,. When membrane potentials fall below threshold, 
the synaptic weights arising from the neuron should be set to 
zero to represent the solution in that region. 

The eigenvalues of this system of equations take the form 

T + Z/T= - 4K 
A,, A, = 2 1 

where the trace T = (W - n) + (-H’ - n’), the determinant 
K = (W - n)( -H’ - n’) + W’H and the discriminant R = P 
- 4K = ((W - q) - (-H’ - q))2 - 4W’H. 

For stable self-sustained activity states to exist in the region 
above threshold, the trace must be less than zero (T < 0), and 
the determinant must be greater than zero (K > 0). This provides 
the stability criteria presented in the results and in Figure 3. For 
values of the discriminant R less than zero, the solution shows 
damped oscillations toward equilibrium, while values of R great- 
er than zero give strong damping preventing any oscillations 
(reviewed in pp. 13-16 of Jordan and Smith, 1987; or pp. 33- 
36 of Hirsch and Smale, 1974). 

The associated eigenvectors are 

The computational model presented here provides a solid the- 
oretical framework for guiding development of simulations us- 
ing integrate and fire representations, or detailed biophysical rep- 
resentations of cortical networks (Barkai et al., 1994; Barkai and 
Hasselmo, 1994; Hasselmo et al., 1994b; Hasselmo, 1995). The 
firing rate representation used here has greater potential for ad- 
dressing the dynamics of cortical function. This framework can 
be used to guide modeling of the sustained neuronal firing ob- 
served with single unit recording in awake, behaving monkeys 
performing delayed match-to-sample tasks (Fuster, 1973; Fuster 
and Jervey, 1982). The dynamics of self-sustained activity pre- 
sented here provide a clearer relationship to actual cortical struc- 
ture than recurrent networks trained with backpropagation 
through time (Zipser et al., 1993). This model will also allow 

/=[(T+-b,H] and k]=[(T++&2H]’ 

where T+ = (W - q) + (-H’ - n’). The equilibrium state of 
the network Q can be found by setting daldt = dhldt = 0. The 
equilibrium Q has the value 

A _ w0 + H0 + WJ-6 - HA’ - HH”%,> 

Q= a h q’ + H’ 

HW’ 
l--w+- 

q’ f  H’ 

Solving the nonhomogeneous system for R > 0 and for the 
initial conditions a(0) = a,,, and c(0) = c,, yields the solution 



The Journal of Neuroscience, July 1995, 75(7) 5261 

a=Q+ (a,+Q)A 
I YI + Y2 

- (c, - W’(Q - 8,)l(H’ + q’))L &’ 
YI + Y2 1 

+ CC” - W’(Q - @,YW’ + rl’)) 
2Y, + Yz 

cv, + YdYz 

- (a, - Q>Y, ehzr 1 
c = ;(Q - 0,) + a, - Q)& 

I 2 

- (c, - y,(Q - O,)lfi)‘y,e~l’ 
YI +Y2 1 

- y,(Q - 0,)/n) 2y’ + ” - (a, - Q)y, y@f, 01 + Y21Y2 1 
where the constants are as defined above. 

With the addition of adaptation in the equations, the eigen- 
vectors become very complicated. However, the equilibrium 
condition can be calculated by setting daldt = dhldt = dcldt = 
0. This yields the following equilibrium state: 

A - W0, + H0, + 
HW’8, - HA’ - HH’0, 

+%I 
a=Q= 

q’ + H’ 0 = 

HW’ 
-r-w+- +!A! 

q’ + H’ iR 

In most simulations, the effects of adaptation moved the equi- 
librium state to values below the output threshold of neurons, 
removing the system from a nonzero attractor state. 
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