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Abstract

Cholinergic and GABAergic innervation of the hippocampus plays an important role in human memory function and rat spatial navigation.

Drugs which block acetylcholine receptors or enhance GABA receptor activation cause striking impairments in the encoding of new

information. Lesions of the cholinergic innervation of the hippocampus reduce the amplitude of hippocampal theta rhythm and cause

impairments in spatial navigation tasks, including the Morris water maze, eight-arm radial maze, spatial reversal and delayed alternation.

Here, we review previous work on the role of cholinergic modulation in memory function, and we present a new model of the hippocampus

and entorhinal cortex describing the interaction of these regions for goal-directed spatial navigation in behavioral tasks. These mechanisms

require separate functional phases for: (1) encoding of pathways without interference from retrieval, and (2) retrieval of pathways for guiding

selection of the next movement. We present analysis exploring how phasic changes in physiological variables during hippocampal theta

rhythm could provide these different phases and enhance spatial navigation function. q 2002 Elsevier Science Ltd. All rights reserved.
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1. Acetylcholine and GABA modulation in the

hippocampus

The hippocampus receives extensive cholinergic and

GABAergic innervation from the medial septum, which

appears important for the role of the hippocampus in human

memory function and rat spatial navigation. In humans,

blockade of muscarinic acetylcholine receptors by drugs

such as scopolamine strongly impairs the encoding of new

information but not the retrieval of previously encoded

information in verbal memory tasks (Ghoneim & Mewaldt,

1975; Hasselmo, 1995 for review). Similarly, enhancement

of GABA receptor responses by benzodiazepine drugs also

causes significant encoding impairments in humans

(Ghoneim & Mewaldt, 1975). In rats, the muscarinic

receptor blocker atropine impairs the encoding of platform

location in the Morris water maze (Sutherland, Whishaw, &

Regehr, 1982). Acetylcholine levels in the hippocampus are

highest when a rat is actively exploring the environment,

and lower when the rat sits quietly or performs behaviors

such as eating or grooming (Marrosu et al., 1995), as

summarized in Fig. 1A. The higher levels of acetylcholine

are correlated with theta rhythm oscillations (3–12 Hz) in

the hippocampal EEG.

1.1. Acetylcholine may enhance encoding dynamics

Modeling suggests that acetylcholine could set appro-

priate dynamics for encoding of new information within the

hippocampal formation (Hasselmo & Bower, 1993; Has-

selmo & Schnell, 1994; Hasselmo & Wyble, 1997). That

previous work focused on longer periods of encoding versus

retrieval, whereas later sections of this article focus on more

rapid transitions between encoding and retrieval dynamics

within each cycle of the theta rhythm.

Acetylcholine causes physiological effects appropriate

for encoding of new information. Activation of muscarinic

acetylcholine receptors enhances the rate of synaptic

modification at excitatory feedback connections in the

cortex, as seen in experiments showing cholinergic

enhancement of long-term potentiation (Hasselmo &

Barkai, 1995; Huerta & Lisman, 1993; Patil, Linster,

Lubenov, & Hasselmo, 1998). At the same time as it

enhances long-term potentiation (LTP), acetylcholine

suppresses excitatory synaptic transmission at feedback

synapses (Hasselmo & Bower, 1993; Hasselmo & Schnell,

1994), while leaving excitatory feedforward synapses

relatively unaffected. Thus, feedback synapses have weak
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effects in the presence of acetylcholine, but the activation of

feedback synapses in the presence of acetylcholine causes

LTP which makes them stronger at later times. This

paradoxical combination of effects can be understood in

the context of associative memory models of piriform cortex

and hippocampus (Hasselmo & Bower, 1993; Hasselmo &

Schnell, 1994). Effective associative memory function

requires that network activity be clamped to feedforward

input during encoding, this prevents new associations from

being distorted by the spread of activity across previously

modified feedback connections. In contrast, during

retrieval, activity must spread more freely across

feedback synapses.

Thus, acetylcholine may prevent interference during the

strengthening of feedback synapses by selectively suppress-

ing excitatory feedback synapses but not feedforward

synapses (Hasselmo, 1999; Hasselmo & Bower, 1993;

Hasselmo & Schnell, 1994). At the same time, acetylcholine

further enhances the response to feedforward input by

causing post-synaptic depolarization of neurons (Barkai and

Hasselmo, 1994; Benardo & Prince, 1982), suppression of

neuronal adaptation (Barkai & Hasselmo, 1994) and

suppression of feedback inhibition (Patil & Hasselmo,

1999). Modeling demonstrates that these combined physio-

logical effects enhance encoding of new input patterns. This

modeling is consistent with a general role for acetylcholine

in setting the learning rate of cortical structures (see Doya,

1999, 2002). The level of cholinergic modulation can be

regulated by the match of input with prior learning

(Hasselmo & Schnell, 1994) causing effects relevant to

the stable maintenance of prior associations (Carpenter &

Grossberg, 1993). The regulation of relative strength of

feedback connections is consistent with cholinergic regu-

lation of top–down versus bottom–up influences on cortical

representations (Yu & Dayan, 2002).

The role of acetylcholine in preventing interference

during encoding has been supported by experimental work.

Blockade of muscarinic acetylcholine receptors increases

proactive interference from previous learning (DeRosa and

Hasselmo, 2000; DeRosa, Hasselmo, & Baxter, 2001), and

increases generalization between similar odorants (Linster

& Hasselmo, 2001; Linster, Garcia, Hasselmo, Baxter,

2001). In addition, lesions of the fornix and medial septum,

which remove cholinergic innervation of the hippocampus,

cause impairments in tasks requiring learning of new

responses to replace previously learned responses.

1.2. Theta rhythm may allow rapid transitions between

encoding and retrieval

While it is important to prevent interference during

encoding, it is important to have an ongoing ability to access

hippocampal representations for retrieval. The relatively

slow time course of muscarinic cholinergic effects on

synaptic transmission and postsynaptic depolarization

suggest that acetylcholine would require several seconds

to change network dynamics (Hasselmo & Fehlau, 2001).

This motivated a search for potential mechanisms

allowing faster transitions between encoding and

retrieval. Recent work suggests that rapid transitions

between encoding and retrieval could be provided by

theta rhythm oscillations (Hasselmo, Bodelon, & Wyble,

2002a), which are induced in the hippocampal formation

due to rhythmic input to the hippocampus from both

cholinergic and GABAergic cells of the medial septum

(as summarized in Fig. 1B). Here we show how theta

rhythm oscillations may provide a mechanism by which

encoding and retrieval dynamics could rapidly alternate

within the hippocampal formation, allowing encoding of

new information without interference due to retrieval of

previously encoded information.

During movement through the environment, the hippo-

campal EEG shows a prominent oscillation in the 6–12 Hz

frequency range referred to as theta rhythm (Buzsaki,

Leung, & Vanderwolf, 1983). This theta rhythm activity

appears to be regulated by cholinergic and GABAergic

input from the medial septum (Stewart & Fox, 1990), as

shown in Fig. 1B. During theta rhythm, acetylcholine

depolarizes both excitatory and inhibitory neurons in the

hippocampus, and rhythmic GABAergic input to hippo-

campal interneurons causes rhythmic inhibition and

Fig. 1. (A) Neuromodulatory changes in the hippocampus during move-

ment through the environment and during immobility. Microdialysis

measurement of acetylcholine levels shows higher ACh during movement

than during immobility (Marrosu et al., 1995). Recording of GABAergic

cells in the hippocampus and medial septum shows rhythmic firing during

movement and less regular firing during immobility (Brazhnik & Fox,

1999; Fox et al., 1986). Both of these changes contribute to the appearance

of theta rhythm oscillations in the hippocampal EEG during movement. (B)

The theoretical mechanism of theta rhythm generation in the hippocampus.

High levels of acetylcholine depolarize pyramidal cells and interneurons,

causing them to generate spikes. Rhythmic GABAergic input to

GABAergic interneurons in the hippocampus causes rhythmic changes in

interneuron spiking activity, and rhythmic changes in pyramidal cell

activity (Stewart & Fox, 1990). These effects in hippocampus and

entorhinal cortex cause rhythmic changes in the strength of excitatory

synaptic input to region CA1 from region CA3 and entorhinal cortex.
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disinhibition during this slower cholinergic depolarization.

Cutting the fornix destroys the cholinergic and GABAergic

input from medial septum to the hippocampus, and causes a

strong decrease in theta rhythm oscillations measured in the

electroencephalograph (EEG) within the hippocampal

formation (Buzsaki et al., 1983). Selective lesioning of the

cholinergic input alone has been shown to greatly decrease

the amplitude of theta rhythm oscillations (Lee et al., 1994).

Selective lesions of the medial septum and portions of the

fornix suggest that theta depends upon the afferent input

from the medial septum, but not on the output pathways

through lateral septum (Andersen, Bland, Myhrer, &

Schwartzkroin, 1979; Rawlins, Feldon, & Gray, 1979).

The same manipulations which decrease theta rhythm

amplitude also cause strong impairments on certain spatial

navigation tasks. For example, cutting the fornix causes

impairments in the ability of rats to perform certain tasks

including spatial reversal in a T-maze (M’Harzi et al., 1987)

and reversal in the Morris water maze (Whishaw & Tomie,

1997). Lesions of the medial septum also impair delayed

alternation (Numan, Feloney, Pham, & Tieber, 1995).

Recently, a simplified mathematical analysis showed how

loss of theta rhythm modulation could impair performance of

spatial reversal in a T-maze task (Hasselmo et al., 2002a).

Theta rhythm oscillations prove essential to effective spatial

navigation function in integrate-and-fire simulations

(Hasselmo, Cannon, & Koene, 2002b). The theta rhythm is

associated with changes in synaptic currents and membrane

potential in a number of different populations of neurons

within subregions of the hippocampal formation, including

region CA3, region CA1 and the entorhinal cortex (Bragin

et al., 1995; Brankack, Stewart, & Fox, 1993; Stewart & Fox,

1990). Here we present hypotheses about the potential

functional role of these theta rhythm oscillations in normal

spatial navigation function.

2. Model of spatial navigation

2.1. Overview of technique

The analytical techniques presented here are used to link

spatial navigation behavior to specific physiological vari-

ables in the hippocampal formation. These have been used

previously in the specific example of reversal learning in the

T-maze (Hasselmo et al., 2002a). The functional properties

analyzed here have also been demonstrated in simulations

using interacting populations of integrate-and-fire neurons

to guide the movement of a virtual rat in a virtual

environment (Hasselmo et al., 2002b). Here we provide a

general overview of this technique, which should be

applicable to a number of different instances.

Consider a rat foraging for food in an environment with a

number of food sources in different locations. According to

the model presented here, the hippocampal formation

encodes memories of pathways that the rat traverses through

the environment in search of food. Once multiple individual

pathways have been stored, the navigational mechanism

modeled here selects the shortest path to the closest food

goal (cf. Muller & Stead, 1996). Throughout this paper we

will refer to this pathway as simply the ‘Shortest Path’. The

Shortest Path is understood to be the path, which involves

the smallest number of steps from any given location to the

food source where the steps are taken along any one or

combination of the stored paths. In other words, the rat

combines known paths and segments of such paths to get to

the closest food source in as few steps as possible. The basic

mechanism is summarized in Fig. 2. The model incorporates

physiological data to show how the hippocampus may

operate to allow the rat to retrieve a memory of the Shortest

Path. This is interesting because the memory may actually

be a composite of earlier paths that have been traveled,

rather than a memory of a single path that was actually

traveled. Note that we focus specifically on the learning of

multiple individual pathways, rather than the immediate

activation of a two-dimensional map, as proposed in other

work (Samsonovich & McNaughton, 1997). Both pathway

based navigation and map-based navigation may coexist in

the hippocampus. In fact, sufficient crisscrossing of an open

environment on individual pathways will ultimately set up a

two-dimensional representation of that environment (Blum

& Abbott, 1993; Muller & Stead, 1996). In the open field or

the Morris Water maze, visual inspection of the environ-

ment could allow rapid formation of a two-dimensional

map, and rats clearly perform path integration to traverse

previously untraversed pathways (Whishaw & Tomie,

1997). However, most wild rats spend much of their time

in enclosed pathways which would favor pathway based

navigation, and the fact that place cells are strongly

dependent on direction of movement in tasks such as the

8-arm radial maze (McNaughton, Barnes, & O’Keefe, 1983)

suggest there are distinct pathway based representations

even for different directions in a single location. These

Fig. 2. Proposed mechanism for spatial navigation, allowing selection of the

Shortest Path from the current location to the goal location. Activity spreads

backward from the goal location Ag toward the current location along

multiple different encoded pathways in WB ¼ WECIII (shown by solid lines).

When activity along the shortest pathway reaches the current location Ac,

activity spreads forward one step from the current location along encoded

pathways in WF ¼ WCA3 (shown by double lines). As shown in the figure,

these patterns of spreading activity will overlap first for the next step along

the Shortest Path to the goal. The activity spreading along longer pathways

has not yet reached the current location by the time the overlap occurs

(dotted lines show portions of longer pathways not yet activated).
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pathway specific representations may only become merged

into non-directional map type representations after learning

of associations between different path segments (Kali &

Dayan, 2000).

The movement of the rat could be guided by a number of

different mechanisms, corresponding to action selection in

reinforcement learning (Sutton & Barto, 1998). In a general

way, the action selection process in spatial navigation

involves a selection of a next position on the basis of the

current position and the goal location. In other words:

akþ1 ¼ f ½ac; ag� ð2:1Þ

where akþ1 represents the rat’s next step as function of its

current location ac and current representation of the goal or

food source location ag.

Here we propose a specific mechanism for spatial

navigation involving an interaction of subregions of the

hippocampal formation. This mechanism will be described

below.

The spatial navigation mechanism that we propose has a

number of different dynamical variables. The relative

timing of activity in these variables plays an important

role in the ability of this mechanism to function in a stable

and effective manner. Rather than turning these variables off

and on in an algorithmic manner, we will allow them to vary

in a continuous rhythmic manner analogous to the variation

of specific physiological variables during theta rhythm.

Section 3 will evaluate how the performance measure will

change for different phase relationships of physiological

variables using our specific mechanism of spatial

navigation.

2.2. A specific proposed mechanism for spatial navigation

For selection of the next location, we propose an

interaction of a number of different hippocampal sub-

regions. The basic circuitry we have focused on is shown in

Fig. 3, based on the anatomical circuits of the hippocampal

formation (Amaral & Witter, 1989; Johnston & Amaral,

1998).

As shown in Fig. 3, the basic neural circuitry that is

employed in the rat’s navigational mechanism is organized

in the following fashion: Activity in entorhinal cortex layer

II is determined by afferent input from other neocortical

structures as well as input from entorhinal cortex layer III.

Activity in region CA3 is determined by input from

entorhinal cortex layer II and from recurrent connections

in region CA3. Activity in region CA1 is determined by

input converging from CA3 and from entorhinal cortex

layer III. Finally, activity in entorhinal cortex layer III is

determined by input from the prefrontal cortex and from

recurrent connections in entorhinal cortex layer III. We have

not yet incorporated the function of the dentate gyrus into

this computational simulation.

A full blown computational model of the neural circuits

illustrated in Fig. 3 would need to include explicit equations

for the strengthening of all the major sets of neural

connections. This would include, at minimum, the connec-

tions between: (1) entorhinal cortex and region CA3, (2)

region CA3 and region CA1, (3) region CA3 and itself, (4)

entorhinal cortex layer III and itself, (5) entorhinal cortex

layer III and region CA1, and (6) entorhinal cortex layer III

and entorhinal cortex layer II (Johnston & Amaral, 1998). In

Section 2, we assume that the connections (1, 2, 5 and 6)

above are represented by an identity matrix, and we do not

model them explicitly. We focus our attention on the

recurrent connections (3) and (4) above in region CA3 and

entorhinal cortex layer III, respectively. Later in Section 3,

we will consider the implications of modifying connections

(2) from region CA3 to region CA1.

As a simple overview, we propose that as the rat explores

the environment, it learns a number of different pathways

through its environment. This learning occurs during

encoding phases which alternate with retrieval phases

within each cycle of the theta rhythm. The pathways are

encoded in two directions, forward and backward. It is

proposed that the forward direction is encoded in the

recurrent connections in regions CA3 and the backward

direction in the recurrent connections of entorhinal cortex

layer III.

We assume that these pathways are encoded via

strengthening of synapses between place cells that corre-

spond to specific locations in the environment. Place cells

are individual rat hippocampal neurons which fire selec-

tively when the rat is located in restricted spatial locations in

Fig. 3. Schematic representation of anatomical structures and connections

used for spatial navigation in the model. Activity spreads backward from

the goal location Ag across recurrent connections WECIII ¼ WB in entorhinal

cortex layer III (ECIII). This activity converges with afferent input

representing current location Ac in entorhinal cortex layer II (ECII), causing

spiking for current location when it matches the backward spread. This

activity enters hippocampal region CA3, where activity spreads forward

one step across recurrent connections WCA3 ¼ WF: The activities from

region CA3 and from ECIII converge on region CA1. Region CA1 remains

subthreshold except where the overlap of input from region CA3 and ECIII

will cause spiking indicating the next step along the Shortest Path to the

goal. Note that the model has been simplified by only assuming

modification of recurrent connections in ECIII and in CA3. All other

connections shown are represented in a simple manner by identity matrices,

which directly transmit the pattern in one region to another region. The

activity of this network is summarized in the following equations (Eq.

(2.21) from text): aECIII ¼ WM
B Ag ¼ Ag2M ; aECII ¼ Ac; aCA3 ¼ WFaECII ¼

WFAc ¼ Acþ1; aCA1 ¼ ½aCA3 þ aECIII 2 m�þ ¼ ½WFAc þ WM21
B

Ag 2 m�þ:
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its environment (Mehta, Barnes, & McNaughton, 1997;

Muller & Kubie, 1989; O’Keefe & Recce, 1993; Skaggs,

McNaughton, Wilson, & Barnes, 1996). These cells have

been characterized extensively in a variety of experiments,

and often show firing strongly dependent upon the specific

direction of movement which suggests specificity for

specific pathways rather than general location (Markus

et al., 1995; McNaughton et al., 1983; Skaggs et al., 1996).

In fact, hippocampal neuronal responses may actually code

individual events within any episode, whether it be spatial or

non-spatial (Eichenbaum, Dudchenko, Wood, Shapiro, &

Tanila, 1999). In the model presented here, active place

cells correspond to a location in the environment and a

sequence of activity of different place cells represents a path

through the rat’s environment. The paths may then be

modeled as series of vectors of neural activation where each

pattern of neuron activation in a particular stored sequence

corresponds to a particular location. The correspondence

between a pathway in the external environment and a

particular sequence of vectors of neuron activation makes it

possible to refer to the sequence of vectors of neuron

activation as a ‘pathway’. The word pathway is used below

to refer to both geographic pathways and sequences of

vectors of neuronal activation that correspond in a one-to-

one fashion with geographic pathways. The context should

make the meaning clear.

During navigation that takes place after initial explora-

tion, the rat selects its movement by retrieving stored

information on pathways. We propose that this retrieval

occurs during specific phases of theta rhythm cycles, rapidly

alternating with encoding phases during which the existing

representation can be modified. The selection of movement

along an individual pathway requires an interaction of

neuron activity that spreads forward and backward through

stored sequences of activity that correspond with a sequence

of actual locations (i.e. a pathway) in the rat’s environment.

Specifically, we propose that activity spreads backward

from cells representing the goal location along connections

within entorhinal cortex layer III, and forward from cells

corresponding to the current location along recurrent

connections in region CA3. These two different directions

of spread then converge in hippocampal region CA1. The

convergence allows selection of the next step which, as we

will show below, corresponds, under certain conditions, to

the next step along the Shortest Path.

Our assumptions about backward and forward spread

of activity and convergence of this activity in CA1 were

motivated by and are consistent with some of the

available experimental data on the hippocampal for-

mation. This includes anatomical evidence for the strong

recurrent connectivity in hippocampal region CA3 and

the superficial layers of the entorhinal cortex (Amaral &

Witter, 1989; Shepherd, 1998) and the largely uni-

directional connectivity from these regions to region

CA1. On a physiological level, the overall structure of

the model was motivated by the difference in size of

place fields in the hippocampus and entorhinal cortex

(Barnes, McNaughton, Mizumori, Leonard, & Lin, 1990;

Frank, Brown, & Wilson, 2001; Quirk, Muller, Kubie, &

Ranck, 1992). Place fields are the spatial extent of the

environmental locations in which a given neuron will

fire. In particular, the place fields in region CA1 of the

hippocampus are much smaller than place fields of cells

in the deep layers of the entorhinal cortex, which is the

dominant structure receiving output from region CA1

(Frank, Brown, & Wilson, 2000). This suggests that the

tightly constrained spatial firing in the hippocampus is

only used in regions CA3 and CA1. Here we assume that

the constrained firing in region CA1 may be a

representation of the next desired location of the rat, as

supported by experimental evidence suggesting that

place cells in region CA1 may predict the location of

the rat in the next 120 ms (Muller & Kubie, 1989). At

earlier and later stages the nature of the representation

may differ. Here, we take the approach that the input

regions of the entorhinal cortex show larger place fields

due to spreading of activity between associated places,

and the output layers of entorhinal cortex would start

transforming next desired location into coordinates for

the next movement. The broad spread of activity is

consistent with the fact that entorhinal cortex lesions

impair learning of simple associations, suggesting it is

the locus for storage of simple inter-item associations,

whereas the hippocampus is involved in more complex

relational representations (Bunsey & Eichenbaum, 1993).

2.3. Review of integrate-and-fire simulation

The mechanism described here has been analyzed in

a simulation incorporating populations of integrate-and-

fire neurons representing multiple different regions

(Hasselmo et al., 2002b). There is insufficient space to

present details of this model here. However, a simple

example from this model illustrates the basic mechan-

ism for guiding navigation with the interaction of

entorhinal cortex, regions CA3 and CA1. The spread of

spiking activity in the integrate-and-fire model is shown

in Fig. 4, for the simple behavior of a virtual rat in a

virtual T-maze environment. The figure shows activity

when the virtual rat is at the choice point of the maze,

after it has already encoded associations between

adjacent spatial locations in all portions of the maze.

On the top, entorhinal cortex layer III receives input

from the prefrontal cortex representing the food location

in the left arm of the maze. Activity spreads backward

from the food location to sequentially activate place

cells representing the locations in the left arm, in the

stem and in the right arm. When this activity reaches

neurons representing the current location, it causes

activity to start in region CA3 (bottom). The activity

spreads forward one step in CA3, corresponding to

spatial locations in all directions from the virtual rat
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(into the left arm, right arm and stem). Convergent

input from region CA3 and entorhinal cortex layer III

causes a single spike in region CA1 representing the

next desired location of movement toward the goal—in

this case in the left arm of the T-maze. The virtual rat

moves to this location, and the retrieval dynamics are

repeated for the new current location.

2.4. Mathematical description

This section will provide a more detailed mathematical

description of this theoretical mechanism.

The location of the rat in its environment is represented

by a pattern of neuron activity corresponding to place cell

responses in the hippocampal formation. We do not

explicitly model the formation of place cell responses, but

instead assume that place cell responses already exist. All

the locations in the environment are numbered 1–n. At each

step, the location of the rat is modeled as an n-dimensional

vector (‘location vector’) which has the binary elements 1,0.

The rat’s location in the environment is indicated by giving

a value of 1 to the appropriate element of the location vector

and a 0 to all other elements. For example, if the rat is at

location number j, then the jth element of the location will

have the value 1, and all other elements will have the value

0. Note that this is a discrete representation of space which

simplifies analysis of the model. However, it does not

address possible functional properties associated with the

overlapping fields of place cells observed in physiological

recording (Mehta et al., 1997; Skaggs et al., 1996).

Using this approach, a journey of the rat through

the environment can be represented as a sequence of

n-dimensional binary vectors. Each location in the rat’s

journey is represented by a single vector which has the

appropriate element set to the value 1 and all other

elements set to the value 0. The entire journey is a

sequence of such vectors. A subscript is then introduced

to indicate the relative position of a location vector

within a sequence of vectors that represents a journey.

For example, the sequence {ai; aiþ1;…; aiþk} represents

the sequence of locations traversed by the rat from the i

to i þ k steps on a particular journey through its

environment. It should be emphasized that the subscript

in this case refers only to the relative position of a

location vector in a sequence of locations that constitute

a particular journey. The indexes do not refer to

locations in any absolute sense, i.e. independent from

their meaning in a particular journey through the

environment. For example, if a rat is at the same

location on the ith and (i þ k )th steps of the journey

segment represented above, then it would follow that

ai ¼ aiþk—which is equivalent to stating that aji ¼ ajk

for all j, j ¼ 1…n; where aji;ajk are the jth elements of

the locations vectors ai; ak; respectively. From a

geographic point of view, the statement that ai ¼ aiþk

means that the rat’s path loops back upon itself in at

least one location. We will use lower case letters in a

subscript index, e.g. ai; ak when referring to vectors

within a particular sequence. We will refer to the total

number of locations traversed in a pathway with the

upper case letter K. When we wish to refer to an

absolute location, we will use upper case letters: e.g. Ag

refers to the absolute location of some goal g,

independent of any particular sequence of locations

leading to this goal.

In addition to location vectors which show the rat’s

location on a particular journey, we will also make use of

location vectors that represent retrieved information about

the location of the rat along particular journeys during

certain phases of theta rhythm. These are the same

n-dimensional vectors. The only difference is that when the

rat is retrieving information about past locations in multiple

journeys that vectors of retrieved location information may

have more than a single element set to the value 1. This is

shown in more detail below.

A location vector, a, is a column vector. Its transpose a T

is a row vector. The expression aT
i ak is the inner product that

is obtained as follows:

aT
i ak ¼

Xn

j¼1

ajiajk ð2:2Þ

where aji;ajk are the jth elements of the locations vectors

Fig. 4. Network activity during goal directed navigation. Each rectangle

shows the activity within a specific simulated region, with time plotted

horizontally and individual neurons plotted vertically. Individual spikes

appear as black rectangles. On the left, a schematic of the T-maze shows

how the activity of cells in the simulation corresponds to mental

representations of the environment. In EC layer III (top), input from

prefrontal cortex induces a spike at the goal location, and spiking spreads

back from goal location through neurons representing adjacent locations

into neurons representing the stem and right arm of the maze. When this

activity reaches the current location, it causes spiking in EC layer II (not

shown) which induces a spike in the place cell representing current location

in CA3 (bottom). Spiking activity in CA3 spreads forward one step from

current location before feedback inhibition shuts it off. The spiking activity

in CA3 and EC layer III converges on region CA1, where it causes spiking

in a neuron representing the next desired location. The virtual rat then

moves to this next desired location. These mechanisms allow selection of

the next step along the shortest pathway to the closest goal.
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ai; ak; respectively. Obviously Eq. (2.2) is a scalar value.

Note that if we take the inner product of location vectors

from a particular journey, then it is the case that:

aT
i ak ¼

1 if ai ¼ ak

0 if ai – ak

(
ð2:3Þ

The expression aia
T
k is the outer product of the vectors ai; ak

which is the matrix:

aia
T
k ¼

a1ia1k a1ia2k · · · a1iank

a2ia1k a2ia2k · · · a2iank

..

.

ania1k ania2k · · · aniank

ð2:4Þ

where aji;ajk are the jth elements of the locations vectors

ai; ak; respectively.

We will also frequently make use of the following

associative property that results when we pre-multiply a

vector by an outer product matrix:

aia
T
k

� �
aj ¼ ai aT

k aj

� �
ð2:5Þ

This identity clearly holds equally well if we pre-multiply a

vector by a sum of outer product matrices, e.g.

XK
k¼1

ak21aT
k

 !
aj ¼

XK
k¼1

ak21 aT
k aj

� �
ð2:6Þ

Entorhinal cortex layer III and region CA3 are distinguished

by the high level of recurrent connectivity in these regions.

We assume that the connectivity in these regions is

established during learning that takes place as a result of

the sequential activation of place cell representations which

are modeled here as location vectors. This occurs during

specific encoding phases of the theta rhythm oscillations.

The place cell representations (location vectors) are

activated in sequence as the rat moves through its

environment. As modeled explicitly below, during an

encoding phase, this sequence of activity creates and

strengthens connectivity between neurons within entorhinal

cortex layer III as well as within region CA3 so that

locations that are next to each other in a particular journey

are retrieved as a sequence during recall (cf. Levy, 1996).

The modified synaptic connections are represented by outer

products of the location vectors. Initially, we will assume

that the creation of recurrent synaptic connectivity in

entorhinal cortex layer III and region CA3 occurs in an

encoding phase within each theta rhythm cycle, during

which there is no spread of activity across synaptic

connections, rapidly alternating with a retrieval phase

during which activity can spread across synaptic connec-

tions. Later, when we discuss the function of theta rhythm,

we will analyze the functional effects of oscillatory

modulation of spread of activity across synaptic connections

in region CA3.

For reasons that will become evident below, we define

the learning of forward connections in region CA3 and the

backward connections in entorhinal cortex layer III. Here

the terms forward and backward refer to the order of a

sequence of locations through an environment as they were

traversed by the rat. Forward connections are those that are

formed based on ordering the sequence of location vectors

in the same order that the rat traveled the locations in the

actual journey. Backward connections are those that are

formed when the sequence of locations vectors that

represent a journey is reversed so that the first location is

last, the second location is second to last, etc. With this

terminology in mind, the forward connections in region

CA3 and the backward connections in entorhinal cortex

layer III are modeled with two matrices WF;WB; respec-

tively. The two matrices WF;WB are obtained as follows:

WF ¼
XK
k¼1

akþ1·aT
k ð2:7Þ

WB ¼
XK
k¼1

ak21·aT
k ð2:8Þ

where lower case k is the index of positions in a pathway,

and upper case K is the total number of positions traversed.

The matrices WF;WB give in explicit form the set of

connections that have formed in CA3 and entorhinal cortex

layer III as the result of a particular journey by the rat

through the environment. Note that we assume Hebbian

synaptic modification with presynaptic activity preceding

postsynaptic depolarization in both cases (Levy & Steward,

1983). The different direction of connectivity can be

obtained with a buffering of activity due to calcium-

sensitive cation currents (Fransen, Alonso, & Hasselmo,

2002; Jensen & Lisman, 1996), which can buffer infor-

mation in different sequential orders. For example, in

response to a sequence of input patterns A–B–C, these

mechanisms can repetitively replay ABC or CBA, allowing

encoding with different directionality.

How is information retrieved once it has been encoded in

the matrices WF;WB? We now show the mathematical basis

on which useful information can be retrieved from the

recurrent connections that formed during encoding and that

are modeled in the matrices WF;WB: We assume that after

learning how to get to certain goals, the rat is able to retrieve

information which can guide the rat from its current

location, Ac, to some goal location, Ag, where the rat has

previously found food sources. Detailed simulations have

focused on the mechanisms for establishing goal represen-

tations in prefrontal cortex and providing this goal input

during retrieval, but here we simply assume that the goal

representation process selectively gives input, which causes

the activity in entorhinal cortex layer III to reflect goal

locations aECIII ¼ Ag; and as discussed below, the spread of

activity along known paths from the goal locations.

Note that we use the notation aCA3; aECIII; aECII; aCA1 to
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indicate the activity of neurons in the regions CA3, ECIII,

ECII and CA1, respectively. For the sake of simplicity, we

assume that the dimensionality of the activity vectors in

each of these regions is identical, i.e. activity in each region

can be represented by an n-dimensional vector, and the

connectivity matrices are all square n £ n matrices. The

lower case letters used to show activity in a region should

not be confused with those used to show location vectors in

a sequence—each region could have many different location

vectors.

In order to show how information is retrieved, we assume

that encoding has taken place (during encoding phases of

theta) and that the matrix WB of connectivity has been

created according to Eq. (2.8). In this case, during the

retrieval phase of each theta cycle, the vector of activity in

ECIII, aECIII ¼ Ag; will spread backwards through the

sequence of place cell representations that were active

when the rat traveled to the goal location. The combined

impact on ECIII activity of the active goal location vector,

Ag and recurrent ECIII connections is shown by pre-

multiplying Ag by the matrix WB to obtain:

WBAg ¼
XK
k¼1

ak21aT
k

 !
Ag ð2:9Þ

We determine the subsequent step of activity by evaluating

Eq. (2.9) which can be done by taking advantage of the

properties of the inner product in Eq. (2.3) so that:

aT
k Ag ¼

1 if ak ¼ Ag

0 if ak – Ag

(
ð2:10Þ

We may the evaluate Eq. (2.9) as:

WBAg ¼
XK
k¼1

ak21aT
k

 !
Ag ¼

XK
k¼1

ak21 aT
k Ag

� �
ð2:11Þ

But according to Eq. (2.10) the inner product in Eq. (2.11) is

equal to 0 everywhere except where the vector ak ¼ Ag and

in this case the inner product is equal to 1. It is then easy to

see that the only vector from the sum of vectors
PK

k¼1 ak21;
which survives post-multiplication by the inner product

ðaT
k AgÞ; is the vector ag21: This is because where ak ¼ Ag;

the vector ak21 survives (it is multiplied by 1 instead of 0 for

all other vectors), but ak21 ¼ ag21: We use the smaller case

in ag21 to indicate that the vector is the location vector ag21

from the specific sequence {ai}: In the sequence {ai} the

location vector ag21 is the vector, which is one step in the

sequence away (in the backward direction) from the goal

location.

The reasoning above gives the final result for ECIII

activity after one step of spread from the goal location as:

aECIII ¼ WBAg ¼
Xm
k¼1

ak21aT
k Ag ¼ ag21 ð2:12Þ

where ag21 [ {ai} where {ai} is the training sequence

which was used to form the matrix WB according to Eq.

(2.8). Eq. (2.12) assumes that a single path to the goal has

been stored and that this path, at least at the point, Ag, does

not intersect or loop back on itself. In the case, where the

path loops back on itself at point Ag, it would be necessary to

modify Eq. (2.12) to show that the backward flow of activity

can generate the activity of multiple place cells representing

the backward flow of activity along the loop and cutting out

the loop. This issue is discussed in more detail below.

It then follows through repetitive application of the result

from Eq. (2.12) that activity will continue to spread along

recurrent connections, so that after M cycles of spreading

activity, activity in ECIII will take the value:

aECIII ¼ WB· · ·WBWBAg ¼ WM
B

Ag ¼ ag2M ð2:13Þ

where ag2M represents the location which is M steps prior to

the food source location Ag in the sequence {ai}: Again we

note that Eq. (2.13) assumes a single path, which does not

loop back upon or intersect with itself.

We use the following equation for activity in entorhinal

cortex layer II:

aECII ¼ Ac ð2:14Þ

As Eq. (2.14) suggests we assume that entorhinal cortex

layer II represents the rat’s current location. Our assumption

that activity of entorhinal cortex layer II is limited to the

current location should be understood as only an approxi-

mation of the input from entorhinal cortex layer II to region

CA3. Although experimental data suggests that entorhinal

cortex has wider place fields, we believe that Eq. (2.14)

gives a useful approximation of the role that entorhinal

cortex layer II activity plays relative to region CA3 in rat

navigation. The wide place field provided for in Eq. (2.13) is

more consistent with experimental data regarding the size of

place fields in the entorhinal cortex (Barnes et al., 1990;

Frank et al., 2000; Quirk et al., 1992).

The representation of current location becomes activated

at the time that the backward spread of activity in entorhinal

cortex layer III reaches current location. In simulations

(Hasselmo et al., 2002b), this ensures the correct timing of

convergence in region CA1 as described below. When

current location activity is initiated in entorhinal cortex

layer II, this then causes activity in region CA3 to match

current location ðaCA3 ¼ AcÞ and then to spread forward a

short distance (just one step in this example).

aCA3 ¼ WFAc ¼
XK
k¼1

akþ1aT
k Ac ¼ Acþ1 ð2:15Þ

We assume that the spread of activity in region CA3 is more

limited than the spread of activity in the entorhinal cortex -

as represented above in Eq. (2.13). The much smaller spread

in region CA3 relative to entorhinal cortex satisfies an

important physiological constraint—place cells in region

CA3 and CA1 have much smaller place fields than those

observed in entorhinal cortex (Barnes et al., 1990; Frank

et al., 2000; Quirk et al., 1992). This difference in relative
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size of place fields is obtained in our model by restricting the

spread of activity in region CA3, while allowing much

broader spreading of activity in entorhinal cortex layer III.

The much smaller spread in region CA3 also may have an

important functional role. If our model is correct, then a

greater spread of activity in region CA3 can actually worsen

performance of the rat’s navigation mechanism by causing

selection of incorrect destination activity.

The selection of the next step toward the goal location is

obtained through a convergence of the backward spread

with the forward spread in region CA1. Activity in CA1

results from interactions of the backward spread from

entorhinal cortex layer III arriving via the perforant path and

the forward spread in hippocampal region CA3 arriving via

the Schaffer collaterals. We assume that the resulting

activity in CA1 represents or predicts the next step that the

rat will make in its environment. Experimental data is

broadly consistent with our model’s assumptions regarding

the role of CA1 in representing the rat’s next step. Research

suggests that place cells might fire just in advance of the

movement of a rat into the place field of the cell (Muller &

Kubie, 1989). The phenomenon of theta phase precession

(O’Keefe and Recce, 1993; Skaggs et al., 1996) can also be

interpreted this way. As a rat first moves into the place field

of a place cell in region CA1, spiking activity occurs late in

the theta cycle (during the retrieval phase), whereas spiking

activity appears earlier in the theta cycle (during the

encoding phase) as the rat moves into the field. This is

consistent with the notion that predictive activity may be

selective to one cycle of the theta oscillation, as appears

when we consider theta function below.

The role we have proposed for region CA1 in

representing the rat’s next step has natural consequences

for the measure of the performance of the navigational

mechanism. The proposed navigational mechanism will

achieve high performance only if the activity in region

CA1 during the retrieval phase accurately represents or

predicts the next step from the current location along the

shortest path to the closest food source location. Devi-

ations or malfunctions of CA1 in this regard should result

in reduced performance.

In order for convergence of forward and backward

activity in CA1 to lead to high navigational performance, it

is important that the forward and backward activity be

matched in their timing in a certain way. This result is

achieved in our model by assuming that the forward and

backward activities arrive in phase in region CA1. However,

we propose further that the convergence of similarly timed

forward activity and backward activity will not generate

activity in CA1 unless the two inputs represent the same

absolute location. In other words, we assume that separate

arrival of an element of backward or forward activity in

region CA1 results in subthreshold activity. Only if forward

and backward activity matches does the sum of this

converging activity cause the binary ‘spiking’ activity in

CA1.

To make the advantages of this approach clearer, we may

consider the case where the current location is part of a

sequence of locations that includes the food source location

(i.e. Ac,Ag [ {Ai}). Backward activity from entorhinal

cortex layer III continues to spread but does not generate

activity in region CA1 until the backward activity matches

the converging activity from CA3. In other words no

activity in CA1 is generated until:

aCA3 ¼ WFAc ¼ Acþ1 ¼ aECIII ¼ WM21
B

Ag ¼ Ag2Mþ1

ð2:16Þ

where M represents the number of steps along the shortest

path between the current location and that food location.

When condition (2.16) is satisfied, CA1 activity occurs and

represents, as we prove below, the Shortest Path.

The assumption that separate inputs from CA3 and

entorhinal cortex layer III are subthreshold on their own is

necessary to ensure that CA1 will only become active when

it represents the next step along the shortest path. This can

only take place when the inputs to CA1 from CA3 and

entorhinal cortex layer III match in CA1. We represent our

assumptions that: (a) the individual inputs to CA1 from

entorhinal cortex layer II and CA3 are subthreshold and (b)

the sum of matching inputs exceeds activation threshold in

CA1 with the following notation:

aCA1 ¼ ½aCA3 þ aECIII 2 m�þ ¼ WFAc þ WM21
B

Ag 2 m
h i

þ

ð2:17Þ

The notation ½ �þ indicates that the ith element of aCA1 will

be active if: ðaCA3Þi þ ðaECIIIÞi . m where ðaCA3Þi; ðaECIIIÞi
represent the ith elements of the vectors aCA3; aECIII;
respectively, and m is the threshold, and where it is assumed

that the individual inputs ðaECIIIÞi , m and ðaCA3Þi , m:

2.5. Problem of ‘Skip Ahead’

One of the questions that immediately arises from Eq.

(2.17) is: If signals from CA3 and entorhinal cortex layer

III are constantly arriving in CA1, what prevents

convergence of input at some location other than the

current location plus one step. If CA3 activity continues

to spread forward from the current location, beyond the

single step proposed in Eq. (2.17) and entorhinal cortex

layer III activity spreads backward from the goal

location, it is possible for there to be convergence of

these two inputs in CA1 at some location that is

relatively far from the current location. In other words,

if the spread of CA3 cannot be contained it might be the

case that the relevant equation for CA1 activity becomes:

aCA1 ¼ WK
F Ac þ WM2K

B Ag 2 m
h i

þ
; K @ 1 ð2:18Þ

The outcome described in Eq. (2.18) might disrupt the

rat’s ability to navigate since it would be recalling

locations far from the current location without recalling
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the steps in between. It would be as if on the way to

work one could remember an intersection that is half-

way between work and home, but one could not

remember how to get to the intersection. We call the

problem illustrated in Eq. (2.18) the skip ahead problem.

This skip ahead can be partly prevented by allowing only

one step of activity spread along forward connections,

but another form of skip ahead can result from the spread

of CA3 retrieval activity during encoding. This issue has

been extensively discussed in another context (Hasselmo

et al., 2002a). This may easily interfere with the process

of encoding new information. We can model the problem

mathematically by considering the encoding Eq. (2.7)

again. In the case where activity in region CA3 spreads

during encoding the equation might look like:

WCA3 ¼
XK
k¼1

akþ1 þ Wi
CA3ak

� �
aT

k ð2:19Þ

where Wi
CA3ak is a term which represents spread from the

kth location during the encoding phase i steps forward.

This would occur due to spread across previously

modified recurrent connections in region CA3. This

term might also be some more complicated combination

of spreading of current and past activities. In either case,

the spreading term in Eq. (2.19) would also be encoded

and then retrieved during the retrieval phase. In other

words:

aCA3 ¼ WFAc ¼
XK
k¼1

akþ1 þ Wi
CA3ak

� �
aT

k Ac ¼ Acþ1 þ Wi
CA3Ac

ð2:20Þ

This spreading term could converge in CA1 with input

from entorhinal cortex layer III to generate erroneous

predictions. The retrieval of the spreading term could

also cause skip ahead and prevent the hippocampal

navigational mechanisms from generating the next step

along the Shortest Path.

2.6. Problem of ‘No Next Step’

Another problem might result if the activity generated in

CA3 by input from entorhinal cortex layer II were to

converge in CA1 with input from entorhinal cortex layer III,

before forward spreading in CA3. This might happen if the

backward spread of activity from entorhinal cortex layer III

were to already be at the current location when CA3 first

spikes in response to input from entorhinal cortex layer II at

a new location. In this case, the rat might think its current

location is the next step. We call this problem the No Next

Step problem because CA1 does not generate a true next

step—but simply continues to fire at the current location.

In order for the navigational mechanism described in this

paper to perform well, there must be some mechanism in

place in the hippocampal formation that ensures conver-

gence of inputs in CA1 according to Eq. (2.16). We propose

below that phase relationships in neuronal activity in the

hippocampal formation may be important in ensuring the

proper convergence of inputs in CA1 to generate the next

step along the Shortest Path. As we show below, the phase

relationships are important to minimize the Skip-Ahead and

No Next Step problems.

2.7. In absence of activity during retrieval phase,

exploration is assumed

Another important case concerns the situation when the

current location is not part of any sequence of stored

locations that leads to a food goal. In this case, there would

be no matching input from region CA3 and entorhinal

cortex layer III and, consequently, no activity in CA1. In

this case, the rat must engage in exploration and cannot be

limited to the exploitation of known paths to the food

source, which provide no link with the current location. In

this case, we assume that the rat’s next step is generated in

some probabilistic way in some other part of the brain. If

movement takes place along learned pathways, then region

CA1 may generate output which inhibits the exploratory

movements and causes the rat to move along one of the

learned pathways.

These types of issues have been addressed in reinforce-

ment learning (Doya, 1999; Sutton & Barto, 1998), but are

not addressed here explicitly.

When the rat engages in exploration, each step along the

new exploratory pathway would be used during the

encoding phase to update the recurrent connections in

region CA3 as formalized in Eq. (2.7). When the rat moves

to a new location, afferent signals to entorhinal cortex layer

II generate a new current location representation which

spreads through region CA3 and entorhinal cortex layer III

and again converges in CA1. This activity either generates a

next step based on known paths, as described above, or

sends signals to other parts of the brain to generate an

exploratory response.

In summary, we have four equations representing the

activity patterns in the four subregions shown in Fig. 3:

aECIII ¼ WM
B Ag ¼ Ag2M ; aECII ¼ Ac;

aCA3 ¼ WFaECII ¼ WFAc ¼ Acþ1;

aCA1 ¼ ½aCA3 þ aECIII 2 m�þ ¼ WFAc þ WM21
B

Ag 2 m
h i

þ

ð2:21Þ

To provide a more complete picture of the navigational

mechanism, we need to take into account the fact that the

recurrent connections in region CA3 and entorhinal cortex

layer III need to be able to store sequences of neuron activity

that correspond to multiple pathways through the rat’s

environment to a given goal. To justify the particular

navigational mechanism presented in this paper, it is also

necessary to show that this mechanism will select the
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shortest path among a collection of known pathways to a

given goal.

2.8. Storage of multiple pathways

As a first step to the consideration of multiple pathways,

Eqs. (2.7) and (2.8) should be modified to indicate that the

recurrent connections are modified along each pathway that

arrives at a given goal. The index P below is used to indicate

each unique path that the rat has traveled over a given time

period to a given goal location. This may be represented

formally as:

WF ¼
XP
j¼1

XK
k¼1

a
j

kþ1a
j T

k ð2:22Þ

WB ¼
XP
j¼1

XK
k¼1

a
j

k21a
j T

k ð2:23Þ

It then must be noted that when activity spreads backward

from a goal location in entorhinal cortex layer III, this

spread results in a vector of neuronal activity at each step,

which shows all of the locations that are within a certain

number of steps of the goal location. This is represented

formally as follows:

WBAg ¼
XP
j¼1

XK
k¼1

a
j

k21a
j T

k ag ¼
XP
j¼1

XK
k¼1

a
j

g21d
j

k;g;

where d
j

k;g ¼
1 a

j
k ¼ ag

0 a
j

k – ag

8<
:

ð2:24Þ

where a
j

g21 is a vector which corresponds to each of the

locations that is located one iteration of activity spread away

from the goal location. Note that the multiple path operator

in Eq. (2.24) can output locations that are more than a single

step back along the path. This is because paths may loop

back on themselves and intersect with other paths. Thus

activity spreading backward from a certain location ak ¼ ag

will spread along all trajectories that lead to ag. When a path

loops back on itself at ag after r steps (e.g. ak ¼ ag ¼ akþr),

the operator in Eq. (2.24), will output the locations

ak21; akþr21: This effect is modeled with the use of the

kronecker delta, d
j

k;g; in Eq. (2.24). As indicated in Eq.

(2.24) that operator will output all locations that are k 2 1

steps from the current location along any path so long as

there is an intersection between the kth step along the path

and goal location. This takes into account intersections. For

example, suppose that activity is spreading in the reverse

direction along path s1 and that the spread of activity

reaches an intersection between paths s1 and s2. Given the

existence of the intersection, it will be the case that dks1;ks1
¼

dks1;ks2
¼ 1 because aks1

¼ aks2
: This implies that the activity

will spread, in the operators’ next iteration, along both paths

s1 and s2.

Similarly the continued spread of activity in entorhinal

cortex layer III for two steps will result in a vector of

activity that contains all locations that can be reached within

two iterations of the operator in Eq. (2.24). With a change of

index ðj ! s1Þ; we may express the result of two iterations of

the WB operator as:

W2
BAg ¼ WBðWBAgÞ ¼

XP
j¼1

XK
k¼1

a
j

k21a
j T

k

XP
s1¼1

XK
ks1

a
s1

ks1
21d

s1

ks1
;g

0
@

1
A

ð2:25Þ

We may then change the order of summation in Eq. (2.25) to

obtain:

W2
BAg ¼

XP
s1¼1

XK
ks1

¼1

XP
s2¼1

XK
ks

2
¼1

a
s2

ks2
21a

s2T
ks2

0
B@

1
CAa

s1

ks1
21d

s1

ks1
;g ð2:26Þ

and finally:

W2
BAg ¼

XP
s1; s2

XK
ks1

;ks
2

a
s2

ks2
21d

s2;s1

ks2
;ks121

d
s1

ks1
;g ð2:27Þ

Eq. (2.27) shows that two steps of activity spread in

entorhinal cortex layer III result in active locations along

paths that intersect with paths that intersect with the goal

location.

Similarly if activity spreads through n steps, the result

will be:

WN
B Ag ¼¼

XP
s1;s2;…;sn

XK
ks1

;ks2
;…;ksn

a
sn

ksn
21d

snsn21

ksn
;ksn21

21;…; d s2;s1

ks2
;ks1

21d
s1

ks1
;g

ð2:28Þ

or to simplify notation, we may write:

WN
B Ag ¼

XP;K
s1;…;sn;ks1

;…;ksn

a
sn

ksn
21

Yn

i¼2

d
sisi21

ksi
;ksi21

21d
s1

ks1
;g ð2:29Þ

which again shows that after n steps of activity spread,

locations will be active that are along paths that intersect

with paths, that intersect with paths…that intersect with the

goal location.

In the notation in Eq. (2.28) the separate indices s1, s2,…,sn

are needed to indicate the pathways along which activity

has spread to reach a particular location. For instance, the

notation d
snsn21

ksn
;ksn21

21d
s1

ks1
;g indicates a specialized kronecker

delta that will take the value 1 if it is possible to string together

n unbroken path segments to reach the location aksn
; otherwise

the kronecker delta takes the value 0. Each segment may be

taken from any path, so long as the resulting path is unbroken.

This retrieval mechanism will quickly locate short cuts, and, as

we show below, find the Shortest Path.

What happens in region CA1 when we take into

account the possibility of multiple intersecting paths and

loops? We recall from Eq. (2.17) that activity in region

CA1 only results when matching inputs converge from

CA3 and entorhinal cortex layer III. In Eq. (2.29) we
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have proposed how activity will spread in entorhinal

cortex layer III in the multiple path case. We may apply

the same logic to obtain the forward spread of activity

in CA3 as:

WFAc ¼
XP
j¼1

XK
k¼1

a
j

kþ1a
j

k ac ¼
XP
j¼1

XK
k¼1

a
j

kþ1d
j

k;c

where d
j

k;c ¼
1 a

j
k ¼ ac

0 a
j

k – ac

8<
:

ð2:30Þ

Eq. (2.17) may then be rewritten in the multiple path

case as:

aCA1 ¼

"
aCA3 þ aECIII 2 m

#
þ

¼

"
WFAc þ WM21

B
Ag 2 m

#
þ

¼

"XP
j¼1

XK
k¼1

a
j

kþ1d
j

k;c

þ
XP;K

s1;…;m21;k1;…;m21

a
sm21

ksm21
21

Ym21

i¼2

d
sisi21

ksi
;ksi21

21d
s1

ks1
;g 2 m

#
þ

ð2:31Þ

Note that as in the case of Eq. (2.17), where the one

step of forward activity through region CA3 matches the

M 2 1 cycles of backward activity through entorhinal

cortex layer III the combined inputs are above threshold

and cause spiking in region CA1.

One of the most important conclusions that emerges from

the above analysis is that where WFAc þ WM21
B

Ag . m; then

WFAc ¼ WM21
B

Ag ¼ Ap
cþ1 where Ap

cþ1 is the next step along

the Shortest Path. We may prove this assertion as follows:

Let

{Ac;g}i ð2:32Þ

represent a sequence of locations previously visited by the

rat which constitute an unbroken trajectory from the current

location to the goal location.

The set, Vc;g; is the set of all possible trajectories after

taking into account all possible paths, short cuts, loops and

intersections. So that:

{Ac;g}i [ Vc;g; Vc;g ;
[n

1

{Ac;g}i ð2:33Þ

where n represents the total number of possible paths. The

number n, will be finite, so long as we only allow forward

movement along a finite number of paths. If backward

movement is allowed, the n can be infinite. Then we may

associate with each sequence {Ac;g}i [ Vc;g a measure of

distance:

diðAc;AgÞ ð2:34Þ

which is simply the number of locations between the current

location and the goal location in the i sequence. Note that it

is easy to show that this distance measure meets the normal

requirements, such as the triangle inequality, that would be

required of a measure of distance.

To prove that the navigational mechanism presented in

this paper will output the next step along the Shortest Path,

we simply need to show that:

WFAc ¼ WM21
B Ag ð2:35Þ

is a necessary and sufficient condition to choose a location

that is the next step along the Shortest Path where M is the

number of steps in the Shortest Path.

Now we note that:

;i [ ð1;…; nÞ diðAc;WFAcÞ ¼ 1 ð2:36Þ

Because of the possibility of paths that loop back on

themselves we may only assert that:

di WM2k
B Ag;Ag

� �
# M 2 k ð2:37Þ

For each pathway i, there is a value k. We will consider

the pathway i
p

which has the minimum value (k ) for which:

’ i
p

WFAc ¼ Wk
BAg ð2:38Þ

then it is clear that:

d
i
p Wk

BAg;Ag

� �
¼ k ð2:39Þ

in which case:

d
i
p ðAc;AgÞ ¼ k þ 1 ð2:40Þ

Moreover it follows that:

d
i
p ðAc;AgÞ # diðAc;AgÞ ;i – i

p

i [ ð1;…; nÞ ð2:41Þ

To show Eq. (2.41) consider the two possibilities that: (a) no

k exists such that condition (2.38) is fulfilled, and (b) the

next step along the Shortest Path is a location where

condition (2.38) is true for the first time along some path, î;
where k̂ . minðkÞ: Possibility (a) is easy to rule out since if

condition (2.38) is never true then no path exists from the

current to goal locations (i.e. Vcl;g ; B). Condition (b) may

also be ruled out since in this case:

d
î
ðAc;AgÞ . d

i
p ðAc;AgÞ ð2:42Þ

If we assume that we have a location, Ap
cþ1; that is the next

step along the Shortest Path, then it is clear that Eq. (2.35)

must be true. Otherwise, the Shortest Path would be greater

than M steps from the current location, given the assumption

that diðWFAc;WM21
B AgÞ . 0;i.

Moreover, if we expand our consideration to include

multiple goal locations then it is clear that the spiking in

region CA1 that occurs will represent the next step to the

closest goal location since the first matching of input must

necessarily take place at M1 steps where M1 is the shortest

number of steps to the closest goal. The shortest paths,
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M2,M3,…,Mn, to all other goals, by definition, are greater

than M1, and, therefore, matching of input which gives the

next step towards the closest goal. Obviously, if there are

paths to alternative goals, which are the same length, then

spiking in region CA1 will indicate multiple next steps.

However, all of these steps are identical in terms of the

number of further steps needed to reach a food location.

Hence the rat may choose among these goals on a purely

random basis with no loss of performance.

3. Role of theta rhythm oscillations

In Section 2, we identified necessary and sufficient

conditions for region CA1 to predict the next step along the

Shortest Path. In particular, we showed that the activity in

region CA1 will predict the next step along the Shortest Path

when the activity in this region is described by the equation:

WK
CA3Ac þ WM2K

B Ag

h i
þ
– 0; K ¼ 1 ð3:1Þ

However, we have not yet shown in our mechanism why

condition (3.1) could be expected to hold. The value K ¼ 1

is crucial to getting the next step along the shortest path. As

discussed above, there are reasons to worry that K . 1 (the

Skip Ahead problem) or K ¼ 0 (No Next Step) problem.

In addition to the problem of Skip Ahead on retrieval, we

also illustrated in Eqs. (2.19) and (2.20) in Section 2 how

Skip Ahead can occur during encoding phases. Skip Ahead

during encoding can result in the encoding of additional

associations between alternative pathways or non-adjacent

locations. These associations can generate predictions

during retrieval which do not correspond to the next step

along the Shortest Path.

In this section, we argue that problems such as Skip

Ahead during encoding are eliminated if we assume certain

phase relationships for the various signals that we propose

are the core of the hippocampal navigational system. Our

model of the key synaptic connections in the hippocampal

navigational system suggest that certain phase relationships

between the synaptic connections may be essential to the

operation of this navigational system. Below, we analyze

optimal phase relationships for the simple model we have

constructed. The purpose of this section is to show optimal

phase relationships may be important and to show how such

phase relationships may be analyzed from model parameters

To develop the theme of phase relationships, we assume

signals into and out of region CA1 are modulated in a

periodic fashion. We assume that such modulation takes

place on a slower time scale than activity in the region itself.

In other words, the neurons in the region may fire many

times during a certain phase of modulation of the relevant

signals.

Because the electrophysiological data on theta rhythm

has been obtained in region CA1, here we will focus on the

activation dynamics in region CA1. As part of this focus, we

will consider what happens if the WF connections

correspond to the Schaffer collaterals projecting from

region CA3 to CA1. This avoids the difficulty of ensuring

that the spread of activity only goes one step, as Schaffer

collaterals do not cause further activity in the presynaptic

region CA3 neurons. In contrast to region CA3, region CA1

has very little excitatory recurrent connectivity. If we

consider the equation for activity of region CA1 neurons, we

can evaluate how performance of the network could depend

upon phase relationships of specific variables. In Eq. (2.21),

the activation equation for region CA1 was:

aCA1 ¼ ½aCA3 þ aECIII 2 m�þ ¼ ½WFAc þ WM21
B

Ag 2 m�þ

ð3:2Þ

In this section, because we focus on the Schaffer collaterals

as WF, we no longer assume that CA3 activity arrives via an

identity matrix. Thus, we must consider the flow of activity

across these synaptic connections. In addition, we will focus

on the changes in somatic membrane potential before

thresholding occurs. Therefore, we will use the equation:

aCA1 ¼ aECIII þ WFaCA3 ð3:3Þ

We must now create a continuous time version of this

equation. In particular, we include oscillatory functions

representing modulatory changes in synaptic currents

during theta rhythm, which is consistent with current source

density data in region CA1 showing phasic changes in

synaptic current at different sets of synaptic connections

which are anatomically segregated into different layers of

region CA1 (Bragin et al., 1995; Brankack et al., 1993).

These changes in synaptic current could be due to both

phasic modulation of synaptic strength or phasic modulation

of presynaptic spiking activity. Phasic changes in synaptic

strength have been demonstrated in experiments showing

changes in evoked synaptic potentials in region CA1 on

different phases of theta (Rudell and Fox, 1984; Rudell et

al., 1980; Wyble, Linster, & Hasselmo, 2000). Phasic

changes in presynaptic spiking activity have been observed

in both entorhinal cortex (Stewart, Quirk, Barry, & Fox,

1992) and region CA3 (Fox, Wolfson, & Ranck, 1986). For

technical reasons, current source density experiments have

not been performed in region CA3, but similar phasic

changes in synaptic currents could also appear there.

In our description of region CA1 dynamics, we will use

oscillatory functions to describe the strength of synaptic

currents as well as the membrane potential of the pyramidal

cells. We will describe oscillations of the input from

entorhinal cortex layer III (which terminate in stratum

lacunosum–moleculare) with the function:

uECIIIðtÞ ¼
X

2
sinðvt þ fECIIIÞ þ 1 2

X

2

� �� �
ð3:4Þ

Oscillations in the synaptic currents from region CA3 to

region CA1 (which terminate in stratum radiatum in region
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CA1) will be described with the function:

uCA3ðtÞ ¼
X

2
sinðvt þ fCA3Þ þ 1 2

X

2

� �� �
ð3:5Þ

We also include oscillations in the somatic membrane

potential of region CA1 pyramidal cells (in stratum

pyramidale of region CA1). This is based on data showing

that the excitatory dendritic input is not the only rhythmic

input to the soma. The soma also receives rhythmic

inhibitory input which causes phasic changes in post-

synaptic membrane potential (Fox, 1989; Kamondi, Acsady,

Wang, & Buzsaki, 1998). When inhibition is strong, there

are strong outward currents (which appear as a current

source) and the soma is hyperpolarized. When inhibition is

weak, the soma is depolarized and spike generation causes

net inward currents (which appear as a current sink). We

will represent the effect of this inhibition on the response to

synaptic input by multiplying the cell body with an

additional oscillatory function:

usomaCA1ðtÞ ¼
X

2
sinðvt þ fsomaCA1Þ þ 1 2

X

2

� �� �
ð3:6Þ

With these oscillatory functions, the equation for the

somatic membrane potential of region CA1 pyramidal

cells takes the form:

aCA1ðtÞ ¼ usomaCA1ðtÞ{uECIIIðtÞaECIII þ uCA3ðtÞWFðtkÞaCA3}

ð3:7Þ

Recall that in Eq. (2.21), the weights within region CA3

were described as:

WF ¼
XK
k¼1

akþ1·aT
k ð3:8Þ

Here we will modify this equation to consider the WF

weights as the synapses from region CA3 to region CA1.

We will retain the discrete representation of individual

locations by activity vectors ak and akþ1 which will remain

static during a period of time that the animal is in the place

field of a cell, as summarized in Fig. 5. We assume these

static representations are maintained by an entorhinal

buffer, which is supported by data on entorhinal neuronal

activity during delay tasks (Young, Otto, Fox, & Eichenbaum,

1997) and has been modeled extensively (Fransen et al.,

2002; Jensen and Lisman, 1996; Hasselmo et al., 2002b).

This buffer provides sustained spiking of vectors represent-

ing the previous location (k ) as input from EC layer II to

region CA3 as well as the next location (k þ 1) as input

from EC layer III to region CA1. These static location

vectors will persist over many cycles of the oscillatory

functions, providing stable afferent input during cycles of

continuous time oscillations. When a new location k þ 2 is

entered, this becomes the input from ECIII, the location k

drops out of the buffer, and the input to region CA3 becomes

k þ 1. Thus, we simplify our analysis by assuming discrete

transitions between static states of previous and current

location.

We will modify the learning rule equation (3.8) to

include oscillatory modulation of the rate of synaptic

modification, consistent with physiological data showing

rhythmic changes in the induction of long-term potentiation

(LTP) on different phases of the theta rhythm (Holscher,

Anwyl, & Rowan, 1997; Wyble, Hyman, Goyal, &

Hasselmo, 2001). LTP can be induced on the peak of the

local theta rhythm in the EEG of stratum radiatum, whereas

on the trough of the local EEG, stimulation can cause long-

term depression or depotentiation. Thus, we use an

oscillating function which goes both positive and negative:

uLTP ¼ sinðvt þ fLTPÞ ð3:9Þ

As noted above, we designate that the forward connections

WF correspond to the Schaffer collaterals from region CA3

to region CA1. We assume that entorhinal buffers provide

discrete afferent input vectors representing location k (from

entorhinal cortex layer II to region CA3) and location k þ 1

(from entorhinal cortex layer III to region CA1). Then, Eq.

(3.8) can be rewritten as:

dWF

dt
¼ uLTPðtÞaCA1ðtÞa

T
CA3ðkÞ ð3:10Þ

We can insert the activation rule for region CA1, but notice

that we do NOT include the effect of the somatic membrane

potential, because the modification of synapses depends

upon the local dendritic depolarization caused by synaptic

input, and does not depend in our model upon the somatic

membrane potential.

Because we are describing previous learning to be

inserted into the activation rule, we will use the terminology

k0 to describe the time of previous traversal of the same

Fig. 5. Summary of the change in discrete location vectors versus

continuous time oscillatory functions. At time tk, the network receives

static input of the location vector ak to region CA3 and the location vector

akþ1 from entorhinal cortex layer III to region CA1. At time tkþ1, the

discrete location vectors shift to a static input of location vector akþ1 to

region CA3 and input of location vector akþ2 from entorhinal cortex layer

III to region CA1. These static inputs persist over m cycles of the oscillatory

functions influencing different components of the network. Thus, the period

from tk to tkþ1 corresponds to m cycles with total time m2p.
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location

WFðtk0þ1Þ ¼
ðk0þ1

k0
uLTPðtÞ½uECIIIðtÞaECIIIðkþ1Þ

þ uCA3ðtÞWFðtk0 ÞaCA3ðkÞ�ðaCA3ðkÞÞ
Tdt ð3:11Þ

Note that the integration will take place over a period of

several cycles during which the discrete location vectors are

stable, as shown in Fig. 5. This equation integrates over the

time between initial activation of region CA3 by the discrete

location vector ak at time tk0 (during which time region CA1

receives the input akþ1) and the termination of vector ak

when region CA3 starts to receive input of the discrete

location vector akþ1 at time tk0þ1: The integration will take

place over n cycles of oscillation, so the period from k to

k þ 1 will be replaced with the interval from 0 to n2p. For

simplicity, we assume that the learning rule does not

immediately update the weight matrix. This was used

previously (Hasselmo et al., 2002) to allow equations to be

evaluated independently. This is consistent with physio-

logical data showing that the effect of activity does not

immediately cause LTP, but causes expression of LTP at a

later time.

We will be interested to evaluate the effect caused by

prior learning of a previous overlapping pathway on

learning during exploration of a new pathway. To do this

we assume:

WFðtk0 Þ ¼ akþnaT
k ¼ aECIIIðkþnÞa

T
CA3ðkÞ ¼ AcþnAT

c ð3:12Þ

This previous learning could cause problems by contamin-

ating new learning with the reactivation of prior pathways.

To determine how the learning rule implemented during the

exploration of a pathway influences the subsequent traversal

of this pathway, we can plug this Eq. (3.12) (representing

previous exploration) into Eq. (3.11), and we can plug the

integral in Eq. (3.11) (representing additional exploration)

into the activation equation shown in Eq. (3.7) (representing

subsequent traversal of the pathway). This gives us:

aCA1ðtÞ ¼ usomaCA1ðtÞuECIIIðtÞaECIIIðkþ1Þ þ usomaCA1ðtÞuCA3ðtÞ

�

(ðn2p

0
uLTPðtÞ

"
uECIIIðtÞaECIIIðkþ1Þ

þuCA3ðtÞaECIIIðkþnÞa
T
CA3ðkÞaCA3ðkÞ

#
ðaCA3ðkÞÞ

Tdt

)
aCA3ðkÞ

ð3:13Þ

The activity of the network will be evaluated with a

performance measure, which compares the region CA1

activity over a period of time with a vector representing the

next desired location Ap
cþ1: Other possible activity patterns

will contribute a negative component to the performance

measure. The negative portion of the performance measure

is obtained by starting with a vector with all elements set to

1 (vector ~1) and subtracting the next desired location vector

M ¼ ATp
cþ1

ðcþ1

c
aCA1ðtÞdt 2 ð~1 2 Ap

cþ1Þ
T
ðcþ1

c
aCA1ðtÞdt

ð3:14Þ

We can rewrite the performance measure to focus on the

problem of no next step (Ac) and the problem of excessive

spread onto an undesired alternative pathway (Acþn). In

addition, we will integrate over a period of m2p cycles

between time tc and tcþ1

M ¼ ATp
cþ1

ðm2p

0
aCA1ðtÞdt 2 ðAc þ AcþnÞ

T
ðm2p

0
aCA1ðtÞdt

ð3:15Þ

Now we will assume static inputs of location vectors shown

in Eq. (2.21). Thus, the network receives input of Ac from

entorhinal cortex layer II to region CA3, so aCA3ðkÞ ¼ Ac:
The input of Ag from prefrontal cortex to entorhinal cortex

layer III causes backward spread which results in retrieval

activity aECIIIðkþ1Þ ¼ WM21
B Ag ¼ Acþ1: In previous learning

stages, region CA3 receives the same input of current

location aCA3ðkÞ ¼ Ac: In the immediate previous cycles of

learning shown in Eq. (3.11), region CA1 receives input

from ECIII corresponding to the next desired location

aECIIIðkþ1Þ ¼ Acþ1; but in a previous learning stage shown in

Eq. (3.12), the next location was along a different pathway

aECIIIðkþnÞ ¼ Acþn. Thus, 3.13 becomes:

ðm2p

0
aCA1ðtÞdt ¼

ðm2p

0

(
usomaCA1ðtÞuECIIIðtÞðAcþ1Þ

þ usomaCA1ðtÞuCA3ðtÞ

(ðn2p

0
uLTPðtÞ

�

"
uECIIIðtÞAcþ1 þ uCA3ðtÞAcþnAT

c Ac

#

� ðAcÞ
Tdt

)
Ac

)
dt ð3:16Þ

Now we will insert this integral of region CA1 activity into

the performance measure in Eq. (3.15), and we will simplify

the various dot products obtained between different vectors

M ¼

"
ATp

cþ1 2 ðAc þ AcþnÞ
T

#ðm2p

0

(
usomaCA1ðtÞuECIIIðtÞ

� ðAcþ1Þ þ usomaCA1ðtÞuCA3ðtÞ

(ðn2p

0
uLTPðtÞ

£

"
uECIIIðtÞðAcþ1Þ þ uCA3ðtÞAcþnAT

c Ac

#
ðAcÞ

Tdt

)
Ac

)
dt

ð3:17Þ

With the previous assumption of single active units in each

M.E. Hasselmo et al. / Neural Networks 15 (2002) 689–707 703



vector, we know that each dot product of a vector with itself

will be 1. Thus, AT
c Ac ¼ AT

cþ1Acþ1 ¼ 1; and different vectors

will be orthogonal ðAT
cþ1Ac ¼ AT

cþnAcþ1 ¼ 0Þ: We will also

assume that the next step forward from the current location

along the desired pathway will match the M-1 input from

layer III AT
cþ1WM21

B Ag ¼ 1:
This allows simplification of the performance measure to:

M ¼
ðm2p

0
usomaCA1ðtÞuECIIIðtÞdt þ

ðm2p

0
usomaCA1ðtÞuCA3ðtÞ

£ dt

(ðn2p

0
uLTPðtÞ½uECIIIðtÞ�dt 2

ðn2p

0
uLTPðtÞ½uCA3ðtÞ�dt

)

ð3:18Þ

The analytical solution to the lower portion of this equation has

been determined previously (Hasselmo et al., 2002a). The

analytical solution to the upper portion of the equation can be

solved by multiplying the positive-shifted sine waves, making

use of a trigonometric identity, and noting that many portions

drop out due to integration across full integer cyclesðm2p

0
usomaCA1ðtÞuECIIIðtÞdt ¼ ðX2=4Þmp½cosðfsomaCA1

2 fECIIIÞ þ m2pð1 2 X=2Þ2

ð3:19Þ

Combining these solutions with the solution from the previous

article (Hasselmo et al., 2002a) the full Eq. (3.18) becomes:

M ¼ ½ðX2=4Þmp cosðfsomaCA1 2 fECIIIÞ þ 2mpð1 2 X=2Þ2�

þ ½ðX2=4Þmp cosðfsomaCA1 2 fCA3Þ

þ2mpð1 2 X=2Þ2�

£ ½ðX=2Þnp cosðfLTP 2 fECÞ

2ðX=2Þnp cosðfLTP 2 fCA3Þ� ð3:20Þ

As shown previously (Hasselmo et al., 2002a), the bottom two

lines of this performance measure equation has a maximal

positive value for EC in phase with LTP, and 1808 out of phase

with CA3. The multiplication by a cosine of the difference

between somaCA1 and CA3 will be maximal if there is zero

phase difference between somaCA1 and CA3. Thus, the

portions on the bottom of the Eq. (3.20) require that somaCA1

and CA3 be in phase (08 difference), that LTP and ECIII be in

phase (08 difference) and that these two pairs be 1808 out of

phase (LTP 2 CA3 ¼ 180). Adding the additional cosine

with somaCA1 and ECIII could push the network to have

some overlap of somaCA1 and ECIII, but this influence is not

sufficiently strong to shift the network from the above

requirements. Thus, numerical solution to the equations with

X ¼ m ¼ n ¼ 1 gives a maximum performance for

fsomaCA1 ¼ 180; fCA3 ¼ 180 and fECIII ¼ 0; fLTP ¼ 0:
As shown in Fig. 6, these phase relationships of these

oscillatory functions for maximal performance correspond

to the phase relationships observed in the current source

density data from Brankack et al. (1993). The figure shows

sine waves corresponding to the phases of maximal function

for the oscillations of membrane potential (somaCA1), of

synaptic input from region CA3 (CA3) and synaptic input

from entorhinal cortex layer III (ECIII). Each of these

oscillations corresponds to the inverse of current source

density in stratum pyramidale, stratum radiatum and stratum

lacunosum–moleculare, because maximal excitatory synap-

tic input causes strong inward currents (a current sink), and

maximum somatic membrane potential will be associated

with maximal spiking and inward currents (a current sink).

The inverse of these functions has been used for comparison

in the figure. The relative phase relationships of the

oscillatory functions should correspond to the phase

relationships of the current source density data. The

experimental data supports these phase relationships, as

shown for measurements of currents associated with

somatic membrane potential in stratum pyramidale, of

currents associated with region CA3 input in stratum

radiatum, and currents associated with entorhinal layer III

input in stratum lacunosum–moleculare. Thus, the phase

relationships derived from the functional framework of this

model correspond to the phase relationships observed in the

experimental data. If we were to set the threshold so that

spiking in region CA1 can only occur when the synaptic

Fig. 6. The best performance in the model occurs with a phase relationship

between oscillatory functions which corresponds to the phase relationship

between current sinks in different layers of hippocampal region CA1. Top:

Plots of oscillatory functions in the model with phases corresponding to

best performance: fsomaCA1 ¼ 180, fCA3 ¼ 180; fECIII ¼ 0: (The LTP

function is not shown, but its phase was held at fLTP ¼ 0). Bottom:

Simplified representation of current source density analysis in fig. 9 from

Brankack, Stewart, and Fox (1993). The graph shows current sinks in black

(black corresponds to approximately 25 mA/cm3). Note that the sinks in

stratum pyramidale and stratum radiatum occur at similar phase,

corresponding to the somaCA1 and CA3 oscillatory functions in the

model. The sink in stratum lacunosum–moleculare is out of phase with the

other sinks, corresponding to the phase of ECIII input for best performance

in the model.

M.E. Hasselmo et al. / Neural Networks 15 (2002) 689–707704



inputs coincide, then this could provide a stronger impetus

for some overlap between the CA3 and ECIII input, and the

soma currents might be shifted slightly to values between

these inputs.

Note that the requirements for separation of the phases of

synaptic modification function uLTPðtÞ and the phase of

oscillation in synaptic currents uCA3ðtÞ across the WF

synapses will become even more important if we consider

the effects of the excitatory recurrent connections in region

CA3. If we include those connections, we modify Eq. (3.11)

to become:

WFðtk0þ1Þ ¼
ðk0þ1

k0
uLTPðtÞ½uECIIIðtÞaECIIIðkþ1Þ

þ uCA3ðtÞWFðCA32CA1Þðtk0 ÞuCA3ðtÞ

£WFðCA3Þðtk0 ÞaCA3ðkÞ�ðaCA3ðkÞÞ
Tdt ð3:21Þ

This would give dynamics with tremendous potential for

causing large scale skip-ahead problems, particularly if the

spread of activity in region CA3 is allowed to continue for

multiple steps. Thus, the phase relationships derived here

for region CA1 should apply similarly to requirements for

the phase relationships in region CA3.

3.1. Discussion

Here we have presented a theory of the interaction of

hippocampal subregions in regulating goal directed spatial

navigation in the rat. This theory involves encoding of

associations between neurons in entorhinal cortex layer III

and region CA3 representing adjacent spatial locations in

the environment. Entorhinal cortical activity reflects the

spread from goal backward toward the current location. This

then activates the current location representation in

entorhinal cortex layer II and region CA3. Activity in

region CA3 spreads forward from the current location. The

inputs from entorhinal cortex layer III and region CA3

converge in hippocampal region CA1, where co-activated

neurons represent the next location in the shortest path to the

closest goal location. This selection of shortest pathway is

shown analytically in Section 2.

This mechanism for spatial navigation requires changes

in functional dynamics, which could be provided by the

hippocampal theta rhythm, which is induced by cholinergic

and GABAergic input from the medial septum. Section 3

shows how the appropriate encoding and retrieval of

pathways in the environment requires rhythmic changes in

the relative strength of synaptic currents in region CA1. In

particular, as shown previously it is desirable that the

rhythmic changes in the strength of synaptic modification

(LTP) should be predominantly out of phase with rhythmic

changes in the strength of synaptic currents at synapses

arising from (CA3). This is consistent with experimental

data (Brankack et al., 1993; Holscher et al., 1997; Huerta &

Lisman, 1993; Wyble et al., 2001) and with previous

analysis of theta rhythm modulation in spatial reversal tasks

(Hasselmo et al., 2002a). In addition, input from entorhinal

cortex layer II must be maximal at a phase close to the

maximal phase of synaptic modification (LTP). As shown in

the analysis and in Fig. 6, the membrane potential of region

CA1 pyramidal cells should be most depolarized at about

the same phase as the strongest currents from region CA3,

consistent with experimental current source density data

(Brankack et al., 1993).

The network described here would benefit from rhythmic

modulation of other parameters, which have not been

analyzed in this presentation. In particular, the analysis

presented here primarily addresses region CA1 dynamics

due to space limitations and the availability of current

source density data primarily in region CA1. However,

similar effects appear in an analysis of region CA3

dynamics. In addition, these analysis techniques could be

extended to address rhythmic changes in activity of neurons

in lateral and medial entorhinal cortex layers II and III

(Stewart et al., 1992) and in prefrontal cortex. Integrate-and-

fire simulations of these mechanisms require input of goal

location during the retrieval phase. If prefrontal cortex

maintains working memory for goal location, then this

region should show spiking activity during the retrieval

phase (when CA3 recurrent connections are strong). The

focus on the functional role of rhythmic activity could

provide a unifying theta theory suitable for addressing the

phase relationships of an extensive range of physiological

variables.
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