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Abstract

A variety of approaches are available for using computational mod-
els to help understand neural processes over many levels of descrip-
tion, from sub-cellular processes to behavior. Alongside purely deduc-
tive bottom-up or top-down modeling, a systems design strategy has
the advantage of providing a clear goal for the behavior of a complex
model. The order in which biological details are added is dictated by
functional requirements in terms of the tasks the model should per-
form. Ideas from engineering can be mixed with those from biology to
build systems in which some constituents are modeled in detail using
biologically realistic components, and others are implemented directly
in software. This allows the areas of most interest to be studied within
the context of a behaving system in which each component is con-
strained both by the biology it is intended to represent and the task
it is required to perform within the system. The Catacomb2 model-
ing package has been developed to allow rapid and flexible design and
study of complex multi-level systems ranging in scale from ion chan-
nels to whole animal behavior. The methodology, internal architecture,
and capabilities of the system are described. Its use is illustrated by
a modeling case study in which hypotheses about how parahippocam-
pal and hippocampal structures may be involved in spatial navigation
tasks are implemented in a model of a virtual rat navigating through
a virtual environment in search of a food reward. The model forms a
framework for how theta rhythm may be involved in performance of
spatial navigation tasks and yields testable predictions about the phase
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relations of spiking activity to theta oscillations in different parts of
the hippocampal formation at various stages of the behavioral task.

1 Introduction

Two tasks at which the capabilities of computers far exceed those of human
researchers are the management of very large homogeneous volumes of data,
and the numerical calculation of the behavior of complex systems based on
precise and complete formulations of their constituent parts.

Both of these capabilities are of great potential benefit to research in
neuroscience and yet the uptake of database technology and the growth in
the use of models has been very much slower than in many other sciences.
This may be ascribed, on one hand to the extreme heterogeneity of the in-
formation to be stored and processed, and on the other to the total absence
of “precise and complete formulations” of the behavior of elementary con-
stituents of neural systems. That is, heterogeneity is as much a problem in
computing collective behavior as it is in storing and handling data. Indeed,
ambitious recent developments such as CellML (www.cellml.org) or Neu-
rospaces(Cornelis and De Schutter, 2003) intentionally blur the distinction
between representations of the biological structure and of the mathematical
properties of a system. They treat the mathematical formulation simply as
more first-order information to be processed along with a system’s logical
and spatial structure, in order to derive higher level properties.

The impact of heterogeneity on the applicability of computational meth-
ods in neuroscience has often been underestimated, as characterized by the
view that if we just work a little harder and make a bit more effort, then
the methods that are so effective in, for example, theoretical physics, will
yield equally fruitful and compelling results in neuroscience. This view ne-
glects, or denies, a fundamental difference between physics and life sciences
which Schroedinger(Schroedinger, 1956) describes as the difference between
“hot” and “cold” systems. In a “hot” system (almost everything treated by
theoretical physics) as you include more and more elementary units, their
collective behavior begins to be independent of the detailed properties of
the units themselves. Consequently, mathematical approximations get bet-
ter and better for larger and larger systems. Cold systems (which includes all
living things) behave in the opposite manner, more analogous to a machine
than to a statistical equilibrium, with the variety of realizable behaviors
growing with increasing size.

A consequence of this is that although abstract mathematical models and
detailed physics-style bottom up models can both be useful, there is a whole
domain of computational applications in neuroscience that is simply not
represented in other scientific fields. These are the techniques appropriate
to the study of complex “cold” systems in terms of information management
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and software engineering. They form a major constituent of the emergent
field of neuroinformatics.

Because of the closer analogy of neural systems to machines (mechanical,
computational or economic) than to perturbations of statistical equilibria, it
is to be expected that much of the methodology and technology of neuroin-
formatics should owe more to engineering or commerce than it does to ap-
plied mathematics and theoretical physics. Thus, for example, the software
systems of choice in computational neuroscience include C++, Java and XML
(Goddard et al., 2001a,b; Forss et al., 1999), as in the business community,
whereas these systems have only achieved minimal penetration among physi-
cists, presumably because they are not particularly useful for most research
problems in physics. Likewise, neuroscience database technologies(Cannon
et al., 2002) are more closely related to distributed shopping systems than
to their highly centralized astronomical counterparts(Wenger et al., 2000).
One exception to the correspondence with business software is the exten-
sive use of Lisp, the preferred language of artificial intelligence research, in
the Surf-Hippo Neuron Simulation System(Borg-Graham, 2001). The moti-
vation for this choice includes features such as platform independence and
access to the interpreter which have been present in Lisp for many years.
The eventual appearance of these features in the C-family of languages is a
large part of the appeal of Java for neuroinformatics applications.

Good sources of inspiration in using computers to study the integra-
tive behavior of neural systems can be found in various domains of software
and hardware engineering, including computer-aided design, e-commerce ap-
plications, computer games(Funge, 1999) and, indeed, almost any modern
application of object-oriented design(Gamma et al., 1995). In conjunction
with more conventional areas of numerical analysis, these have been primary
influences in the development of the present modeling system via various
intermediate stages(Cannon, 2001a; Cannon et al., 1998; Hasselmo et al.,
2002b).

The next section explores the advantages of the design-based approach
to modeling in comparison with conventional deduction-based methods. It
is followed in section three by an examination of how best to represent
multi-level biological models. Each section begins with an analysis of the
problem and works through possible solutions, ending with the details of the
particular choices made in Catacomb2. The software architecture of the sys-
tem is described in section four, and the main biological and non-biological
components that are currently available for use in models are presented in
section five. Sections six, seven and eight cover three of the most important
requirements of the current generation of modeling systems: meta-modeling
facilities such as sensitivity analysis and optimization; infrastructure for
model sharing and publication; and mechanisms which allow the system to
be extend or used in conjunction with other tools. Throughout the text,
concepts are illustrated with examples taken from the first major model
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built with Catacomb2. This model involves spatial navigation by a virtual
rat in a virtual environment guided by spiking activity of populations of cells
representing parahippocampal and hippocampal structures(Hasselmo et al.,
2002b,a). Scientific and technical aspects of these models are presented as a
case study in section nine. Finally, section ten reviews recent progress and
discusses future directions for the software and modeling work.

2 Modeling philosophy

Neural systems have functionally important features on a wide range of spa-
tial and temporal scales from spine morphology to system connectivity, and
from receptor kinetics over a period of milliseconds to permanent morpho-
logical changes. Building an artificial system which encompasses all, or even
some part, of this range involves constructing a path through the space of
possible models which connects structure at the smallest scale present to
that at the largest scale via all the intermediate levels(Kötter et al., 2002;
Borg-Graham, 1999). In some respects, this can be likened to solving a dif-
ferential equation where constraints, or boundary conditions, are imposed
on the solution at both ends of the domain. The historical development of
numerical methods for solving differential equations can therefore be used to
frame corresponding ideas about how to tackle multi-level modeling prob-
lems.

2.1 Neither top-down nor bottom-up

One of the earliest and simplest approaches to solving two-point boundary
value problems is known as the “shooting” method. It takes the known
conditions at one end, guesses any unknown quantities that are needed, and
propagates the solution across the domain to the other end. In general, the
resulting path will not meet the desired boundary conditions, so the ini-
tial guesses are modified and the process is repeated. If the equations are
well-behaved such that the point at which the path meets the far end varies
systematically with the initial guesses, then the right solution can eventually
be found by judicious adjustment of the initial guesses. Both the bottom-up
(working up from biophysics) and top-down (working down form behav-
ior) methodologies of computational neuroscience are analogous to shooting
methods. Unfortunately, it is a well established result of numerical analy-
sis that shooting is only a successful strategy for relatively simple systems
comprising no more than a few, nicely-behaved, equations. It is therefore
unsurprising that these methods are very difficult to apply successfully in
neuroscience, where the boundary conditions are complicated and the in-
tegrative behavior even between adjacent levels rarely obeys simple rules.
Fortunately, the differential equation literature contains many methods that
have been developed to work in more complex environments. These form the
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basis of much day-to-day numerical work in theoretical physics (e.g., Eggle-
ton (1971); Lattanzio et al. (1997)) and suggest that analogous methods
may prove useful in neuroinformatics.

Among the methods developed for two-point boundary value problems,
perhaps the most widely used and generally useful are relaxation meth-
ods(Press et al., 1993). The strategy here is to start with a complete path
across the domain, that, of course, is not a solution, but that does meet the
desired conditions at the two ends. The path at least provides a value, al-
beit wrong, for the function at all intervening point. An iterative procedure
is then used to gradually adjust all these points together in order to bring
the path closer and closer to the correct solution - a process termed “relax-
ation”. An alternative version has the starting configuration be the correct
solution to a different, simpler, problem and then gradually move towards
the real problem in small steps such that the solution can be kept up to
date for each change(Cannon, 2001b). The challenge in this method is to
find an acceptable starting solution, or simple equivalent problem, and then
to come up with an iteration scheme which does indeed bring it nearer to
the desired result. Relaxation methods have been applied to many problems
which are intractable by the shooting method, and they are responsible for
the vast majority of our knowledge about certain types of system including,
for examples, the internal structure and evolution of stars(e.g., Faulkner
(1968); Eggleton (1971); Lattanzio (1986)).

Based on these observations from numerical analysis, one of the design
goals in developing Catacomb2 has been to facilitate model development
by relaxation, rather than only by shooting. It should be stressed that
the correspondence to numerical analysis is strictly an analogy. Internally
models often require the solution to differential equations by a variety of
implementation-dependent methods, which may indeed involve relaxation
methods, but this is a choice of a particular implementation. The intended
analogy with relaxation is that it can also guide the way a modeler inter-
acts with a modeling package. The modeler’s goal is to achieve a plau-
sible computational equivalent to a biological system, and the relaxation
approach is to start with an implausible model that at least covers several
parts of the problem domain and then gradually refine its internal compo-
nents. Thus, Catacomb2 aims to help build approximate models which show
complex behaviors, rather than biologically very realistic models which only
reach simple integrated behaviors. It does this by allowing a wide variety
of software components in the chain linking biophysics to behavior, some
implemented with biologically realistic components, others with algorithmic
“black boxes”. So, for example, besides models of cells, it also has logical
components capable of performing tasks such as computing a direction of
motion from current and desired position. A behaving model can contain
any mixture of high-level logic with plausible neural circuitry. The aim is
first to build a system which performs the task in question, then gradu-
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ally to refine (relax) its implementation to use more realistic components.
The advantage is that at every stage there is input from both ends — what
nature actually uses to achieve particular functional goals, and what algo-
rithms these components may be implementing. Intuitively, this is also the
reason why relaxation methods are so successful in numerical analysis: they
allow the update step at a particular point to be influenced by information
propagating from all the constrained points of the system.

A correlate to this approach is that there are no pre-defined “correct”
structures to use in an intermediate model — any structure which helps
the model work is legitimate, and is a potential basis for subsequent refine-
ment by the relaxation process. Models can exploit concepts from a variety
of domains, including continuous-time and discrete-time processes, as in
the growing field of “heterogeneous modeling”(e.g., www.ptolemy.org). This
eliminates many of the somewhat arbitrary boundaries which sometimes
appear in the modeling literature, such as the distinction between channel-
based cell models and integrate-and-fire cell models. In Catacomb2, for
example, there is no barrier to constructing a cell model which fires a spike
and is reset after reaching a specified threshold, but which also contains
membrane ion channels to generate subtle sub-threshold behaviors. Indeed,
there are many numerical advantages to separating out the spiking behavior
as an all-or-none event while working with the channel kinetics at a slower
time scale appropriate to other sub-cellular processes. Five examples of cell
models at different levels of complexity are shown in figure 1. The first
behaves as a simple integrator. Features are added one by one to create
a range of models: any model can be used in a network according to the
functional needs in a particular context. Further examples of cells designed
to play specific roles within a network are presented in section nine.

2.2 Constraining possible models

One of the first problems in using a general purpose differential equation
package to model a biological system is that it provides too much freedom
both in the choice of mathematical formulation and in parameter values. A
central goal of domain-specific software systems is therefore to restrict this
freedom so that the parameter space reflects the plausibility of particular
models in the domain. Users wish to be presented with options which al-
low them to build working systems, not options where the vast majority of
configurations yield meaningless results.

Script-based modeling systems such as Neuron(Hines and Carnevale,
2001) and GENESIS(Bower and Beeman, 1994) improve on general-purpose
packages by providing a set of biologically meaningful constructs which can
be augmented, where necessary, with general purpose code. The approach
taken in Catacomb2 has been to accentuate this distinction by providing
a wide range of predefined components that are intended to work together
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Figure 1: Component-based single cell models. The components on the
left are used for stimulation, either by imposing a transient conductance
change on the membrane (A,B, and C) or by sending a train of events
to a population of synapses (D, and E). The right-most component shows
the membrane potential of the cell. All figures are generated directly from
the software and appear much as they do through the user interface. A.
Simple integrate-and-fire cell with a leaky integrator compartment and a
spike generator which fires an event whenever the cell exceeds a threshold.
The spike generator reads the potential of the cell and causes the potential
to be reset when it fires an event (link going back to the “reset” port on the
integrator compartment). B. As case A, but with the addition of two spike
response functions that are triggered by events from the spike generator.
One is set to produce a rapid after-hyperpolarization, and other to give a
slow after-depolarization which causes the cell to continue firing periodically
after the stimulus finishes. C. As B but without the connection from the
spike generator to the compartment reset port. The cell is repolarized by
the spike response function and has slightly more realistic spike shape. D. A
simple integrator with complex synaptic input. The component on the far
left delivers a sequence of events to the synapse population, each of which
causes a biexponential conductance change on the compartment. E. Spikes
generated by ion channel models. There are two populations of ion channels
loosely representing sodium and potassium channel kinetics. Together they
generate a wide spike in response to input from the synapse population.
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in almost any configuration which the system lets the user assemble. More
complex logic can be implemented by writing new code modules or scripts,
but for many applications this should not be necessary. It encourages the
view that script or module writing is a slow one-off activity which should
be carefully planned and revised, whereas model construction, testing and
modification is an everyday activity to be made as quick and as easy as
possible.

The design of a system which permits only interesting models to be built,
or rather, one with a parameter space which is at least densely populated
by useful models, remains a major challenge in computational neuroscience.
With such a system, for example, genetic algorithms or other optimization
techniques could be used on points in the model space itself. At present, a
certain part of the instantaneous structure of biologically plausible models
is captured, but there is no mechanism for describing the slower regulatory
processes which would govern many of the quantities in a real system. The
resulting models suffer the same fragility with respect to their parameters as
is familiar from many other systems. In effect, although the parameter space
does contains interesting models, it fails to satisfy the natural corollary that
it should also be relatively smooth and that each model should occupy at
least some minimal volume of the total space. There is a simple mechanism
for testing this with a perturber component that goes through any model
and introduce random changes, according to specified probability density
functions, in all the parameters. Ideally, if a model covers a significant
part of the space, then introducing random multiplicative changes of a few
percent should not change the gross behavior. Perturbation of complex
models, however, generally changes the behavior substantially, indicating
that there is scope for improvement in the choice of parameterizations. This
is considered further in section ten.

2.3 Model development

Computers are often used to perform numerical calculations in physics in a
single step: a program is written which incorporates the physical constants
and input conditions and generates results. In some cases, where the pro-
gram is used repeatedly, there are two steps: first the numerical method is
implemented, then it is run repeatedly on different data sets. Increasingly
now, it is a three step process, with the first step being the implementa-
tion of a set of general-purpose mathematical procedures by professional
software engineers as in MATLAB (www.matlab.com) or Yorick (ftp://ftp-
icf.llnl.gov/pub/Yorick/doc/index.html). These are then used by researchers
in much the same way as they would use a low-level programming language.
Methodological development is clearly in the direction of multi-layer sys-
tems where complex problems are divided according to the available ex-
pertise. While the efficiency gains, and therefore design pressure in this
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direction remain modest in many areas of applied mathematics, the com-
plexity of implementing brain-like systems makes it an absolute necessity in
neuroinformatics. Indeed, the ideal number of levels in neuronal modeling
may be many more than three, and systems which allow this separation and
specialization may make more effective research tools than those that do
not. For example, a single modeling project may involve writing an efficient
numerical implementation of an ion channel, building a biologically plausi-
ble single-cell model, designing a network to implement a given algorithm
and setting up a realistic behavioral experiment. These tasks require quite
different expertise and can best be done by different researchers working
together.

At present, Catacomb2 tries to achieve this separation first by starting
with the constructs provided by Java, an object-oriented language with ex-
tensive libraries for managing data structures, building graphical user inter-
faces and accessing the Internet. It then has hard-coded modular implemen-
tations of many basic constructs from neuroscience including ion channels,
synapses, isopotential compartments, projection patterns and populations.
These can be assembled into functional units through a graphical interface,
and such units can then be treated as single components for reuse in more
complex models and so on up to the level of modeled behavior. In addi-
tion, layers can be represented as coarsely (using simple algorithmic com-
ponents) or finely (with detailed biologically-oriented models) as required
so that a complete multi-layer system is available early in the development
process. This allows a single layer to be refined within its wider functional
context even before realistic implementations of other layers are available.
This approach does achieve part of the goal of multi-layer modularity, but,
nevertheless, it remains purely structural. A more efficient and robust de-
velopment strategy might allow even coarser implementation of some parts
of a model by defining the tasks a section should perform, or the concepts
it implements. This would broaden the range of possible models and make
a more direct connection with much current top-down modeling work.

3 Model structure

The development of NeuroML(Goddard et al., 2001b) and of similar “MLs”
(Markup Languages) in other domains has occasionally been misunderstood
as an almost magical solution to problems of compatibility between mod-
eling systems, as though it would one day be sufficient to click “save as
neuroml” to export a GENESIS model in a form which could be read by
Neuron. This seems very unlikely to happen for any but small parts of ex-
isting models, primarily because of fundamental differences in the ways in
which these systems describe models internally. The real advantage to com-
munity agreement on a standard such as NeuroML is that it carries with
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it a particular way of describing models of biological systems. If there is
agreement at this level, then the details of taxonomy and file formats are no
more than a software problem that can easily be overcome.

There is little dissension to the idea that purely declarative model de-
scriptions are a good thing(Beeman et al., 1997). That is, that a descrip-
tion of a model should contain only statements of the model structure and
parameter values, essentially a set of grouped “name=value” statements.
This is to be contrasted with procedural model descriptions which resem-
ble a computer program, possibly with conditional statements and looping
constructs. Only by following through the program can the full model be
reconstructed. The advantages of a declarative description include readabil-
ity, since each statement should be meaningful on its own, and portability
since it is not dependent on any particular execution environment. The dis-
tinction, however, is not always clear as for example in describing a neuron
with spines distributed along its dendrites. A declarative description of such
a cell might include the individual positions of all the spines. This would
be fine if the spine positions came from a detailed morphological recon-
struction, but if they were allocated according to some statistical rule, then
storing the positions is typically not what is required. The underlying model
of interest is a combination of the dendritic morphology with a statistical
distribution of spines. A procedural description of the model might include
a fragment of code for generating spine positions perhaps as a function of
segment diameter — effectively a mini-program for sampling a probability
density function. This is also not what is required, because it might be rather
hard to deduce the density function from the procedural description, and
moreover, code for sampling from implausible or ad-hoc distributions can
look very similar to code for sampling from a standard distribution which
imposes the fewest unfounded assumptions. A declarative description, on
the other hand, would would simply state what the spine density function is
and leave the process of sampling from the distribution up to the software
that runs the model. The density function is made explicit and the extent
to which it departs from minimal assumptions is immediately apparent from
the number of statements required to define it.

There is also widespread agreement that object-based descriptions, where
parameters are grouped within conceptual units which can then be used as
a whole, are an obvious choice. Opinions vary, however, about where some
of the boundaries should be drawn between objects, and most importantly
about the global structure of a biological model. One obvious possibility
is to use an object tree, where the objects are described where they are
needed. So, for example, a model with two branched cells might have two
nodes at the first level, one for each cell. Then each node would have a
number of children, representing the different segments of the cells. Each
segment could have a number of children representing the ion channels on
that segment. The difficulty here is that the same ion channel model proba-
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bly occurs many times, so the parameters have to be copied into every case
where it is needed. Where then are the definitive parameters if the channel
models is to be changed? Is it legitimate to change them on one segment
but not on the others? What happens when the model is saved — do you
get multiple descriptions of the same thing?

Various solutions to this problem are currently in use, mostly based
on storing the parameters in a single place and making reference to them
when needed. The approach taken here, which is also the one adopted for
NeuroML, is that almost all objects should be stored in top-level sets, and
that where one object “contains” objects of another type, it should in fact
just contain a set of very simple objects (unique to itself) each of which
makes a reference to the corresponding descriptive object. Thus, in the
above example, there would be top-level sets of cells and of ion channels.
Each cell object might contain a set of channel-reference objects. And each
channel-reference object would point to an ion channel model in the top-
level set. Channel-reference objects might contain other information, such
as the density of the ion channel in the context of that particular cell, but
would not contain any channel properties which are also required elsewhere.
This principle of minimal redundancy, where an object should be stored
in a top-level list if it is ever likely to be used in more than one place,
eliminates problems of changing a model in one place but not in others, and
allows graphical user interface tools to operate effectively on the models. In
practice, it is also an excellent way to decide how models should be dissected
into objects and references.

One feature discussed for various ML’s including NeuroML and SBML(Hucka
et al., 2001) (Systems Biology Markup Language) is the ability to use ex-
pressions in a model to define how a particular subcomponent is to be used
in a given context. For example, the channel model might contain (as in
the NeuroML draft(Goddard et al., 2001b)) a parameter, Gmax, which is
its maximal conductance per square micron. But this depends on the con-
text of the channel. Each time the channel is used, there is then a need
for some statement in the cell model to set Gmax for the channel in that
particular context, perhaps as a function of the radius and length of a den-
dritic segment. Catacomb2 contains no mechanism of this sort, and instead
takes the apparent need for an expression in this context as evidence that
the boundaries have been mis-drawn and that Gmax should not, after all,
be part of the channel model. So far, all cases where such requirements
arise have been settled this way with careful consideration of what parame-
ters should or should not be part of a particular object. Often the apparent
need for expressions and functions results from a desire for conciseness which
can instead be settled by introducing more objects and making a genuinely
declarative statement about what the model is. For example, in the above
case the only conductance parameter present in a Catacomb channel is the
single channel conductance. A cell model has a set of channel reference ob-
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jects each of which contains the name of the channel to be used, and the
number density (channels per square micron) at which it is to be used in
the cell. That is, there is a whole new layer of objects essentially just to
hold references and densities. It should be stressed that the structures used
to represent models do not impose any constraints on the internal repre-
sentation of those models in a particular system. Nevertheless, because the
requirements of a graphical user interface and of a model description system
are so similar, Catacomb2 uses the standard structures for its user interface.
These structures are not, however, well suited to numerical calculations, so
there is a completely separate representation for the model implementation
(section 4.3).

The model description is the only part of a model which the system can
save to a file. There is deliberately no journaling facility, and no facility
for saving the internal state of a calculation. Anything that needs to be
reinstated when the model is reloaded must be made an explicit part of the
model description. This includes, for example, statements that specify such
things as which file should be used to read in weights of the synapses in
a particular population. Models are therefore forced to be purely declara-
tive, with all the potential advantages of robustness, visibility and porta-
bility that it entails. This also makes it natural to store models as XML
(www.w3c.org/XML) which is now the default in preference to an earlier file
format which used C-like structure definitions to store models.

Note that in this context, “models” are static descriptions of the prop-
erties of a system. They make no mention of the state information that
will eventually be associated with instances of models when their behavior
is computed, except occasionally to specify initial values where there is no
other unambiguous way of assigning them. As far as Catacomb is concerned,
state information remains implicit in the model, and only appears within
numerical implementations. This is a compromise between completeness of
description and implementability. As mentioned in the introduction, other
systems(Cornelis and De Schutter (2003); www.cellml.org), are attempting
to expose more of this information. The approach presented here can also
be seen as employing the layering principles mentioned above: numerical
implementation and state information is handled by programmers and im-
plemented in source code; model structure and parameter values are han-
dled by model builders and implemented in model descriptions. Although
it would be conceptually elegant and theoretically powerful to provide com-
plete system descriptions at the model level, this option has been sacrificed
in the present system in favor of ease of implementation, on the assumption
that very few users would exploit such a possibility.
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3.1 Data structures for model description

The “objects” into which a model description is broken down will here be
termed “frameworks” to avoid confusion with objects used in software im-
plementations. A framework defines a structure —field names and types—
but does not set any field values. Models can be made from a framework by
adding information on the parameter values. Technically, a framework is no
more than a set of parameter definitions where each definition specifies the
name and the type of a parameter. Most of the allowed types come from
a subset of those available in many programming languages comprising the
primitive types boolean, int, double, String, and one-dimensional arrays of
these primitive types. There are also two complex types, here termed Set
and Reference following the NeuroML convention(Goddard et al., 2001b).

The present framework definition system is rather vague about two im-
portant model description issues: the units in which values are expressed;
and the additional information about a parameter which is often required in
order to build an effective user interface. The latter may include, for exam-
ple, whether a logarithmic or linear scale should be used for floating point
values and what the default range should be. Currently, the units are fixed
by the framework, and the rest of the information is provided as optional
hints to the user interface. This removes any danger of unit incompatibility,
since the user has no choice about the units.

Besides the primitive data types and arrays, models are built exclusively
from the two higher-level data structures — Set and Reference. A Set can
contain any number of models but they must all be of the same type. When a
Set is constructed, it is told the base framework to which its contents belong.
A Reference simply holds a string referring to a model by its framework
(hard-coded) and name (user-defined). It is the responsibility of the system
to find the model being referred to when necessary by a closest-first tree
search until it finds a set containing models with the right framework, and
then by looking up the model name within that set. This is how the minimal-
redundancy principle discussed above is implemented in practice. Any model
component that is likely to be reused can be parameterized just once and
stored in a Set somewhere. Wherever it is needed it can then be referred to
simply with a Reference of the appropriate type mentioning the object by
name.

The extensive use of references results in relatively shallow tree structures
for models, with most objects living in top-level sets, or as the children of
elements in top-level sets, and referring to other top-level components by
name. This also means that almost any component which can meaningfully
be reused is directly available without any duplication of the parameters. As
an example of this structure, the representation of a simple aqueous solution
is shown in figure 2. A solution contains a variety of compounds, each at a
different concentration, and each compound is composed of charged species.
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Port Use Notes
Spike run-time event propagation
Vector run-time data fetching
Solution run-time solution distribution
Attachment compile-time physical co-location
Redirection compile-time reference transfer
Object run-time general purpose object transfer requiring

agreement between sender and receiver
Stream run-time continuous data streams

Table 1: Principal connection types between objects

Compounds and species are likely to be reused in many different contexts,
so they should live in top-level sets. Each compound must then contain a
set of private objects indicating the species it uses. Similarly each solution
contains a set of “SolutionElement” components which combine a reference
to a compound with local information on its concentration.

3.2 Hierarchical assemblies

Besides the primary frameworks which contain parameters for setting prop-
erties of particular types of model, there is one general purpose framework
which covers almost all the rest of the model description problem — the
Assembly framework. An assembly holds a set of other models, each of
them an instance of a primary framework or of another assembly. Typically
the elements of assemblies will make references among themselves encoding
the structure of the model as a graph. In this picture there is no distinc-
tion made between edges and vertices since all elements have the potential
to show both vertex-like and edge-like properties. Moreover, there is also
no restriction that elements with edge-like properties should have only two
ends, so, for example a catalyzed reaction component may connect three or
more distinct pools — the reactants, the products and the catalyst.

Connections between models are defined by attaching ports on one com-
ponent to those on another. The input and output ports are defined by
the framework in terms of the data, events, or properties they mediate. An
output port of a given type can only be connected to an input port of the
same type. Ports are always accessible to other components in the same
framework and, optionally, to components one layer up in the hierarchy.
The main port types and their uses are shown in table 1.

Almost all run-time interactions are handled by the spike and vector
ports. The former transmit discrete events, and the latter provide read-on-
demand access of a vector of double values from one component to another.
The attachment and redirection ports are the two main referencing mech-
anisms between objects within an assembly. Attachment ports provide a
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          .  .  .  .  

                    number=1
                    content="sodium"

                    number=1
                    content="chloride"

               .  .  .   .   

                    content="sodium_chloride"

                    concentration=2.0mM
                    content="potassium_chloride"

          symbol="Na"
          valence=1
          mobility=0.682

          .  .  .  .

     sodium

     potassium

     chloride

     sodium_chloride

     potassium_chloride

     solution_1
          Set of SolutionElements

          Set of CompoundElements

          Set of CompoundElements

               element_1

               element_2

               element_2

               element_1

Set of Solutions

Set of Compounds

Set of Species

                    concentration=1.0mM

Figure 2: Set and reference structure for describing aqueous solutions. Slant-
ing text indicates sets, bold normal text model components, and plain text
fields and their values. Parts of the description have been omitted as indi-
cated by rows of dots. Each specie is defined only once, in a top-level set of
species. Likewise compounds and solutions are kept in top level sets. Each
compound needs to refer to the species it contains, but with each reference it
also needs to specify the number of occurrences. Therefore each compound
has a local set of CompoundElement objects which are not visible elsewhere.
Each element contains a number and a reference to the corresponding specie
(dashed lines). Similarly, solutions contain a local set of objects to combine
the concentration of a compound with a reference to its content (dotted
lines).
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means to specify that distinct objects are physically connected together (as
in the components of an animat for example). Redirection ports are used in
a variety of contexts where objects are represented by distinct frameworks
but where one is somehow located inside another, as in a channel being in-
serted in a membrane, or a rat being placed in a maze. Finally, the Object
and Stream components provide flexible data transfer between cooperating
components such as reading files or transporting a connectivity matrix from
the projection pattern that generated it to a display component.

4 Catacomb2 system architecture

The main components of Catacomb2 are shown in figure 3, grouped into
sections for the user interface, model description package and a stand-alone
numerical implementation package called Toucan, which is currently used
for all the calculations. For each primary framework (iso-potential compart-
ment, synapse population, projection pattern, etc.), there is a single class
in the model description tree which defines the parameters of a model and
handles its interaction with other items in the model description if neces-
sary. In most cases the system generates a default user interface for these
objects, but for some of them there is also a dedicated component in the
user interface branch that provides more convenient or intuitive access to
the parameters.

4.1 Internal representation of models

The internal representation of models is an exact parallel to the structures
described in sections 3.1 and 3.2. For each framework, there is a corre-
sponding class definition with fields for the parameters and for any set or
reference items defined for the framework. References are stored externally
by the type and name of the model element they refer to. Dereferencing
(finding a model component given its name), is performed by a local closest-
first search, looking first among the children of an item’s parents, then the
descendents of its grandparents and so on. This allows models of the same
type and name to exist at different places in the model hierarchy without
any ambiguity as to which one is meant by a particular reference. Although
it is obviously inadvisable to give distinct models the same name, one conse-
quence of constructing complex declarative models through a user interface
is that a great many objects are created implicitly by the system with de-
fault names. Since these objects only ever occur within the context in which
they are created, it is unnecessary to give each one a globally unique name
or a unique ID. The local dereferencing rules prevent any ambiguity.
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model description
components optimised
for calculation

instantaneous
state components

generic assembly editor
for any java modules 
implementing the assembly
interface

domain specific GUI
components for selected
items

generic GUI builder for 
any model using NeuroML
data structures

model description
library 

components optimised 
domain−specific

for ease of model
creation and visualization

Components use the "Set" and 
"Reference" data structures as 
in NeuroML.

Every component can map 
itself to its peer in the Toucan
calculation library

or Catacomb’s own declarative
external files written in XML

format.

dereferencing

spawning

connection

stages of compilation

calculationModel description and construction

graphical user interface

Catacomb Toucan

Figure 3: Catacomb2 system architecture. It is divided into two distinct
parts: Catacomb itself which is concerned with the description, construc-
tion and visualization of models of biological systems; and Toucan, a numer-
ical calculation package which is designed for memory-efficient calculation
of model behavior. Toucan is a free-standing package which can be used
entirely independently of the model description tools. Catacomb comprises
model description components, a generic user interface system which can
construct any model consistent with the data structures employed, and as
large set of domain-specific user interface components for the exploration of
certain types of models. The only part of the whole system which is per-
sistent (can be saved to files and restored) is the description of the active
model.
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4.2 User interface

A primary objective has been to ensure that all models that the system is
capable of computing should be constructible with the user interface alone,
and, conversely, that the system should be capable of computing the be-
havior of any model which it allows to be constructed. This, rather than
the more tenuous promises of inter-compatibility through XML and related
technologies, has been the main motivation for using the highly restricted
data structures and purely declarative model structure described above.

The user interface incorporates a dynamic interface builder which can
examine the framework used by any model and produce a default set of
interface components to display and change parameter values. This covers
all single-valued fields. For reference fields, all possible referents within the
current model are located and presented to the user in menus. These default
interfaces are augmented in some cases with framework-specific interface
components which provide a more intuitive or convenient way to interact
with certain types of models. For example, the assemblies mentioned above
are simply sets of components with references between them, but the user
interface presents this as a graph where nodes can be added and connections
made between them by dragging icons with the mouse.

4.3 Numerical implementation

The behavior of models is computed with a numerical modeling package
called Toucan that is extensively referenced from Catacomb but which makes
no backward reference to anything on the model description or user inter-
face side. It can therefore be used on its own from programs, scripts, or
from other modeling tools. Just as Catacomb contains model description
frameworks optimized for efficient and convenient model construction, Tou-
can contains corresponding model description frameworks optimized for ef-
ficient computation. The first step when a model is run therefore involves
mapping the model description into the corresponding Toucan components.
These components are themselves only a model description: there is then
a de-referencing stage where each component finds the Toucan versions of
the other items it needs, and finally a “compilation” stage in which each
Toucan description component spawns and connects up one or more state
components which actually contain the state variables and numerical code
of the model.

The process of building an executable system from the model description
is illustrated schematically in figure 3 and with a more concrete example in
figure 4. It is only in the compilation phase that the model is expanded
from the minimally redundant version using references wherever possible, to
the complete state space of the system. Even at this stage, the supplied pa-
rameters themselves are never duplicated: a model description component
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in Catacomb which is referred to by other components maps into a corre-
sponding structure in Toucan, still with multiple incoming references. After
compilation there is only one Toucan representation of the parameters, but
it delivers a new instance of the state variables for each incoming reference.
These spawned state objects keep a reference back to the parameter object
to compute their evolution but otherwise make reference only to other state
objects to which they are connected in the compilation process. This struc-
ture is a way to minimize unnecessary memory use since the state variables
frequently occupy very much less space than the parameters. For example,
a four-state ion channel may easily have twenty or thirty parameters, but
to represent its state only takes a single integer (which state it is in) when
modeled stochastically, or a four element vector in the ensemble limit.

Toucan uses a combination of event-driven and fixed-timestep calcula-
tions, with each delaying component managing its own event queue. At each
step in the calculation, the top-level object instructs all its children to ad-
vance by one timestep. They do the same to their children and so on down
to the elementary components. Components fetch information from each
other as necessary to update their state and any events which are gener-
ated are propagated and acted on immediately. This may typically involve
being queued if there is a delay involved, changing state variables of an-
other component, or, in some cases, setting off a long chain of event-driven
updates.

This approach to numerics is quite different from that adopted in Neu-
ron(Hines and Carnevale, 2001) which casts the whole model into a system
of algebraic differential equations to be solved by a sophisticated differential
equation package. Such packages have the advantage of being very reliable,
able to achieve high accuracy, and providing efficiency improvements such
as adaptive timestepping. One disadvantage is that there is frequently do-
main specific knowledge about the model which gets lost in the mapping
to algebraic differential equations, and therefore cannot be used to improve
efficiency. This occurs, for example, where the differential equation package
must re-deduce the sparse matrix structure (Hines, private communication)
of a branching cell even though it was known, by construction, to conform
to the Hines numbering system(Hines, 1984). Perhaps the main reason for
the different approach, however, is that the current system is easier to im-
plement: the export of Catacomb models to a Neuron-like solution package,
or even to Neuron itself would be useful in many contexts.

5 Software components

Most of the components available in Catacomb2 (version 2.034) are shown
in tables 2 through 7. For all except the connectors in table 2, the small
image shows how the component is represented in the user interface, and
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Figure 4: Stages in the preparation of an executable Toucan model instance.
Solid arrows show direct references in the final data structure; dotted ones
indicate which component is responsible for creating each reference. Num-
bers show the order in which references are created. There is a network of
two cells of the same type (A and B at the top) with a single connection be-
tween them (C). The cell model has three components with two connections.
First the references by name are looked up, giving the solid arrows in the
middle section. Then the network creates an executable instance. The first
cell reference calls the cell description to create a state instance. Each of the
first three components in the cell description spawns a state instance; the
last two make connections between them. This process is repeated when the
second cell reference in the network calls for an executable instance. Finally
the third component of the network, the connection between the two cells,
finds and connects the appropriate subcomponents of the two cell instances.
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Icon Name Function
red, curved spikeCable indexed event propagation
blue, curved vectorCable real-valued vectors (read on

demand)
green, straight redirectionArrow insertion or redirection, such

as putting channels in a mem-
brane or a rat in a maze

yellow, curved cord physical or logical co-location
black, pipe objectPipe run-time movement of com-

plex structures
black, bifurcating spikeProjection variety of projection patterns
brown, curved conductanceProjection continuous one-way connec-

tions

Table 2: Connectors and network projection patterns

can be used to read the diagrams presented in section nine and elsewhere.
The filled squares around the edges represent the ports on the component
and are color-coded according to the type of information which they accept
or provide. These correspond to markers on the connectors themselves and
the user interface will only allow markers of matching modalities to be con-
nected (spike senders to spike receivers etc). Components are grouped into
tables according to their primary use which can be building cells, generating
and recording signals, specifying logical operations, constructing animats or
building networks. The connectors can be used between components of any
groups. The names of components are shown as they appear in the user
interface. Each name is a concatenation of words where the first is in lower
case, but subsequent words are capitalized. This is in line with the most
common naming convention for Java in which class names are concatena-
tions of capitalized words, and instances use the same name but with the
first letter changed to lower case.

In addition to the items shown in the tables, for most sets the user inter-
face supplies an empty box called a ...CaptureBox (where the prefix could
be neuron, device, network, or animat). These are not persistent items in
a model description, but serves to construct assemblies of the correspond-
ing type which can then be used as components in other models. The box
is dragged around the components to be grouped and then captures them
within an assembly. This can be done to part of a larger model: all the
connections are rerouted through the assembly as required so the model be-
havior remains unchanged. Although there are several different flavors of
capture box, they all work the same way. Indeed, the difference is purely
conventional. Internally, the treatment of an assembly is independent of its
type or name except that assemblies captured by the neuronCapturebox are
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Icon Name Function

integratorCompartment resettable leaky integrator; accepts mem-
brane conductances; exports potential

thresholdSpikeGenerator reads a floating value and generates events
when it exceeds a threshold

spikeResponseFunction applies a conductance with a biexponen-
tial profile in response to events

cumulativeResponseFunction as above, but not reset after events

channelPopulation kinetic scheme channel models for inser-
tion into a membrane

synapsePopulation creates and inserts synapses as events ar-
rive on different afferents

conductanceClamp converts a vector signal to a conductance
or reversal potential applied to a mem-
brane

Table 3: Sub-cellular components

put in a set of neurons, whereas those captured by the deviceCaptureBox
are put in a set of devices. This becomes significant when they are reused:
a component expecting a neuron will only be offered items out of the set of
neurons; one expecting a device will only be offered items form the set of
devices. As yet, the only components which do make such references are the
population sockets in table seven and discussed at the end of this section.

The components for making cell models are shown in table 3. As re-
marked in section 2, there is no single-cell component here: all single-cell
models are instances of hierarchical assemblies. The core of any cell model is
an integratorCompartment which represents a closed iso-potential area of
membrane. It has an internal potential and only accepts inputs in the form
of conductances and reversal potentials. The thresholdSpikeGenerator
reads a continuous value and emits discrete events whenever the value crosses
a specified threshold. All the other cell components are conductance providers
which can be inserted into a membrane and provide conductance or driv-
ing potential changes in response to the arrival of discrete events or to the
evolution of their own internal state.

Table four shows general purpose lab components for generating and
recording signals and for directing the progress of a calculation. The com-
ponents in this set are distinguished from other groups because they are
unlikely to be used within compound assemblies and because most of them
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Icon Name Function

signalGenerator generate a variety of signals including
noise and predefined waveforms

spikeGenerator generate regular or Poisson events on mul-
tiple channels

spikeButton send events into a running calculation

vectorSwitch re-route data in a running model

vectorRecorder periodically read and record vectors for
display

currentClamp read a membrane potential and adjust its
own internal potential to impose a given
current

spikePositionRecorder record and display positions at which
spikes occur

spikeRecorder read source vector whenever spikes arrive;
variety of display options

Table 4: Lab components

require some form of access to the internal state of the model after it has
been compiled. That is, they are part of the model description, but they are
also used to provide access points to the running model. Thus, for example,
the vectorRecorder specifies a recording interval as part of the model de-
scription, but also receives and displays the recorded data as the model is
running. Likewise, the spikeButton and vectorSwitch allow events to be
sent into the compiled model as it is running. This contravenes the purely
declarative modeling principle, which can be rescued by, for example, driving
the switch programmatically from a pre-defined event sequence.

At present the logic components form the largest set, so only a selection
of the most common ones is presented here (table 5). They cover a wide
variety of data processing and signal processing functions, all acting on dis-
crete events or vector-valued data. Components are intended to implement
relatively simple functionality but in a few cases they cover complex algo-
rithms such as the feature discretizer (see section 9 for examples of its use)
or path linearizer. Such components represent a relatively large chunk of a
final model, and can be seen as a compromise between explicit description
of a model in simple units, and rapidly getting a model to work when it is
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Icon Name Function

concatenator join spikes or vectors into a single stream

spikeSplitter divide spikes with different indices into
distinct channels

counter deliver one output event for every n input
events

constantVector export a fixed vector

jythonScript interface to logic implemented in Jython

featureDiscretizer read a vector and allocate new IDs when it
is sufficiently different from previous val-
ues

eventSequence deliver a user-defined sequence of events

directionCalculator evaluate an arctangent function for the
vector between two points

vectorRenormalizer change the range of a vector

delayBuffer hold events for a specified time before
passing them on

Table 5: Logic components

not otherwise clear how to achieve the desired function.
Table six shows the components available for modeling animats and vir-

tual environments. There is no sharp distinction between the two — an
automated maze in which food supplies are replenished in response to lever
presses is very close to an animat which presses levers to receive food. The
components include a variety of sensors and effectors which, unlike all other
components, communicate without any explicit connection in the model de-
scription. Instead, they rely on a concept of physical space which is provided
by incorporating a scale bar item in a maze or attaching a spatial location
object to the cluster of sensors and effectors which constitutes an animat.
Internally, these two components register all the items they are associated
with as having the possibility of long range interactions. At the compilation
stage, real connections are established according to the properties of the
components (sound sensors to sound sources etc).

Finally, table seven shows components which currently belong in sets
of their own. In particular, it includes the neuronSocket which covers the
whole field of populations of cells. The term socket indicates that it does
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Icon Name Function

dispenser interact with the ingester by position,
delivering events when it is emptied and
refilling when it receives events

lever generates events when pressed

lightSource illuminate physical environment

soundSource generate (virtual) sound in response to
events

camera provide visual display of physical objects
insertionSite target of a redirection or insertion in a

physical environment

trajectorySite point in a predefined trajectory

soundSensor senses sounds

leverPresser senses and activates pressable objects

ingester senses and activates dispensers

whiskers proximity sensors to physical objects

spatialLocation physical position of an animat

insertionSwitch redirect insertions (move objects) in a run-
ning model

scaleBar set true size of physical objects
wall configurable boundary for constructing

mazes

Table 6: Animats and virtual environments
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Icon Name Function

neuronSocket population of one or more neurons

synapseRecorder recorder and display of synaptic weights

javaModuleSocket access to external resources supplied as
java class files

eventSounder interface to midi or sampled sound syn-
thesizer for sonifying events

Table 7: Network construction and miscellaneous components

not, of itself, specify any connections: these are all derived from the par-
ticular component it refers to. It does, however specify the layout of the
population, as a grid or a single row. No distinction is made between items
which represent a single cell, and those for a whole population. Internally
they are both regarded as populations. All the ports within a neuron as-
sembly which have been marked as externally visible also appear as ports on
the population and are accessible for inputs from spike or vector connectors
as well as the more specific spike and conductance projection components.

6 Model execution and meta-modeling

The discussion so far has centered on representing the static properties of a
biological system, and the ability to compute its evolution over a short in-
terval (seconds or minutes). Most scientific applications also require ways to
study other properties of a model, such as its correspondence to existing data
or the sensitivity of particular behaviors with respect to uncertain param-
eters. Frequently this information is acquired by tweaking and re-running
a model and the whole process is never formally laid down. It involves de-
veloping a feel for the model construction process and constitutes a sizable
and inaccessible body of knowledge. As such, it is a considerable barrier
to new users of many modeling tools. As far as possible, therefore, tools
should allow the user not only to compose the biological model description
but also to compose, in an equally declarative form, the description of the
data and processes which gave rise to the model, how it was tested, and
how well it can be expected to perform. This “meta-modeling” should be
described within the same context as the model itself, with the distinction
that the subject is now a model, not a biological system. In the case that the
meta-model represents a procedure for generating models from experimental
data, it should ideally be sufficiently detailed that the model can be recre-
ated from the source data alone without any of the procedural component
normally present in complex modeling tasks.
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6.1 Sensitivity Analysis

One of the most accessible forms of meta-modeling is to assess how sen-
sitive the results of a model are to uncertainties in the parameters. In
Catacomb2 this is accomplished with circuitry like that in figure 5. The
pararemterExposer gives access to parameters to be varied, in this case
the transition rates of an ion channel model. The differenceCalculator
evaluates how far apart the behaviors of two models are in some predeter-
mined space. The sensitivityAnalyzer first runs the model once with the
fixedStepRunner to construct the result set to which subsequent runs will
be compared. It then changes the selected parameters over specified ranges,
re-running the model each time. The output of the differenceCalculator
is recorded for each run, giving a simple view of how the measured behavior
varies with respect to a single parameter.

This example illustrates many of the concepts that are needed for more
subtle forms of meta-modeling. As elsewhere, the objective is to eliminate
procedural definitions of the algorithm. Although it is described above as a
sequence of operations, which matches the way in which it is calculated, the
order of operations is unimportant. The nth point in the results is a function
of the derived properties of the model at two different parameter values,
independent of any of the other points in the results. The model description
therefore makes no mention of this order, opening up the possibility, for
example, that all points could be calculated in parallel. This possibility of
processing model definitions in new and unanticipated ways is one of the key
advantages of eliminating spurious procedural information and using only
declarative structures.

6.2 Parameter optimization

Software libraries for parameter optimization are often large and sophisti-
cated (see, e.g., Portlib(Fox et al., 1978) or the survey of methods for channel
density optimization by Vanier and Bower (Vanier and Bower, 1999)). It is
not the intention here to represent the algorithmic contents of these declara-
tively, only the way in which they are applied. The main aim is to allow the
transfer of an optimization procedure between users in the same way that
models can be exchanged, without requiring any extra knowledge about the
optimization should be performed.

The description of an optimization should therefore include the names
and initial values of parameters which are optimized, the error measures
used to test convergence, the name and source of the algorithm used and
any flags or parameters required by the particular implementation of the
algorithm. Most of this is possible with the same components as are used
for the sensitivity analysis, with the exception of specifying a choice of op-
timization algorithm. Presently only the conjugate gradient method(Press
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clampedMembrane

parameterExposer

fixedStepRunner

differenceCalculator

parameterSelector

sensitivityAnalyzer

Figure 5: Meta-model for computing parameter sensitivity. The model un-
der study is a kinetic scheme ion channel in a voltage-clamped membrane.
The membrane potential is driven through a predefined profile with the sig-
nal generator at the bottom left, and the resulting current profile forms the
argument of the difference calculator. The four components at the top de-
fine the structure of the analysis. The parameterExposer can be directed at
any part of a model, and makes any parameters it finds accessible to other
components. The parameterSelector picks one of the parameters as an ar-
gument for the analysis. This is then varied by the sensitivityAnalyszer
which reruns the model for each value in a selected range. The results are
read from the differenceCalculator for display by the unit at the far
right.
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et al., 1993) is available within Catacomb2 itself through the cGOptimizer
component which uses an independent NeuroML compatible optimization
library. Other algorithms can be implemented via the optimizerScript
component, which works in very much the same way as the Jython script
extension mechanism, but with hooks and call-backs appropriate to general
optimization problems.

6.3 Robust model development and database access

A criticism of many cell and network models is that they have been tweaked
by the model builder in order to show particular behaviors, and have thereby
lost much of their predictive power. The modeling approach advocated in
section one, and employed in the examples presented here, sidesteps this
issue by focusing on design, in the way that engineers design circuits, rather
than pretending to do bottom-up prediction of integrative properties. That
is, the models can be shamelessly tweaked, because there is an independent
test: do they perform the task for which they have been designed? Sen-
sitivity analysis can then be used to check how much tweaking has been
required — does the model still perform successfully when parameters are
changed by 1%, 5% 10% or more? Nevertheless, it it is clearly of inter-
est to incorporate empirical data where possible, and this remains a major
challenge to systematic and robust model creation. Sensitivity analysis and
parameter optimization are part of the solution, but a great deal remains
to be done before a procedure can be laid down, the source data provided,
and the software left to come up with the most plausible models. For the
output to be useful, it should also include parameter confidence estimates
and error tolerances. At present, this is not possible within Catacomb2,
but the modular design does allow models and numerical implementation
components to be used from external scripting languages such as MATLAB
or from within independent robust modeling systems.

7 Publication, dissemination and archiving

Unlike empirical or analytical studies, the results of modeling work are very
ill-suited to conventional text-only publishing methods. Complete model
descriptions are often large, with many parameter values that are necessary
within the context of the model, but that are not intrinsically interesting in
the way experimental measurements of real biological quantities are. But
the greatest difference is that whereas in an experimental study, anyone can
readily get hold of the type of tissue claimed to give rise to the observed data,
(even though the experiments may be very hard to repeat), in a modeling
study, the raw material —the model itself— is rarely made available, except
in a highly condensed form from which it would often take weeks or months
to re-create.
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This situation has been allowed to persist because of the recognition,
first, that most users would not know what to do with it even if they had
access to the model and, second, that the authors would probably be willing
to grant such access if requested. However, one goal of any new modeling
tool must be to make model sharing as straightforward as possible, both for
the benefit of users, and because publishers are unlikely to carry on toler-
ating the current situation indefinitely. The transition from highly personal
model implementations which are rarely, if ever, used by others, to widely
and routinely accessible models is likely to be a gradual process involv-
ing sociological changes, and facilitated by incremental technological shifts.
The sociological issues are clearly not insurmountable, since they have been
effectively overcome in many areas, including public-domain software engi-
neering(Raymond and Young, 2001) where, for example, the source code of
NeuroML or Catacomb itself is normally freely available on the web within
days of being written.

The first step towards easily shared models is the use of purely declara-
tive structures instead of scripts. This makes it easy for readers to see what
is in a model, and easy for machines to search and catalog them. Declarative
model descriptions are also meaningful in the absence of any implementa-
tion, unlike scripts which depend on a particular interpreter. Other features
likely to help the dissemination of models include single-file storage, docu-
mentation and annotation schemes, mechanisms for providing tutorials and,
in some cases, making models directly accessible through a web browser (cf.
www.virtualcell.com).

7.1 Self-contained model descriptions

One immediate disincentives to using another group’s models is the need to
install or update a whole range of ancillary libraries and software components
before the model can be run. This problem has considerably eased with the
development of cross-platform standards such as Java, and the relaxation of
constraints on disk and memory usage. Although Catacomb2 is able to use
model components from external sources, by default, whenever a model or
subcomponent of a model is saved, all references are followed and everything
necessary to reconstruct the model is put in a single file. The resulting model
description is therefore completely self-contained. Anyone with that file who
has installed the software should be able to run the model.

This policy does have a number of drawbacks, in particular, the dupli-
cation of model subcomponents. For example, many cell models may use
exactly the same model for particular ion channels, but every file will contain
its own copy of the channel description. Loading multiple cell models will
also then load multiple models of the same ion channel. Because of the in-
ternal storage conventions (that ion channels should all go in a top level list
and have unique names) this problem is easily spotted, and, by comparing
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serializations (turning the model description into a string of characters), the
system can work out whether two models are in fact the same, and throw out
redundant copies. In practice, this policy works fairly well, despite seeming
rather delicate and vulnerable to serialization conventions. Nevertheless, it
seems likely that in future some system involving the assignment of unique
model identifiers which change with every modification as in SBML(Hucka
et al., 2001) or the Modeler’s Workspace(Forss et al., 1999), will be required.

7.2 Internal and external documentation

Early versions of Catacomb(Cannon, 2001a) experimented with the idea
of internal documentation for all model components. That is, one of the
parameters of every object was a text document in which the creator of the
model could provide whatever information they saw fit. This text would
then be an inextricable part of the model. The immediate advantage is that
anyone who has the model also has the documentation. The disadvantage is
that the information provided this way is unstructured. Adding further fields
such as “author”, “date”, “keywords” to every object would be very wasteful
since only a small fraction of model components ever need documenting
separately.

This option has now been replaced by a more structured external doc-
umentation mechanism based on the Axiope (www.axiope.org) non-curated
distributed database project(Cannon et al., 2002). This allows complete
models, or subcomponents such as individual ion channel models, to be
documented according to external or user-generated templates. The infor-
mation can be exported as both a collection of web pages and as XML files,
constituting a self-contained website. This can be kept locally as a data-
management system, or exposed on the web as part of a distributed model
database. In the latter case the software can request one or more Axiope
servers to visit and catalog the site. They then provide collective indexes
and search services where the provided models appear among similar items
from other participating sites. This approach to model documentation and
publication is still very much in its infancy but is hoped to overcome many
of the hurdles involved in submitting models to centralized databases. With
the Axiope scheme, it is made very clear that authors retain complete phys-
ical and intellectual control over their work, while still making it accessible
through collective access points.

7.3 Interactive tutorials

On-line help is provided as a set of local web pages which can be viewed from
any standard web browser, or from a simplified built-in HTML browser.
The latter has the advantage that it also understands Catacomb-specific
links built into the web pages which can be used to issue commands to
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the interpreter. These may typically be used to load example model files,
open display windows for particular subcomponents, or perform actions such
as running a model. The present implementation of such links is to use a
pseudo-URL which includes a command name and optional arguments. Cur-
rently commands include “show”, “run”, “load”, “press” and “set”. What
is required for subsequent arguments depends on the action being applied,
but in most cases there is a single argument which is the fully qualified name
of a model component.

8 Extensibility and interaction with other model-
ing systems

Software capable of computing the behavior of models of biological systems,
is necessarily complex, and there is a continual drive to be able to accom-
modate larger and more complex models. It is therefore essential to find
mechanisms for widespread collaborative work both in building model de-
scriptions, and in developing software implementations. This problem is
shared with many parts of the software industry and solutions have been
under development for many years. The situation in neuroscience differs
from many commercial applications, however, because of the complete lack
of hierarchical organization, and the consequent need for structures which
correctly apportion academic credit and intellectual property rights to all
participants.

Perhaps the closest parallel to academic software may be found in the
free software community(Raymond and Young, 2001) which has developed
working structures based largely on conventions. The history of free software
would suggest that widely accepted solutions are indeed likely to emerge,
given time, but that there may be substantial duplication of effort in the
process. In the meantime, Catacomb2 provides a number of mechanisms for
users to extend its capabilities according to their needs, ranging from the
use of its built in model definition structure, to cutting parts out for use in
quite separate software packages.

8.1 Component grouping

A simple, yet versatile, way of making new components that show func-
tionality not found in the standard set of frameworks is provided by the
component grouping mechanism. As discussed in section three, primitive
components can be connected together and encapsulated as a single item
for future use. Since the primitive components can come from any of a wide
variety of logical and biological components, as well as other grouped com-
ponents, it is possible to implement models this way that bear no relation to
the problem domains of the constituents. A very common case of extension
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by component grouping, is the construction of single-cell models, which are
nowhere represented in the elementary components, as discussed in section
2.

8.2 Scripting

The jythonScript component mentioned in table 5 provides an interface
from a model to arbitrary logic implemented as a script written in Jython
(www.jython.org), the Java flavor of Python (www.python.org). Any number
of such scripts can be incorporated in a model. They can communicate with
other components through vectors or discrete events. This approach to
model extension is provided for flexibility and prototyping but is deprecated
as part of any permanent model description because it breaks the convention
about purely declarative model descriptions. The internal working of a script
is generally opaque to archiving systems or search engines, and difficult for
other users to understand. Functionality that is initially implemented in
scripts should be migrated to new model frameworks if it proves to be widely
used.

8.3 Writing new frameworks

The dynamic nature of Java class loading and instantiation allows Catacomb
to be very liberal about what constitutes a model description framework.
Indeed, any public class with a default constructor can be used. Any fields
that are declared public and are within the set used in the software (section
3.1) will be made accessible through the user interface. Furthermore, if mod-
els use Catacomb’s own set and reference objects, or those declared in the
NeuroML development kit, then the full functionality of the model descrip-
tion framework will be available on the imported class. Adding a framework
for the model description does not involve adding any numerical code for
implementing a model. Models that use external class definitions can still be
created, modified stored and retrieved. In general, adding numerical code so
that a model could also be run would involve writing corresponding classes in
the model implementation package. This type of extension, however, is very
specific to one software package and therefore wastes much of the generality
afforded by the technology. Instead of requiring package-specific extensions,
Catacomb2 also supports a system-neutral extension mechanism at the code
level that is being developed in the wider context of NeuroML as discussed
in the next section.

8.4 Interfaces for runtime interaction

One of the most attractive ways to enable distinct software packages to work
together when neither is strictly dependent on the other, is to establish a
small area of common ground in some neutral space between them through
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which all communications should pass. Each package must then know about
the common ground, but can be insulated from any changes in the other
package. In software terms, this common ground should be part of the
global namespace which is not associated with either package. Much soft-
ware written in Java now uses globally unique names dependent on owner-
ship of particular domains. For example, the full names of classes developed
by Sun Microsystems often begin com.sun. as in com.sun.j3d.loaders.Loader.
By convention, this name is unique to Sun because they own the domain
sun.com.

One natural piece of common ground for interaction between modeling
packages is the neuroml.org domain which is already extensively used by
various packages because of the facilities it provides for working with XML
files. However, before sufficient agreement is reached as to exactly what
such middle ground should contain, Catacomb uses an alternative neutral
area under compneuro.org which is co-hosted with neuroinf.org. Amongst
other things, this site holds documentation and interfaces which can be used
to build Catacomb-compatible components without needing to read or use
any of the source code. This protects developers from changes that may
take place to the software itself, and guarantees that their work is genuinely
system independent. It also allows Catacomb developers to modify and
re-factor the internal architecture at will, without the risk of breaking de-
pendent code because they only need to ensure that the interface definitions
remain unchanged. At present, these interfaces cover everything needed for
compatibility with the event send/receive and vector read/provide mecha-
nisms. That is, provided objects from an external package implement the
right interfaces from the org.compneuro package then it is possible to instan-
tiate them through the user interface, connect them to other components
with the spike and vector connections, and run the resulting model.

9 Case study: modeling spatial navigation

Much of the development effort behind Catacomb to date has been directed
at building increasingly effective models of spatial navigation and food seek-
ing behavior in order to explore the role of theta rhythm in hippocampal
function. The development and structure of these models has been described
elsewhere(Hasselmo et al., 2002a,b, 2000): here the focus is on how they have
been implemented and refined using Catacomb2. First a brief overview is
given of the problems under study and the hypotheses to be explored. Then
the structure of the model is examined with reference to two key design
issues: how to separate encoding and retrieval within the network so they
do not interfere; and how to make the virtual rat move towards the food.
The full model, as it appears on first loading in Catacomb is shown in figure
6: only a few aspects will be considered here.
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Figure 6: T-maze, virtual rat and network as it appears in Catacomb2. The
symbols correspond to the items in tables 3—7. Larger boxes with a ladder
down the left hand side are populations of cells, and double lines represent
1-1 or all-all projection patterns between populations.
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9.1 A mechanism for environment learning

Behavioral data suggest a role for parahippocampal regions in memory
guided behavior(Hagan et al., 1992) and the patterns of activity in par-
ticular regions have been extensively recorded during spatial navigation
tasks(Yound et al., 1997; Suzuki et al., 1997; Frank et al., 2000). Cellular
physiological properties have also been isolated which could be important for
memory function(Klink and Alonso, 1997; Fransen et al., 2002). The model
considered here is based on the idea of place fields in which patterns of neu-
ral activity are related to specific locations in the environment(O’Keefe and
Dostrovsky, 1997; McNaughton et al., 1983; Muller et al., 1987) A number
of models have addressed both the formation of place fields(Sharp, 1991;
Kali and Dayan, 2000) and the conversion of place information to turning
direction(Sharp et al., 1996; Burgess and O’Keefe, 1996; Redish and Touret-
zky, 1998). Instead of this, the current example focuses on the learning and
use of a representation of the environment. The creation of place fields is of
course necessary, but it is handled here by a single algorithmic component.

The idea to be implemented is that as the rat moves around its envi-
ronment place fields are created which map an area in the environment to
spiking activity in a group of cells. When the rat moves between place fields
it learns an adjacency association between the corresponding groups of cells.
Eventually, when it reaches a food reward, it also learns an association be-
tween the presence of food and the place field in which the food was found.
Now, when the rat is placed in any part of the explored environment, a
mechanism is be required for it to find the food. This involves a diffusion-
like process where the desire for food excites the pattern of the place field
corresponding to the location of the food. The learned adjacency relations
are then used to propagate the activity into patterns for place fields one step
removed from the food. The process is continued until the diffusing signal
reaches a place field which is adjacent to the rat’s current place field. The
rat then moves into this place field, and so on until it gets to the food. In
effect, there is a signal diffusing back through its internal representation of
the environment and it heads to the point where this signal meets a short
range signal moving out from its current location.

Just as with the design of software, although this scenario may seem
plausible, it is next to impossible to find its flaws or weaknesses without ac-
tually implementing it. For example, one problem with the above which may
not be immediately obvious is that the association learning mechanism is
still active while recall is taking place, causing the strengths of learned asso-
ciations to change in the absence of new information, and rapidly corrupting
the internal representation of the environment. But this soon becomes ap-
parent in the process of building a model to perform the task. The first step
is to decide which features should be implemented with biologically plausible
mechanisms, and which ones should be done with higher level components.
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Because the main interest is in the learning and use of representations of the
environment, motor control and the formation of place fields will be handled
by logical components as described in the next subsection. Populations of
spiking cells will be used for the hippocampal regions as described in sections
9.2 to 9.5.

9.2 A framework for studying interaction between network
models and a simulated environment

The components used to represent the environment and to make contact
between the virtual rat and the hippocampal network are shown in figure 7.
The meanings of the icons can be read with the aid of tables 2 to 7. See the
figure caption for a detailed description of their internal connections. There
are two areas of interaction between this part of the model and the rest:
definition of the experimental protocol; and closing the sensory to motor loop
through the network model. In this case, the experimental protocol is very
simple, defined by a sequence of events controlling the insertionSwitch
which moves the animat around. More complex protocols might use the
ports on the dispenser and other devices to encode, for example food delivery
in response to lever presses. The access points that make contact with
the network are the ports on the ingester and the feature discretizer. The
ingester sends periodic events when the animat is within range of food, and
can be instructed to eat by sending events to its input port. The feature
discretizer acts as a single-component solution to the problem of creating
place fields, which is not the focus of the present study. It keeps a list of
known feature vectors, and continually reads the position of the rat. When
the rat is far enough from any previous features, it creates a new one and
adds it to the list. The index of the current feature is the main input to
the rest of the model. The feature discretizer also works in reverse, taking a
feature index provided by the hippocampal network, and converting it back
to a feature vector. This is combined with the current position of the rat in
the direction calculator in order to produce a command signal for the motor
system.

9.3 Buffering sensory input

The algorithm outlined above requires information about the environment,
essentially adjacency relations among place fields, to be coded in the synap-
tic weights of projections between patterns corresponding to different fields.
For convenience, the present model uses single element patterns, so this in-
volves strengthening a single selected recurrent connection within a fully
connected network of place cells. The source of the adjacency information
is the environment itself — the rat moving from one place field to the next
provides the information that they are adjacent. But the rat moves between
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Figure 7: Physical and logical components implementing a virtual rat and
its interaction with a maze. The animat itself is composed of the two com-
ponents to the upper left which confer on it the property of having a physical
position and size relative to the walls of the T-maze (“spatial location”), and
the ability to eat from the dispenser (“ingester”). The straight arrows from
the spatial location component indicates where it is placed in the maze.
In this case, the arrow goes through a switch, allowing the animat to be
moved between predefined tracks and free running mode according to the
event sequence object on the left. The position output goes to a feature
discretizer component which creates place fields as required when the rat
moves around. The output of the feature discretizer forms the input to the
biologically motivated parts of the model.
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fields relatively slowly compared to the pre-to-post synaptic spike intervals
of well under 100ms over which synaptic potentiation is experimentally ob-
served to occur(Markram et al., 1997; Bi and Poo, 1998). There is therefore
a need for some sort of buffering to provide persistent activity in one place
field which overlaps with activity in the next field that the rat enters.

There is extensive physiological data suggesting that persistent action
potential firing can occur in certain cells of the entorhinal cortex in response
to activation of muscarinic receptors which results in prolonged calcium
sensitive cation currents(Alonso and Klink, 1993; Klink and Alonso, 1997).
This has also been implemented in detailed biophysical models(Hasselmo
et al., 2000; Fransen et al., 2002). In the current model, persistent firing
is achieved with a slow after-depolarization, as in part B or the examples
in figure 1. Once a cell in the buffer population fires, it initiates a slow
after-depolarization (ADP) which, in the absence of other input, is sufficient
to bring it back to threshold in about 50 ms. Connections between cells,
and through an inhibitory network allow for this persistent firing to be
suppressed in the presence of other activity.

9.4 Using theta oscillations to separate encoding and re-
trieval

The next step in implementing the outline design, is to introduce the synapses
in which the adjacency relations are to be encoded. The buffering network
provides temporally overlapping activity patterns so it is sufficient to use a
one-one projection to transfer these to a population of cells with recurrent
connections which implement a long term potentiation rule. The parame-
ters of synapse population components can be set to implement a wide range
of spike timing dependent plasticity laws. The possible features are shown
in table 8. First, the spiking output of the cell must be connected to the
backward propagating spike port on the synapse population. This is neces-
sary because the normal insertion connection between a synapse population
and a membrane works in only one direction: the synapses affect the mem-
brane conductance, but the membrane has no effect on the synapses. Once
a synapse is receiving both afferent and back-propagating spike information,
it is sufficient to specify the weight modification profile, normally by linear
interpolation for the pre-to-post or post-to-pre time difference in a set of
points.

Using recurrent connections with an LTP window of 40ms, the network
readily learns the adjacency relations as increased synaptic weights, and
the properties of the buffering population prevent any learning of second-
neighbor relations. However, problems arise when the model is extended to
make use of the weights, because the LTP mechanism makes no distinction
between firing which results from supplied information and firing which re-
sults from internal recall. The encoded information risks being swamped by
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spurious connections learned during recall, which will typically involve more
network activity within the LTP window than during encoding. In software
terms, some sort of clocking or gating mechanism seems to be necessary
to switch between the two modes. Possible biologically-based solutions can
be found in a number of experimental studies which have tested the rela-
tionship between theta oscillations (4to 12 Hz) in the hippocampus and the
induction of long term potentiation(Pavlides et al., 1998; Holscher et al.,
1997; Orr et al., 2001; Wyble et al., 2000). These experiments all show
the strongest long-term potentiation at the peak of the theta cycle, which
corresponds to the weakest synaptic transmission. This is exactly the func-
tion required here: when the information is internal, propagated by strong
synaptic transmission, there should be no potentiation, but when the synap-
tic transmission is weak, indicating that spiking activity is driven externally,
then the synapses should potentiate. Although it would be possible to imple-
ment this mechanism with biophysical units, Catacomb2 also allows direct
modulation of plasticity and transmission at synapses as described in table
8. Using this mechanism it is sufficient to attach a signal generator with the
right waveform directly to the synaptic transmission port, and for the same
signal to be sent to the plasticity modulation port after passing it through
a delay buffer component which induces a half-cycle delay. This allows the
network to operate in two distinct modes, performing one encoding frame
and one recall frame on each theta cycle. This illustrates another feature
of the modeling philosophy described in section 2: a possible mechanism
is implemented rapidly with algorithmic components to see if it fulfills the
desired function. Only now that it has proved to be useful is it worth look-
ing further for biological correlates and refining the model to incorporate
biophysical mechanisms such as calcium dependent gating of transmission
and modulation.

9.5 Goal-directed behavior and action selection

The second design issue to be considered is how information about the goal
and the current location can be used to generate motor signals for the virtual
rat. As discussed in section 9.1, the feature discretizer component works in
both directions, so it is sufficient for the network to send spikes of the right
index (coming from the right cell in a population with place fields) into the
feature discretizer, which will reconstruct the locations in the environment.
The direction calculator then computes a direction for the virtual rat, which
advances at a default speed in the absence of any other signals from the
network.

Although the discussion of encoding and retrieval focuses on a single re-
current network, the algorithm outlined in the introduction requires several
populations, each with cells corresponding to place fields in the maze. In
the current model region CA3 encodes an episodic memory of paths taken
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Parameters
E rev (mV) reversal potential of applied conductance (fixed)
G 0 (nS) initial conductance
G max (nS) maximal conductance
G ModRule profile of weight change in terms of pre-post tim-

ing
riseTime (ms) rise time of conductance change
fallTime (ms) decay time of conductance change
saturates if set, the synapse behaves as though it had a

limited supply of transmitter which recovers at
rate fallTime

saturationFactor fraction of available transmitter used for each
event

voltageDependent if set, the conductance depends on membrane
potential

Vhalf membrane potential for half-maximal conduc-
tance

z equivalent gating charge
Ports
afferent spike activates a synapse according to the spike index.

Synapses are only created the first time they are
needed.

membrane attaches the population to a section of mem-
brane

plasticity modulation if the synapse has a plasticity law, the supplied
value multiplies the applied weight change

transmission modulation scales the post-synaptic conductance whenever
the synapse is activated

back-prop spike used by plasticity laws to determine pre-post
spike timing

Table 8: Summary of synapse population properties. Synapse populations
are among the most complex single components in Catacomb, and mix bio-
physical properties with logical properties, such as direct plasticity modula-
tion to capture a wide range of possible functions.
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during exploration, learning adjacency relations between place fields in the
direction of the rat’s motion. During the navigation task, activation of a
CA3 cell corresponding to current location then recalls known neighboring
place cells through the strengthened recurrent connections. The activity
of recalled neighbors propagates to the CA1 population, where the afferent
input elicits a persistent sub-threshold depolarizing response.

In the ECIII population, afferent input is received from a second os-
cillatory buffer (hypothesized to involve pre-frontal cortex) that maintains
the activity of a place cell corresponding to the location at which the food
reward was discovered. This afferent input causes recall along strength-
ened recurrent connections that encode associations between place fields in
the reverse of the direction of motion during learning. Activity therefore
spreads backwards through the ECIII representation of the environment via
fast synaptic responses. Just as with CA3, the cells in ECIII projects onto
CA1 with synaptic weights which induce sub-threshold depolarizations.

Both signals therefore combine in CA1: neither is strong enough on its
own to activate any CA1 cells, but when a cell receives input from both
ECIII and CA3, then it reaches threshold and fires an action potential.
The first such spike on a cycle constitutes the desired next location signal
which is sent back to the virtual rat. It is important that the spread of
activity is greater in ECIII than in CA3, because the next desired location
selected by the network should to be adjacent to the current location, not
somewhere further afield or the virtual rat would try to head for a remote
location and would be stopped by the wall. This is just one example of
how using the simulated environment helps motivate and structure solutions
to the network design. The broader spread of activity in ECIII than in
CA3 is consistent with experimental data from recordings of the entorhinal
cortex(Barnes et al., 1990; Quirk et al., 1992; Frank et al., 2000) that show
much larger place fields in ECIII than in CA3.

A variety of views of the final model are shown, for illustrative purposes
only, in figure 8. These are all captured directly from the user interface at
the point where the rat is deciding to turn left, towards the food instead of
right. The most recent full model is available for download and examination
along with the software at askja.bu.edu.

9.6 Further model development

Although discussion of the model has been based entirely on the T-maze
task, the modular construction allows the same virtual rat to be inserted
in other mazes and tested on other tasks. The maze building components
have been designed to allow representation of a wide variety of experimen-
tal configurations, with interacting levers, lights sounds and food rewards.
One direction of development is therefore to build increasingly robust vir-
tual rat models which use the same network to perform a variety of tasks.
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Figure 8: Illustration of visualization features during the T-maze task. All
images are captured directly from the software as the model is running at
the point when the rat has just chosen to turn left instead of right. The
camera view shows the position of the rat in the maze as the model runs.
The upper right view shows the points visited by the rat during environment
learning and the place fields that were created (shades of gray) by the fea-
ture discretizer. The spiking activity of the buffer population of place cells
is shown in the lower left, with the synaptic weights of recurrent connections
in the CA1 population in the lower right. Darker shading indicates stronger
weights: strong connections only exist between place cells for adjacent loca-
tions.
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An essential component of this work is the generation of explicit predictions
about spike timing in particular cell populations during navigation tasks.
Comparison of these predictions with experimental results drives the next
step of iterative refinement. Another direction for the model is to replace
some of the algorithmic parts, such as the synaptic modulation, with more
realistic biophysical components that allow direct comparison with electro-
physiological or imaging data. At the same time, however, an equally fruitful
direction may be to replace some of the features currently implemented by
populations of cells with higher level components that capture the desired
function but can be computed more efficiently. This keeps the running time
down (the present model takes about a minute to learn the environment and
then find the food reward on a fast PC) and allows attention to be focused
on the areas of the model that are intended to be directly comparable to
experimental data.

10 Discussion and future directions

Catacomb2 is a highly modular software system for modeling neuronal pro-
cesses over a wide range of scales from ion channel kinetics to animal be-
havior. It has graphical components for setting up purely declarative model
descriptions and an independent set of numerical components for evaluating
and studying model behavior. The emphasis throughout is on modeling by
design rather than modeling by mimicking biology as closely as possible.
Features are added to the model only where it is found that particular be-
haviors are needed in order to achieve functional goals. This contrasts with
the kitchen-sink approach where extra detail is added to a model simply be-
cause the real system is known to have such detail, irrespective of whether
it is sufficiently well constrained to improve the predictive performance, or
only adds more noise. In order for the design approach to work, it is essential
to have a well defined task for the model to perform. It is also necessary that
the model should succeed, in a loose sense, at the task in an early stage of
model development in order to provide realistic feedback to internal compo-
nents so that they can be iteratively improved to achieve a closer match to
the system under study. This is achieved by allowing models to contain an
eclectic mix of components capturing both biologically realistic and purely
algorithmic behaviors.

One criticism of the design-based approach is that it provides no guar-
antees of arriving at the same solution to a particular problem as has been
adopted by nature, either globally, in the overall structure of the model,
or locally in the properties of individual components. Indeed, the use of
components working at different levels of description may exacerbate the
problem of the solution settling into an artificial local minimum created by
the unbiological properties higher level components. As with any optimiza-
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tion process, there is a trade-off to be made between the smoothness of the
error function and the time it takes to evaluate the function and pick a
new point in parameter space. If the error function has a guarantee unique
minimum, then it is worth investing heavily in a slow but sure iterative
procedure. If the function is irregular with many local minima, then it had
better be quick and easy to examine points and generate a new guess be-
cause a lot of such guesses will be required to get to the right answer. In the
present context, evaluating the error function corresponds to the two part
question: does the model perform the task, and does it do it the same way
as a real system? Picking a new point in parameter space corresponds to
generating a new model. The design of Catacomb2 is focused on the second
of the two optimization scenarios: the optimization surface is sure to be
complex, so it should be quick and easy to generate and test models. The
single most important point is simply that the error function should exist.
That is, there should be a way to examine and test a model independent
of the empirical data on which it is based. Moreover, this test should be
readily accessible to any interested researcher with minimal effort (section
7). Essentially, exhibiting a model that does something interesting by the
wrong mechanism so it can be shot down can be a much more fruitful step in
research than providing a collection of correct mechanisms that do nothing
very much.

The case study presented in section 9 highlights a number of directions
in which future development is required. Some of these depend mainly upon
exploiting recent progress in the software industry to make new applications
possible. Others require further research work in the application of compu-
tational methods to biological problems.

10.1 Technology driven development

The growth of application libraries and progress in software engineering
technology, make many technical problems much more accessible today than
they have been in the past. Creating complex, multi-author software sys-
tems in a distributed academic environment requires mechanisms whereby
each author can work in their own area, with minimal dependence on oth-
ers and yet where their resulting software is useful outside the originating
lab. The development of tools and interface standards within the NeuroML
framework promises to make this much easier than has hitherto been the
case. Even before such tools are mature, projects such as Catacomb2 can
be both providers, and users of such modules. For example, Catacomb2
already relies on the XML parser provided by the NeuroML project and
it provides visualization facilities for a variety of NeuroML models. These
interactions currently work on a somewhat ad-hoc basis, but form one of the
many cases to be considered in the development of NeuroML standards. In
the same way, the Neosim(Goddard et al., 2001a) discrete event simulator is
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being incorporated as an optional layer between the model description and
execution stages. It will add the ability to run network models on parallel
machines and workstation clusters, and the parallelization should be almost
transparent to the user. Neosim handles all issues related to the config-
uration of a particular machine, and the model description is completely
independent of how it is to be run.

Another area of substantial recent investment is what is being known as
“e-science” (www.escience-grid.org.uk), which encompasses “grid comput-
ing” (www.gridforum.org) and the “semantic web” (www.semanticweb.org).
These are technologies for turning the web from a browsable data stor-
age medium into a distributed computing and knowledge management plat-
form. One core focus is on facilitating collaborative work through shared
databases, ontologies, and computing resources. The modularization of
modeling systems envisaged by the NeuroML project, and the Axiope (www.axiope.org)
model publication and sharing system clearly fall within this framework,
along with many rather more nebulous concepts. The utility of these tech-
nologies to the neuroscience community should become clear as they take
on more concrete forms.

10.2 Models and modeling strategies

One of the goals in the development of Catacomb2, as outlined in section 2.2,
has been to structure models so that the parameter space is rich in biolog-
ically plausible models, and excludes implausible models as far as possible.
The provision of large sets of standard components makes it much easier
to construct models based on these than models using different formaliza-
tions. Thus, for example, even the simplest cell and synapse models are
based on conductances and reversal potentials, instead of additive currents
or potentials, because conductance-based models are both more realistic
and intrinsically more stable. However, fragility and excessive sensitivity to
certain parameters remains a major weakness of many models. There are
at least two ways of tackling this problem: increasing the certainty about
the properties of the systems on which a model is based by using database
and ontology resources in model construction; and changing the parameter-
ization so as to describe slow processes such as neuronal development and
self-regulation instead of the instantaneous state of a system.

One example of how database access could work is present in Catacomb2
as a graphical browser for the CoCoMac(Stephan et al., 2000) database of
connectivity in the Macaque brain. This is able to query the database across
the web for connectivity data between regions in selected brain maps and
presents the results superimposed on the maps with color coded connec-
tion information. At present the information is extracted from the database
according to user generated queries and presented through the graphical
interface. But it is a relatively small step from here to allowing queries
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to be generated automatically by the software. One could ask, for exam-
ple, whether the projection patterns built into a model are backed up by
anatomical data. A further step would see the modeling process begin with
database queries in order to set up the connectivity structure of the model.
This structure would then be fleshed out by providing single-cell models for
populations in different regions (perhaps coming from some other database),
and by refining the details of the connectivity patterns. Following a recurrent
theme of this paper, the model construction process would then be broken
down form being one long single-user procedure into many smaller declara-
tive steps in which existing resource are drawn together and combined in a
novel way to construct the next layer.

But perhaps the biggest single problem of these and other models is their
fragility and the sensitivity of their behavior to uncertain parameters as dis-
cussed in section 2.2. From the perspective of applied mathematics, when
the numerical calculation of the behavior of a physical model is very diffi-
cult to implement or requires very high accuracy to be reproducible, it often
means that the methods or equations are inappropriate, not that the sys-
tem is genuinely delicate. This is even more likely in biology where the real
systems are known to be robust to changes in temperature or chemical com-
position. Models which require parameters to be expressed to more than
a couple of significant figures are therefore intrinsically implausible(Borg-
Graham, 1999). Since this applies to at least some part of most models,
there is scope for reformulating many models with more robust structures.
One of the first aims of future Catacomb development is to move away from
static descriptions of the instantaneous state of a model (such as actual ion
channel densities for example) towards artificial or, where possible, more re-
alistic parameterization of slow self-regulatory processes which govern these
quantities. In general, systems are far less sensitive to the parameterization
of regulatory mechanism than to their instantaneous state. In modeling
biochemical cascades, for example it has even been argued that the only
things that really matter are the presence or absence of reactions between
particular species, not the details of their rates at all. Allowing the design
of systems where the structure of what is possible, and perhaps order-of-
magnitude parameter values are all that matters is therefore central to the
development strategy.

Finally, the most realistic, and perhaps also the most reliable way of
constructing working models of neural system, is to model the processes of
growth and development which give rise to the real systems. The complete
separation between the model description and computation leaves open the
possibility of adding further layers of processing between them which would
make changes in the executable system itself according to rules expressed
in a model of growth and development. Although it is within the overall
design, much further work is required in order to make such modeling readily
accessible in Catacomb2.
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