
Abstract
A variety of approaches are available for

using computational models to help under-
stand neural processes over many levels of
description, from sub-cellular processes to
behavior. Alongside purely deductive bottom-
up or top-down modeling, a systems design
strategy has the advantage of providing a clear
goal for the behavior of a complex model. The
order in which biological details are added is
dictated by functional requirements in terms of
the tasks that the model should perform. Ideas
from engineering can be mixed with those
from biology to build systems in which some
constituents are modeled in detail using bio-
logically-realistic components, while others are
implemented directly in software. This allows
the areas of most interest to be studied within
the context of a behaving system in which each
component is constrained both by the biology
it is intended to represent as well as the task it
is required to perform within the system. The
Catacomb2 modeling package has been devel-

oped to allow rapid and flexible design and
study of complex multi-level systems ranging
in scale from ion channels to whole animal
behavior. The methodology, internal architec-
ture, and capabilities of the system are
described.

Its use is illustrated by a modeling case
study in which hypotheses about how
parahippocampal and hippocampal structures
may be involved in spatial navigation tasks
are implemented in a model of a virtual rat
navigating through a virtual environment in
search of a food reward. The model incorpo-
rates theta oscillations to separate encoding
from retrieval and yields testable predictions
about the phase relations of spiking activity to
theta oscillations in different parts of the hip-
pocampal formation at various stages of the
behavioral task.

Index Entries: Computational neuroscience;
simulation software; modeling; spatial naviga-
tion; hippocampus; theta rhythm.

3

Neuroinformatics
Copyright © Humana Press Inc.
All rights of any nature whatsoever are reserved.
ISSN 1539-2791/03/01:3–42/$20.00

Original Article

From Biophysics to Behavior
Catacomb2 and the Design of Biologically-Plausible
Models for Spatial Navigation

Robert C. Cannon,*,1,2 Michael E. Hasselmo,3 and Randal A. Koene3

1 Theoretical Neurobiology, Born-Bunge Foundation, University of Antwerp, Universiteitsplein 1,
Antwerp, Belgium; 2 Institute for Adaptive and Neural Computation, Division of Informatics, University
of Edinburgh, 5 Forrest Hill, Edinburgh, UK, EH1 2QL; 3Department of Psychology and Program in
Neuroscience, Boston University, 64 Cummington Street, Boston, MA 02215

*Author to whom all correspondence and reprint requests should be sent.
E-mail: robert.cannon@ed.ac.uk

4 __ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

Introduction
Two tasks at which the capabilities of com-

puters far exceed those of human researchers
are the management of very large homoge-
neous volumes of data and the numerical cal-
culation of the behavior of complex systems
based on precise and complete formulations
of their constituent parts.

Both of these capabilities are of great poten-
tial benefit to research in neuroscience, yet the
uptake of database technology and the growth
in the use of models has been much slower
than in many other sciences. On one hand, this
may be ascribed to the extreme heterogeneity
of the information to be stored and processed,
and on the other to the total absence of “pre-
cise and complete formulations” of the behav-
ior of elementary constituents of neural sys-
tems. That is, heterogeneity is as much a prob-
lem in computing collective behavior as it is in
storing and handling data. Indeed, ambitious
recent developments such as CellML
(www.cellml.org) or Neurospaces (Cornelis
and De Schutter, 2003) intentionally blur the
distinction between representations of the bio-
logical structure and of the mathematical
properties of a system. They treat the mathe-
matical formulation simply as more first-order
information to be processed along with a sys-
tem’s logical and spatial structure, in order to
derive higher level properties.

The impact of heterogeneity on the feasibil-
ity of modeling studies has often been under-
estimated, as characterized by the view that if
we just work a little harder and make a bit
more effort, then the methods that are so effec-
tive in, for example, theoretical physics, will
yield equally fruitful and compelling results
in neuroscience. This view neglects, or denies,
a fundamental difference between physics
and life sciences that Schroedinger (1956)
describes as the difference between “hot” and
“cold” systems. In a “hot” system (almost
everything treated by theoretical physics) as

you include more and more elementary units,
their collective behavior begins to be indepen-
dent of the detailed properties of the units
themselves. Consequently, mathematical
approximations get better and better for larg-
er and larger systems. Cold systems (all living
things) behave in the opposite manner, more
analogous to a machine than to a statistical
equilibrium, with the variety of realizable
behaviors growing with increasing size.

A consequence of this is that although
abstract mathematical models and detailed
physics-style bottom-up models can both be
useful, there is a whole domain of computa-
tional applications in neuroscience that is sim-
ply not represented in other scientific fields.
These are the techniques appropriate to the
study of complex “cold” systems in terms of
information management and software engi-
neering. They form a major constituent of the
emergent field of neuroinformatics.

Because of the closer analogy of neural sys-
tems to machines (mechanical, computational
or economic) than to perturbations of statisti-
cal equilibria, it is to be expected that much of
the methodology and technology of neuroin-
formatics should owe more to engineering or
commerce than to applied mathematics and
theoretical physics. Thus, for example, the
software systems of choice in computational
neuroscience, as well as in the business com-
munity, include C++, Java, and XML
(Goddard et al., 2001a,b; Forss et al., 1999),
whereas these systems have only achieved
minimal penetration among physicists, pre-
sumably because they are not particularly use-
ful for most research problems in physics.
Likewise, neuroscience database technologies
(Cannon et al., 2002) are more closely related
to distributed shopping systems than to their
highly centralized, astronomical counterparts
(Wenger et al., 2000). One exception to the cor-
respondence with business software is the
extensive use of Lisp, the preferred language
of artificial intelligence research, in the Surf-

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation __5

Hippo Neuron Simulation System (Borg-
Graham, 2001). The motivation for this choice
includes features such as platform indepen-
dence and access to the interpreter, which have
been present in Lisp for many years. The even-
tual appearance of these features in the C-fam-
ily of languages is a large part of the appeal of
Java for neuroinformatics applications.

Good sources of inspiration in using com-
puters to study the integrative behavior of
neural systems can be found in various
domains of software and hardware engineer-
ing, including computer-aided design, e-com-
merce applications, computer games (Funge,
1999) and, indeed, almost any modern appli-
cation of object-oriented design (Gamma et al.,
1995). In conjunction with more conventional
areas of numerical analysis, these have been
primary influences in the development of the
present modeling system via various interme-
diate stages (Cannon, 2001a; Cannon et al.,
1998; Hasselmo et al., 2002b).

The next subheading explores the advan-
tages of the design-based approach to model-
ing in comparison with conventional deduc-
tion-based methods. It is followed by an
examination of how best to represent multi-
level biological models (“Model Structure”).
Each subheading begins with an analysis of
the problem and works through possible solu-
tions, ending with the details of the particular
choices made in Catacomb2. The software
architecture of the system is described under
“Catacomb2 System Architecture,” and the
main biological and non-biological compo-
nents that are currently available for use in
models are presented in “Software
Components.” “Model Execution and Meta-
Modeling,” “Publication, Dissemination, and
Archiving,” and “Extensibility and Interaction
with Other Modeling Systems” cover three of
the most important requirements of the cur-
rent generation of modeling systems: meta-
modeling facilities such as sensitivity analysis
and optimization; infrastructure for model

sharing and publication; and mechanisms that
allow the system to be extended or used
in conjunction with other tools. Throughout
the text, concepts are illustrated with examples
taken from the first major model built with
Catacomb2. This model involves spatial navi-
gation by a virtual rat in a virtual environment
guided by spiking activity of populations of
cells representing parahippocampal and hip-
pocampal structures (Hasselmo et al., 2002a,b).
Scientific and technical aspects of these models
are presented as a case study in “Case Study:
Modeling Spatial Navigation.” Finally,
“Discussion and Future Directions” reviews
recent progress and discusses future directions
for the software and modeling work.

Modeling Philosophy
Neural systems have functionally impor-

tant features on a wide range of spatial and
temporal scales: from spine morphology to
system connectivity, and from receptor kinet-
ics over a period of milliseconds to permanent
morphological changes. Building an artificial
system which encompasses all, or even some
part, of this range involves constructing a path
through the space of possible models that con-
nects structure at the smallest scale present to
that at the largest scale via all the intermediate
levels (Kotter et al., 2002; Borg-Graham, 1999).
In some respects, this can be likened to solving
a differential equation where constraints, or
boundary conditions, are imposed on the
solution at both ends of the domain. The his-
torical development of numerical methods for
solving differential equations can therefore be
used to frame corresponding ideas about how
to tackle multi-level modeling problems.

Neither Top-down Nor Bottom-up

One of the earliest and simplest approaches
to solving two-point boundary value prob-
lems is known as the “shooting” method. It
takes the known conditions at one end, guess-
es any unknown quantities that are needed,

6 __ Cannon et al.

Fig. 1. Component-based single cell models.The components on the left are used for stimulation, either by
imposing a transient conductance change on the membrane (A, B, and C) or by sending a train of events to
a population of synapses (D and E).The right-most component shows the membrane potential of the cell.All
figures are generated directly from the software and appear much as they do through the user interface. A.
Simple integrate-and-fire cell with a leaky integrator compartment and a spike generator which fires an event
whenever the cell exceeds a threshold. The spike generator reads the potential of the cell and causes the
potential to be reset when it fires an event (link going back to the “reset” port on the integrator compart-
ment). B. As case A, but with the addition of two spike response functions that are triggered by events from

Catacomb2 and Models for Spatial Navigation __7

and propagates the solution across the
domain to the other end. In general, the result-
ing path will not meet the desired boundary
conditions, so the initial guesses are modified
and the process is repeated. If the equations
are well-behaved such that the point at which
the path meets the far end varies systematical-
ly with the initial guesses, then the right solu-
tion can eventually be found by judicious
adjustment of the initial guesses. Both the bot-
tom-up (working up from biophysics) and
top-down (working down form behavior)
methodologies of computational neuroscience
are analogous to shooting methods.
Unfortunately, it is a well-established result of
numerical analysis that shooting is only a suc-
cessful strategy for relatively simple systems
comprising no more than a few nicely-
behaved equations. Therefore it is unsurpris-
ing that these methods are very difficult to
apply successfully in neuroscience, where the
boundary conditions are complicated and the
integrative behavior even between adjacent
levels rarely obeys simple rules. Fortunately,
the differential equation literature contains
many methods that have been developed to
work in more complex environments. These
form the basis of much day-to-day numerical
work in theoretical physics (e.g., Eggleton,
1971; Lattanzio et al., 1997) and suggest that
analogous methods may prove useful in neu-
roinformatics.

Among the approaches developed for two-
point boundary value problems, perhaps the
most widely used and generally useful are
relaxation methods (Press et al., 1993). The

strategy here is to start with a complete path
across the domain, that, of course, is not a
solution, but does meet the desired conditions
at the two ends. The path at least provides a
value, albeit wrong, for the function at all
intervening points. An iterative procedure is
then used to gradually adjust all these points
together in order to bring the path closer and
closer to the correct solution—a process
termed “relaxation.” An alternative version
has the starting configuration serve as the cor-
rect solution to a different, simpler, problem
and then gradually move towards the real
problem in small steps such that the solution
can be kept up to date for each change
(Cannon, 2001b). The challenge in this method
is to find an acceptable starting solution, or
simple equivalent problem, and then to come
up with an iteration scheme which does
indeed bring it nearer to the desired result.
Relaxation methods have been applied to
many problems which are intractable by the
shooting method, and are responsible for the
vast majority of our knowledge about certain
types of systems including, for example, the
internal structure and evolution of stars (e.g.,
Faulkner, 1968; Eggleton, 1971; Lattanzio,
1986).

Based on these observations from numeri-
cal analysis, one of the design goals in devel-
oping Catacomb2 has been to facilitate model
development by relaxation, rather than only
by shooting. It should be stressed that the cor-
respondence to numerical analysis is strictly
an analogy. Internally, models often require
the solution to differential equations by a vari-

the spike generator. One is set to produce a rapid after-hyperpolarization, and other to give a slow after-depo-
larization that causes the cell to continue firing periodically after the stimulus finishes. C. As B but without the
connection from the spike generator to the compartment reset port. The cell is repolarized by the spike
response function and has slightly more realistic spike shape. D. A simple integrator with complex synaptic
input.The component on the far left delivers a sequence of events to the synapse population, each of which
causes a bi-exponential conductance change on the compartment. E. Spikes generated by ion channel models.
There are two populations of ion channels loosely representing sodium and potassium channel kinetics.
Together they generate a wide spike in response to input from the synapse population. [CFO]

8 __ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

ety of implementation-dependent methods,
which may indeed involve relaxation methods,
but this is a choice of a particular implementa-
tion. The intended analogy with relaxation is
that it can also guide the way a modeler inter-
acts with a modeling package. The modeler’s
goal is to achieve a plausible computational
equivalent to a biological system, and the
relaxation approach is to start with an implau-
sible model that at least covers several parts of
the problem domain and then gradually
refines its internal components. Thus,
Catacomb2 aims to help build approximate
models which show complex behaviors,
rather than very biologically-realistic models
that only reach simple integrated behaviors. It
does this by allowing a wide variety of soft-
ware components in the chain linking bio-
physics to behavior; some implemented with
biologically realistic components, others with
algorithmic “black boxes.” So, for example,
besides models of cells, it also has logical com-
ponents capable of performing tasks such as
computing a direction of motion from a cur-
rent and desired position. A behaving model
can contain any mixture of high-level logic
with plausible neural circuitry. The aim is first
to build a system which performs the task in
question, then gradually to refine (relax) its
implementation to use more realistic compo-
nents. The advantage is that at every stage
there is input from both ends-what nature
actually uses to achieve particular functional
goals, and what algorithms these components
may be implementing. Intuitively, this is also
the reason why relaxation methods are so suc-
cessful in numerical analysis: they allow the
update step at a particular point to be influ-
enced by information propagating from all the
constrained points of the system.

A correlate to this approach is that there are
no pre-defined “correct” structures to use in
an intermediate model—any structure that
helps the model work is legitimate, and is a
potential basis for subsequent refinement by

the relaxation process. Models can exploit
concepts from a variety of domains, including
continuous-time and discrete-time processes,
as in the growing field of “heterogeneous
modeling”(e.g., www.ptolemy.org). This elim-
inates many of the somewhat arbitrary
boundaries that sometimes appear in the
modeling literature, such as the distinction
between channel-based cell models and inte-
grate-and-fire cell models. In Catacomb2, for
example, there is no barrier to constructing a
cell model which fires a spike and is reset after
reaching a specified threshold, but which also
contains membrane ion channels to generate
subtle sub-threshold behaviors. Indeed, there
are many numerical advantages to separating
out the spiking behavior as an all-or-none
event while working with the channel kinetics
at a slower time scale appropriate to other
sub-cellular processes. Five examples of cell
models at different levels of complexity are
shown in Figure 1. The first behaves as a sim-
ple integrator. Features are added one by one
to create a range of models: any model can be
used in a network according to the functional
needs in a particular context. Further exam-
ples of cells designed to play specific roles
within a network are presented in “Case
Study: Modeling Spatial Navigation.”

Constraining Possible Models

One of the first problems in using a general
purpose differential equation package to
model a biological system is that it provides
too much freedom both in the choice of math-
ematical formulation and in parameter values.
A central goal of domain-specific software
systems is therefore to restrict this freedom so
that the parameter space reflects the plausibil-
ity of particular models in the domain. Users
wish to be presented with options that allow
them to build working systems, not options
where the vast majority of configurations
yield meaningless results.

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation __9

Script-based modeling systems such as
Neuron (Hines and Carnevale, 2001) and
GENESIS (Bower and Beeman, 1994) improve
on general-purpose packages by providing a
set of biologically meaningful constructs that
can be augmented, where necessary, with gen-
eral purpose code. The approach taken in
Catacomb2 has been to accentuate this distinc-
tion by providing a wide range of predefined
components that are intended to work togeth-
er in almost any configuration that the system
lets the user assemble. More complex logic can
be implemented by writing new code mod-
ules or scripts, but for many applications this
should not be necessary. It encourages the
view that script or module writing is a slow
one-off activity that should be carefully
planned and revised, whereas model con-
struction, testing and modification is an
everyday activity to be made as quick and as
easy as possible.

The design of a system that permits only
interesting models to be built, or rather, one
with a parameter space which is at least
densely populated by useful models, remains
a major challenge in computational neuro-
science. With such a system, for example,
genetic algorithms or other optimization tech-
niques could be used on points in the model
space itself. At present, a certain part of the
instantaneous structure of biologically plausi-
ble models is captured, but there is no mecha-
nism for describing the slower regulatory pro-
cesses that would govern many of the quanti-
ties in a real system. The resulting models suf-
fer the same fragility with respect to their
parameters as is familiar from many other sys-
tems. In effect, although the parameter space
does contains interesting models, it fails to sat-
isfy the natural corollary that it should also be
relatively smooth and that each model should
occupy at least some minimal volume of the
total space. There is a simple mechanism for
testing this with a perturber component that
goes through any model and introduces ran-

dom changes, according to specified probabil-
ity density functions, in all the parameters.
Ideally, if a model covers a significant part of
the space, then introducing random multi-
plicative changes of a few percent should not
change the gross behavior. Perturbation of
complex models, however, generally changes
the behavior substantially, indicating that
there is scope for improvement in the choice of
parameterizations. This is considered further
in “Discussion and Future Directions.”

Model Development

Computers are often used to perform
numerical calculations in physics in a single
step: a program is written that incorporates
the physical constants and input conditions
and generates results. In some cases, where
the program is used repeatedly, there are two
steps: first the numerical method is imple-
mented, then it is run repeatedly on different
data sets. Increasingly, it is now a three step
process, with the first step being the imple-
mentation of a set of general-purpose mathe-
matical procedures by professional software
engineers as in MATLAB (www.matlab.com)
or Yorick (ftp://ftp-icf.llnl.gov/pub/Yorick/
doc/index.html). Researchers then use these
in much the same way as they would use a
low-level programming language. Meth-
odological development is clearly in the direc-
tion of multi-layer systems where complex
problems are divided according to the avail-
able expertise. While the efficiency gains, and
therefore design pressure in this direction,
remain modest in many areas of applied
mathematics, the complexity of implementing
brain-like systems makes it an absolute neces-
sity in neuroinformatics. Indeed, the ideal
number of levels in neuronal modeling may
be many more than three, and systems which
allow this separation and specialization may
make more effective research tools than those
that do not. For example, a single modeling
project may involve writing an efficient

10 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

numerical implementation of an ion channel,
building a biologically plausible single-cell
model, designing a network to implement a
given algorithm and setting up a realistic
behavioral experiment. These tasks require
quite different expertise and can best be done
by different researchers working together.

At present, Catacomb2 tries to achieve this
separation first by starting with the constructs
provided by Java, an object-oriented language
with extensive libraries for managing data
structures, building graphical user interfaces,
and accessing the Internet. It then has hard-
coded modular implementations of many
basic constructs from neuroscience including
ion channels, synapses, isopotential compart-
ments, projection patterns, and populations.
These can be assembled into functional units
through a graphical interface, and such units
can then be treated as single components for
reuse in more complex models and so on up to
the level of modeled behavior. In addition, lay-
ers can be represented as coarsely (using sim-
ple algorithmic components) or finely (with
detailed biologically-oriented models) as
required so that a complete multi-layer system
is available early in the development process.
This allows a single layer to be refined within
its wider functional context, even before realis-
tic implementations of other layers are avail-
able. This approach does achieve part of the
goal of multi-layer modularity, but neverthe-
less it remains purely structural. A more effi-
cient and robust development strategy might
allow even coarser implementation of some
parts of a model by defining the tasks a section
should perform, or the concepts it implements.
This would broaden the range of possible
models and make a more direct connection
with much current top-down modeling work.

Model Structure
The development of NeuroML (Goddard et

al., 2001b) and of similar “MLs” (Markup
Languages) in other domains has occasionally

been misunderstood as an almost magical
solution to problems of compatibility between
modeling systems, as though it would one
day be sufficient to click “save as neuroml” to
export a GENESIS model in a form which
could be read by Neuron. This seems very
unlikely to happen for any but small parts of
existing models, primarily because of funda-
mental differences in the ways in which these
systems describe models internally. The real
advantage to community agreement on a stan-
dard such as NeuroML is that it carries with it
a particular way of describing models of bio-
logical systems. If there is agreement at this
level, then the details of taxonomy and file for-
mats are no more than a software problem
that can easily be overcome.

There is little dissension to the idea that
purely declarative model descriptions are a
good thing (Beeman et al., 1997). That is, a
description of a model should contain only
statements of the model structure and param-
eter values, essentially a set of grouped
“name=value” statements. This is to be con-
trasted with procedural model descriptions
which resemble a computer program, possibly
with conditional statements and looping con-
structs. Only by following through the pro-
gram can the full model be reconstructed. The
advantages of a declarative description
include readability, since each statement
should be meaningful on its own, and porta-
bility, since it is not dependent on any particu-
lar execution environment. The distinction,
however, is not always clear. Consider for
example describing a neuron with spines dis-
tributed along its dendrites. A declarative
description of such a cell might include the
individual positions of all the spines. This
would be fine if the spine positions came from
a detailed morphological reconstruction, but if
they were allocated according to some statisti-
cal rule, then storing the positions is typically
not what is required. The underlying model of
interest is a combination of the dendritic mor-

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___11

phology with a statistical distribution of
spines. A procedural description of the model
might include a fragment of code for generat-
ing spine positions perhaps as a function
of segment diameter—effectively a mini-
program for sampling a probability density
function. This is also not what is required,
because it might be rather hard to deduce the
density function from the procedural descrip-
tion. Moreover, code for sampling from
implausible or ad hoc distributions can look
very similar to code for sampling from a stan-
dard distribution which imposes the fewest
unfounded assumptions. A declarative
description, on the other hand, would simply
state what the spine density function is and
leave the process of sampling from the distri-
bution up to the software that runs the model.
The density function is made explicit and the
extent to which it departs from minimal
assumptions is immediately apparent from
the number of statements required to define it.

There is also widespread agreement that
object-based descriptions, where parameters
are grouped within conceptual units that can
then be used as a whole, are an obvious
choice. Opinions vary, however, about where
some of the boundaries should be drawn
between objects, and most importantly, about
the global structure of a biological model. One
obvious possibility is to use an object tree,
where the objects are described where they are
needed. So, for example, a model with two
branched cells might have two nodes at the
first level, one for each cell. Then each node
would have a number of children, represent-
ing the different segments of the cells. Each
segment could have a number of children rep-
resenting the ion channels on that segment.
The difficulty here is that the same ion channel
model probably occurs many times, so the
parameters have to be copied into every case
where it is needed. Where then are the defini-
tive parameters if the channel models are to be
changed? Is it legitimate to change them on

one segment but not on others? What happens
when the model is saved—do you get multi-
ple descriptions of the same thing?

Various solutions to this problem are cur-
rently in use, mostly based on storing the
parameters in a single place and making refer-
ence to them when needed. The approach
taken here, also the one adopted for
NeuroML, is that almost all objects should be
stored in top-level sets, and where one object
“contains” objects of another type, it should in
fact just contain a set of very simple objects
(unique to itself) each of which makes a refer-
ence to the corresponding descriptive object.
Thus, in the above example, there would be
top-level sets of cells and of ion channels. Each
cell object might contain a set of channel-
reference objects. And each channel-reference
object would point to an ion channel model in
the top-level set. Channel-reference objects
might contain other information, such as the
density of the ion channel in the context of
that particular cell, but would not contain any
channel properties also required elsewhere.
This principle of minimal redundancy, where
an object should be stored in a top-level
list if it is ever likely to be used in more than
one place, eliminates problems of changing
a model in one place but not in others, and
allows graphical user interface tools to oper-
ate effectively on the models. In practice, it
is also an excellent way to decide how
models should be dissected into objects and
references.

One feature discussed for various ML’s
including NeuroML and SBML (Systems
Biology Markup Language) is the ability to
use expressions in a model to define how a
particular subcomponent is to be used in a
given context (Hucka et al., 2001). For exam-
ple, the channel model might contain (as in
the NeuroML draft [Goddard et al., 2001b]) a
parameter, Gmax, which is its maximal con-
ductance per square micron. But this depends
on the context of the channel. Each time the

12 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

channel is used, there is then a need for some
statement in the cell model to set Gmax for the
channel in that particular context, perhaps as
a function of the radius and length of a den-
dritic segment. Catacomb2 contains no mech-
anism of this sort, and instead takes the appar-
ent need for an expression in this context as
evidence that the boundaries have been mis-
drawn and Gmax should not, after all, be part
of the channel model. So far, all cases where
such requirements arise have been settled this
way with careful consideration of what
parameters should or should not be part of a
particular object. Often the apparent need for
expressions and functions results from a
desire for conciseness that can instead be set-
tled by introducing more objects and making
a genuinely declarative statement about what
the model is. For example, in the above case,
the only conductance parameter present in a
Catacomb channel is the single channel con-
ductance. A cell model has a set of channel ref-
erence objects each of which contains the
name of the channel to be used, and the den-
sity (expressed as the number of channels per
square micron) at which it is to be used in the
cell. That is, there is a whole new layer of
objects essentially just to hold references and
densities. It should be stressed that the struc-
tures used to represent models do not impose
any constraints on the internal representation
of those models in a particular system.
Nevertheless, because the requirements of a
graphical user interface and of a model
description system are so similar, Catacomb2
uses the standard structures for its user inter-
face. These structures are not, however, well-
suited to numerical calculations, so there is a
completely separate representation for the
model implementation (“Numerical Imple-
mentation”).

The model description is the only part of a
model which the system can save to a file.
There is deliberately no journaling facility and
no facility for saving the internal state of a cal-

culation. Anything that needs to be reinstated
when the model is reloaded must be made an
explicit part of the model description. This
includes, for example, statements that specify
such things as which file should be used to
read in weights of the synapses in a particular
population. Models are therefore forced to be
purely declarative, with all the potential
advantages of robustness, visibility and porta-
bility that it entails. This also makes it natural
to store models as XML (www.w3c.org/XML)
which is now the default in preference to an
earlier file format which used C-like structure
definitions to store models.

Note that in this context, “models” are static
descriptions of the properties of a system.
They make no mention of the state information
that will eventually be associated with
instances of models when their behavior is
computed, except occasionally to specify ini-
tial values where there is no other unambigu-
ous way of assigning them. As far as Catacomb
is concerned, state information remains
implicit in the model, and only appears within
numerical implementations. This is a compro-
mise between completeness of description and
implementability. As mentioned in the intro-
duction, other systems (Cornelis and De
Schutter, 2003; www.cellml.org) are attempt-
ing to expose more of this information. The
approach presented here can also be seen as
employing the layering principles mentioned
above: numerical implementation and state
information is handled by programmers and
implemented in source code; model structure
and parameter values are handled by model
builders and implemented in model descrip-
tions. Although it would be conceptually ele-
gant and theoretically powerful to provide
complete system descriptions at the model
level, this option has been sacrificed in the pre-
sent system in favor of ease of implementation,
on the assumption that very few users would
exploit such a possibility.

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___13

Data Structures for Model Description

The “objects” into which a model descrip-
tion is broken down will here be termed
“frameworks” to avoid confusion with objects
used in software implementations. A frame-
work defines a structure—field names and
types—but does not set any field values.
Models can be made from a framework by
adding information on the parameter values.
Technically, a framework is no more than a set
of parameter definitions wherein each defini-
tion specifies the name and the type of a
parameter. Most of the allowed types come
from a subset of those available in many pro-
gramming languages comprising the primi-
tive types boolean, int, double, String, and
one-dimensional arrays of these primitive
types. There are also two complex types, here
termed Set and Reference following the
NeuroML convention (Goddard et al., 2001b).

The present framework definition system is
rather vague about two important model
description issues: the units in which values
are expressed, and the additional information
about a parameter which is often required in
order to build an effective user interface. The
latter may include, for example, whether a
logarithmic or linear scale should be used for
floating point values and what the default
range should be. Currently, the units are fixed
by the framework, and the rest of the informa-
tion is provided as optional hints to the user
interface. This removes any danger of unit
incompatibility, since the user has no choice
about the units.

Besides the primitive data types and arrays,
models are built exclusively from the two
higher-level data structures—Set and Ref-
erence. A Set can contain any number of mod-
els but they must all be of the same type. When
a Set is constructed, it is told the base frame-
work to which its contents belong. A
Reference simply holds a string referring to a
model by its framework (hard-coded) and

Fig. 2. Set and reference structure for describing
aqueous solutions. Slanting text indicates sets, bold
normal text model components, and plain text fields
and their values. Parts of the description have been
omitted as indicated by rows of dots. Each specie is
defined only once, in a top-level set of species.
Likewise compounds and solutions are kept in top
level sets. Each compound needs to refer to the
species it contains, but with each reference it also
needs to specify the number of occurrences.
Therefore each compound has a local set of
CompoundElement objects which are not visible
elsewhere. Each element contains a number and a
reference to the corresponding specie (dashed
lines). Similarly, solutions contain a local set of
objects to combine the concentration of a com-
pound with a reference to its content (dotted lines).

14 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

name (user-defined). It is the responsibility of
the system to find the model being referred to
when necessary by a closest-first tree search
until it finds a set containing models with the
right framework, and then by looking up
the model name within that set. This is how
the previously discussed minimal-redundancy
principle is implemented in practice. Any
model component that is likely to be reused
can be parameterized just once and stored in
a Set somewhere. Whenever it is needed it
can then be referred to simply with a
Reference of the appropriate type mention-
ing the object by name.

The extensive use of references results in rel-
atively shallow tree structures for models,
with most objects living in top-level sets, or as
the children of elements in top-level sets, and
referring to other top-level components by
name. This also means that almost any compo-
nent which can meaningfully be reused is
directly available without any duplication of
the parameters. As an example of this struc-
ture, the representation of a simple aqueous
solution is shown in Figure 2. A solution con-
tains a variety of compounds, each at a differ-
ent concentration, and each compound is com-
posed of charged species. Compounds and
species are likely to be reused in many differ-
ent contexts, so they should live in top-level
sets. Each compound must then contain a set
of private objects indicating the species it uses.
Similarly each solution contains a set of
“SolutionElement” components which com-
bine a reference to a compound with local
information on its concentration.

Hierarchical Assemblies
Besides the primary frameworks which con-

tain parameters for setting properties of partic-
ular types of model, there is one general pur-
pose framework which covers almost all the
rest of the model description problem—the
Assembly framework. An assembly holds a
set of other models, each of them an instance
of a primary framework or of another assem-

bly. Typically the elements of assemblies will
make references among themselves encoding
the structure of the model as a graph. In this
picture there is no distinction made between
edges and vertices since all elements have the
potential to show both vertex-like and edge-
like properties. Moreover, there is also no
restriction that elements with edge-like prop-
erties should have only two ends, so, for
example a catalyzed reaction component may
connect three or more distinct pools—the
reactants, the products, and the catalyst.

Connections between models are defined
by attaching ports on one component to those
on another. The input and output ports are
defined by the framework in terms of the data,
events, or properties they mediate. An output
port of a given type can only be connected to
an input port of the same type. Ports are
always accessible to other components in the
same framework and, optionally, to compo-
nents one layer up in the hierarchy. The main
port types and their uses are shown in Table 1.

Almost all run-time interactions are han-
dled by the spike and vector ports. The former
transmit discrete events, and the latter pro-
vide read-on-demand access to a vector of
double values from one component to anoth-
er. The attachment and redirection ports are
the two main referencing mechanisms
between objects within an assembly. Attach-
ment ports provide a means to specify that
distinct objects are physically connected
together (as in the components of an animat
for example). Redirection ports are used in a
variety of contexts where objects are repre-
sented by distinct frameworks but where one
is somehow located inside another, as in a
channel being inserted in a membrane, or a rat
being placed in a maze. Finally, the Object
and Stream components provide flexible data
transfer between cooperating components
such as reading files or transporting a connec-
tivity matrix from the projection pattern that
generated it to a display component.

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___15

Fig. 3. Catacomb2 system architecture is divided into two distinct parts: Catacomb itself, which is concerned
with the description, construction and visualization of models of biological systems; and Toucan, a numerical
calculation package designed for memory-efficient calculation of model behavior. Toucan is a free-standing
package which can be used entirely independently of the model description tools. Catacomb comprises model
description components, a generic user interface system which can construct any model consistent with the
data structures employed, and as large set of domain-specific user interface components for the exploration
of certain types of models.The only part of the whole system which is persistent (can be saved to files and
restored) is the description of the active model.

Table 1—Principal Connection Types Between Objects

16 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

Catacomb2 System Architecture

The main components of Catacomb2 are
shown in Figure 3, grouped into sections for
the user interface, model description package
and a stand-alone numerical implementation
package called Toucan, which is currently
used for all the calculations. For each primary
framework (iso-potential compartment, syn-
apse population, projection pattern, etc.), there
is a single class in the model description tree
which defines the parameters of a model and
handles its interaction with other items in the
model description if necessary. In most cases
the system generates a default user interface
for these objects, but for some of them there is
also a dedicated component in the user inter-
face branch that provides more convenient or
intuitive access to the parameters.

Internal Representation of Models

The internal representation of models is an
exact parallel to the structures described in
“Data Structures for Model Description” and
“Hierarchical Assemblies.” For each frame-
work, there is a corresponding class definition
with fields for the parameters and for any set
or reference items defined for the framework.
References are stored externally by the type
and name of the model element to which they
refer. Dereferencing (finding a model compo-
nent given its name) is performed by a local
closest-first search, looking first among the
children of an item’s parents, then the descen-
dents of its grandparents, and so on. This
allows models of the same type and name to
exist at different places in the model hierarchy
without any ambiguity as to which one is
meant by a particular reference. Although it is
obviously inadvisable to give distinct models
the same name, one consequence of construct-
ing complex declarative models through a
user interface is that a great many objects are
created implicitly by the system with default
names. Since these objects only ever occur

within the context in which they are created, it
is unnecessary to give each one a globally
unique name or a unique ID. The local deref-
erencing rules prevent any ambiguity.

User Interface

A primary objective has been to ensure that
all models that the system is capable of com-
puting should be constructible with the user
interface alone, and conversely, that the sys-
tem should be capable of computing the
behavior of any model which it allows to be
constructed. This, rather than the more tenu-
ous promises of inter-compatibility through
XML and related technologies, has been the
main motivation for using the highly restrict-
ed data structures and purely declarative
model structure described above.

The user interface incorporates a dynamic
interface builder which can examine the
framework used by any model and produce
a default set of interface components to dis-
play and change parameter values. This cov-
ers all single-valued fields. For reference
fields, all possible referents within the current
model are located and presented to the user in
menus. These default interfaces are augment-
ed in some cases with framework-specific
interface components which provide a more
intuitive or convenient way to interact with
certain types of models. For example, the
assemblies mentioned above are simply sets
of components with references between them,
but the user interface presents this as a graph
where nodes can be added and connections
made between them by dragging icons with
the mouse.

Numerical Implementation

The behavior of models is computed with a
numerical modeling package called Toucan
that is extensively referenced from Catacomb
but which makes no backward reference to
anything on the model description or user

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___17

interface side. It can therefore be used on its
own from programs, scripts, or from other
modeling tools. Just as Catacomb contains
model description frameworks optimized for
efficient and convenient model construction,
Toucan contains corresponding model

description frameworks optimized for effi-
cient computation. The first step when a
model is run therefore involves mapping the
model description into the corresponding
Toucan components. These components are
themselves only a model description: there is

Fig. 4. Stages in the preparation of an executable Toucan model instance. Solid arrows show direct references
in the final data structure; dotted ones indicate which component is responsible for creating each reference.
Numbers show the order in which references are created.There is a network of two cells of the same type
(A and B at the top) with a single connection between them (C).The cell model has three components with
two connections. First the references by name are looked up, giving the solid arrows in the middle section.
Then the network creates an executable instance.The first cell reference calls the cell description to create a
state instance. Each of the first three components in the cell description spawns a state instance; the last two
make connections between them.This process is repeated when the second cell reference in the network calls
for an executable instance. Finally the third component of the network, the connection between the two cells,
finds and connects the appropriate subcomponents of the two cell instances.

18 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

then a de-referencing stage where each
component finds the Toucan versions of the
other items it needs, and finally a “compila-
tion” stage in which each Toucan description
component spawns and connects up one or
more state components which actually contain
the state variables and numerical code of the
model.

The process of building an executable sys-
tem from the model description is illustrated
schematically in Figure 3 and with a more con-
crete example in Figure 4. It is only in the com-
pilation phase that the model is expanded
from the minimally redundant version using
references wherever possible, to the complete
state space of the system. Even at this stage,
the supplied parameters themselves are never
duplicated: a model description component in
Catacomb which is referred to by other com-
ponents maps into a corresponding structure
in Toucan, still with multiple incoming refer-
ences. After compilation there is only one
Toucan representation of the parameters, but
it delivers a new instance of the state variables
for each incoming reference. These spawned
state objects keep a reference back to the
parameter object to compute their evolution
but otherwise make reference only to other
state objects to which they are connected in

the compilation process. This structure is a
way to minimize unnecessary memory use
since the state variables frequently occupy
much less space than the parameters. For
example, a four-state ion channel may easily
have twenty or thirty parameters, but to rep-
resent its state only takes a single integer
(which state it is in) when modeled stochasti-
cally, or a four element vector in the ensemble
limit.

Toucan uses a combination of event-driven
and fixed-timestep calculations, with each
delaying component managing its own event
queue. At each step in the calculation, the top-
level object instructs all its children to advance
by one timestep. They do the same to their
children and so on down to the elementary
components. Components fetch information
from each other as necessary to update their
state and any events which are generated are
propagated and acted on immediately. This
may typically involve being queued if there is
a delay involved, changing state variables of
another component, or, in some cases, setting
off a long chain of event-driven updates.

This approach to numerics is quite different
from that adopted in Neuron (Hines and
Carnevale, 2001) which casts the whole model
into a system of algebraic differential equa-

Table 2—Connectors and Network Projection Patterns

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___19

tions to be solved by a sophisticated differen-
tial equation package. Such packages have
the advantage of being very reliable and able
to achieve high accuracy. They can write effi-
ciency improvements such as adaptive
timestepping. One disadvantage is that there
is frequently domain-specific knowledge
about the model which gets lost in the map-
ping to algebraic differential equations, and
therefore cannot be used to improve efficien-
cy. This occurs, for example, where the differ-
ential equation package must re-deduce the
sparse matrix structure (Hines, personal com-
munication) of a branching cell even though it
was known, by construction, to conform to
the Hines numbering system (Hines, 1984).
Perhaps the main reason for the different
approach, however, is that the current system
is easier to implement: the export of
Catacomb models to a Neuron-like solution
package, or even to Neuron itself would be
useful in many contexts.

Software Components
Most of the components available in

Catacomb2 (version 2.034) are shown in
Tables 2 through 7. For all except the connec-
tors in Table 2, the small image shows how the
component is represented in the user inter-
face, and can be used to read the diagrams
presented in “Case Study: Modeling Spatial
Navigation” and elsewhere. The filled squares
around the edges represent the ports on the
component and are color-coded according to
the type of information which they accept or
provide. These correspond to markers on the
connectors themselves and the user interface
will only allow markers of matching modali-
ties to be connected (spike senders to spike
receivers, etc.). Components are grouped into
tables according to their primary use which
can be building cells, generating and record-
ing signals, specifying logical operations, con-
structing animats, or building networks. The
connectors can be used between components

Table 3—Sub-cellular Components

20 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

of any groups. The names of components are
shown as they appear in the user interface.
Each name is a concatenation of words where
the first is in lower case, but subsequent words
are capitalized. This is in line with the most
common naming convention for Java in which
class names are concatenations of capitalized
words, and instances use the same name but
with the first letter changed to lower case.

In addition to the items shown in the tables,
for most sets, the user interface supplies an
empty box called a ...CaptureBox (where the
prefix could be neuron, device, network, or
animat). These are not persistent items in a
model description, but serves to construct
assemblies of the corresponding type which
can then be used as components in other
models. The box is dragged around the com-
ponents to be grouped and then captures them

within an assembly. This can be done to part
of a larger model: all the connections are
rerouted through the assembly as required so
the model behavior remains unchanged.
Although there are several different flavors of
capture box, they all work the same way.
Indeed, the difference is purely conventional.
Internally, the treatment of an assembly is
independent of its type or name except that
assemblies captured by the neuron-
CaptureBox are put in a set of neurons,
whereas those captured by the device-
CaptureBox are put in a set of devices. This
becomes significant when they are reused: a
component expecting a neuron will only be
offered items out of the set of neurons; one
expecting a device will only be offered items
form the set of devices. As yet, the only com-
ponents which do make such references are

Table 4—Lab Components

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___21

the population sockets in Table 7 as discussed
at the end of this section.

The components for making cell models are
shown in Table 3. As remarked in “Modeling
Philosophy,” there is no single-cell component
here: all single-cell models are instances of
hierarchical assemblies. The core of any cell
model is an integratorCompartment which
represents a closed iso-potential area of mem-
brane. It has an internal potential and only
accepts inputs in the form of conductances
and reversal potentials. The threshold-
SpikeGenerator reads a continuous value and
emits discrete events whenever the value
crosses a specified threshold. All the other cell
components are conductance providers which
can be inserted into a membrane and provide
conductance or driving potential changes in

response to the arrival of discrete events or to
the evolution of their own internal state.

Table four shows general purpose lab com-
ponents for generating and recording signals
and for directing the progress of a calculation.
The components in this set are distinguished
from other groups because they are unlikely to
be used within compound assemblies and
because most of them require some form of
access to the internal state of the model after it
has been compiled. That is, they are part of the
model description, but are also used to pro-
vide access points to the running model. Thus,
for example, the vectorRecorder specifies a
recording interval as part of the model
description, but also receives and displays the
recorded data as the model is running.
Likewise, the spikeButton and vectorSwitch

Table 5—Logic Components

22 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

allow events to be sent into the compiled
model as it is running. This contravenes the
purely declarative modeling principle, which
can be rescued by, for example, driving the
switch programmatically from a pre-defined
event sequence.

At present the logic components form the
largest set, so only a selection of the most com-
mon ones is presented here (Table 5). They
cover a wide variety of data processing and
signal processing functions, all acting on dis-
crete events or vector-valued data. Comp-

onents are intended to implement relatively
simple functionality but in a few cases they
cover complex algorithms such as the feature
discretizer (see “Case Study: Modeling Spatial
Navigation” for examples of its use) or path
linearizer. Such components represent a rela-
tively large chunk of a final model, and can be
seen as a compromise between explicit
description of a model in simple units, and
rapidly getting a model to work when it is not
otherwise clear how to achieve the desired
function.

Table 6—Animats and Virtual Environments

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___23

Table six shows the components available
for modeling animats and virtual environ-
ments. There is no sharp distinction between
the two—an automated maze in which food
supplies are replenished in response to lever
presses is very close to an animat which press-
es levers to receive food. The components
include a variety of sensors and effectors
which, unlike all other components, commu-
nicate without any explicit connection in the
model description. Instead, they rely on a con-
cept of physical space which is provided by
incorporating a scale bar item in a maze or
attaching a spatial location object to the cluster
of sensors and effectors which constitutes an
animat. Internally, these two components reg-
ister all the items they are associated with as
having the possibility of long range interac-
tions. At the compilation stage, real connec-
tions are established according to the proper-
ties of the components (sound sensors to
sound sources, etc.).

Finally, Table 7 shows components which
currently belong in sets of their own. In par-
ticular, it includes the neuronSocket which
covers the whole field of populations of cells.
The term socket indicates that it does not, of
itself, specify any connections: these are all
derived from the particular component it
refers to. It does, however specify the layout
of the population, as a grid or a single row.
No distinction is made between items which

represent a single cell, and those for a whole
population. Internally they are both regarded
as populations. All the ports within a neuron
assembly which have been marked as exter-
nally visible also appear as ports on the popu-
lation and are accessible for inputs from spike
or vector connectors as well as the more
specific spike and conductance projection
components.

Model Execution and Meta-Modeling
The discussion so far has centered on repre-

senting the static properties of a biological sys-
tem, and the ability to compute its evolution
over a short interval (seconds or minutes).
Most scientific applications also require ways
to study other properties of a model, such as
its correspondence to existing data or the sen-
sitivity of particular behaviors with respect to
uncertain parameters. Frequently this infor-
mation is acquired by tweaking and re-run-
ning a model and the whole process is never
formally laid down. It involves developing a
feel for the model construction process and
constitutes a sizable and inaccessible body of
knowledge. As such, it is a considerable barri-
er to new users of many modeling tools. As far
as possible, therefore, tools should allow the
user not only to compose the biological model
description, but also to compose, in an equal-
ly declarative form, the description of the data
and processes which gave rise to the model,

Table 7—Network Construction and Miscellaneous Componets

24 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

how it was tested, and how well it can be
expected to perform. This “meta-modeling”
should be described within the same context
as the model itself, with the distinction that
the subject is now a model, not a biological
system. In the case that the meta-model repre-
sents a procedure for generating models from
experimental data, it should ideally be suffi-
ciently detailed that the model can be recreat-
ed from the source data alone without any of
the procedural component normally present
in complex modeling tasks.

Sensitivity Analysis

One of the most accessible forms of meta-

modeling is to assess how sensitive the results
of a model are to uncertainties in the parame-
ters. In Catacomb2 this is accomplished with
circuitry like that in Figure 5. The
parameterExposer gives access to parameters
to be varied, in this case the transition rates of
an ion channel model. The difference-
Calculator evaluates how far apart the behav-
iors of two models are in some predetermined
space. The sensitivityAnalyzer first runs the
model once with the fixedStepRunner to con-
struct the result set to which subsequent runs
will be compared. It then changes the selected
parameters over specified ranges, rerunning
the model each time. The output of the

Fig. 5. Meta-model for computing parameter sensitivity.The model under study is a kinetic scheme ion chan-
nel in a voltage-clamped membrane.The membrane potential is driven through a predefined profile with the
signal generator at the bottom left, and the resulting current profile forms the argument of the difference cal-
culator. The four components at the top define the structure of the analysis. The parameterExposer can be
directed at any part of a model, and makes any parameters it finds accessible to other components. The
parameterSelector picks one of the parameters as an argument for the analysis. This is then varied by
the sensitivityAnalyzer which reruns the model for each value in a selected range.The results are read from
the differenceCalculator for display by the unit at the far right. [CFO]

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___25

differenceCalculator is recorded for each run,
giving a simple view of how the measured
behavior varies with respect to a single
parameter.

This example illustrates many of the con-
cepts that are needed for more subtle forms of
meta-modeling. As elsewhere, the objective is
to eliminate procedural definitions of the algo-
rithm. Although it is described above as a
sequence of operations, which matches the
way in which it is calculated, the order of
operations is unimportant. The nth point in
the results is a function of the derived proper-
ties of the model at two different parameter
values, independent of any of the other points
in the results. The model description therefore
makes no mention of this order, opening up
the possibility, for example, that all points
could be calculated in parallel. This possibility
of processing model definitions in new
and unanticipated ways is one of the key
advantages of eliminating spurious procedu-
ral information and using only declarative
structures.

Parameter Optimization

Software libraries for parameter optimiza-
tion are often large and sophisticated (see e.g.,
Portlib [Fox et al., 1978] or the survey of meth-
ods for channel density optimization by
Vanier and Bower [1999]). It is not the inten-
tion here to represent the algorithmic contents
of these declaratively, only the way in which
they are applied. The main aim is to allow
the transfer of an optimization procedure
between users in the same way that models
can be exchanged, without requiring any extra
knowledge about how the optimization
should be performed.

The description of an optimization should
therefore include the names and initial values
of parameters which are optimized, the error
measures used to test convergence, the name
and source of the algorithm used and any
flags or parameters required by the particular

implementation of the algorithm. Most of this
is possible with the same components as are
used for the sensitivity analysis, with the
exception of specifying a choice of optimiza-
tion algorithm. Presently only the conjugate
gradient method (Press et al., 1993) is avail-
able within Catacomb2 itself through the
cGOptimizer component which uses an inde-
pendent NeuroML-compatible optimization
library. Other algorithms can be implemented
via the optimizerScript component, which
works in very much the same way as the
Jython script extension mechanism, but with
hooks and call-backs appropriate to general
optimization problems.

Robust Model Development
and Database Access

A criticism of many cell and network mod-
els is that they have been tweaked by the
model builder in order to show particular
behaviors, and have therefore lost much of
their predictive power. The modeling
approach advocated in “Introduction,” and
employed in the examples presented here,
sidesteps this issue by focusing on design, in
the way that engineers design circuits, rather
than pretending to do bottom-up prediction of
integrative properties. That is, the models can
be shamelessly tweaked, because there is an
independent test: do they perform the task for
which they have been designed? Sensitivity
analysis can then be used to check how much
tweaking has been required—does the model
still perform successfully when parameters
are changed by 1%, 5%, 10%, or more?
Nevertheless, it is clearly of interest to incor-
porate empirical data where possible, and this
remains a major challenge to systematic and
robust model creation. Sensitivity analysis
and parameter optimization are part of the
solution, but a great deal remains to be done
before a procedure can be laid down, the
source data provided, and the software left to
come up with the most plausible models. For

26 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

the output to be useful, it should also include
parameter confidence estimates and error tol-
erances. At present, this is not possible within
Catacomb2, but the modular design does
allow models and numerical implementation
components to be used from external scripting
languages such as MATLAB or from within
independent robust modeling systems.

Publication, Dissemination,
and Archiving

Unlike empirical or analytical studies, the
results of modeling work are very ill-suited to
conventional text-only publishing methods.
Complete model descriptions are often large,
with many parameter values that are neces-
sary within the context of the model, but that
are not intrinsically interesting in the way
experimental measurements of real biological
quantities are. But the greatest difference is
that whereas in an experimental study, anyone
can readily get hold of the type of tissue
claimed to give rise to the observed data,
(even though the experiments may be very
hard to repeat), in a modeling study, the raw
material—the model itself—is rarely made
available, except in a highly condensed form
from which it would often take weeks or
months to recreate.

This situation has been allowed to persist
because of the recognition, first, that most
users would not know what to do with it even
if they had access to the model and second,
that the authors would probably be willing to
grant such access if requested. However, one
goal of any new modeling tool must be to
make model sharing as straightforward as
possible, both for the benefit of users, and
because publishers are unlikely to carry on
tolerating the current situation indefinitely.
The transition from highly personal model
implementations which are rarely, if ever,
used by others, to widely and routinely acces-
sible models is likely to be a gradual process

involving sociological changes, and facilitated
by incremental technological shifts. The socio-
logical issues are clearly not insurmountable,
since they have been effectively overcome in
many areas, including public-domain soft-
ware engineering (Raymond and Young, 2001)
where, for example, the source code of
NeuroML or Catacomb itself is normally
freely available on the web within days of
being written.

The first step towards easily shared models
is the use of purely declarative structures
instead of scripts. This makes it easy for read-
ers to see what is in a model, and easy for
machines to search and catalog them.
Declarative model descriptions are also mean-
ingful in the absence of any implementation,
unlike scripts which depend on a particular
interpreter. Other features likely to help the
dissemination of models include single-file
storage, documentation and annotation
schemes, mechanisms for providing tutorials
and, in some cases, making models directly
accessible through a web browser (cf.
www.virtualcell.com).

Self-Contained Model Descriptions
One immediate disincentive to using anoth-

er group’s models is the need to install or
update a whole range of ancillary libraries
and software components before the model
can be run. This problem has considerably
eased with the development of cross-platform
standards such as Java, and the relaxation of
constraints on disk and memory usage.
Although Catacomb2 is able to use model
components from external sources, by default,
whenever a model or subcomponent of a
model is saved, all references are followed and
everything necessary to reconstruct the model
is put in a single file. The resulting model
description is therefore completely self-con-
tained. Anyone with that file who has
installed the software should be able to run
the model.

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___27

This policy does have a number of draw-
backs: in particular, the duplication of model
subcomponents. For example, many cell mod-
els may use exactly the same model for partic-
ular ion channels, but every file will contain
its own copy of the channel description.
Loading multiple cell models will also then
load multiple models of the same ion channel.
Because of the internal storage conventions
(that ion channels should all go in a top level
list and have unique names) this problem is
easily spotted, and, by comparing serializa-
tions (turning the model description into a
string of characters), the system can work out
whether two models are in fact the same and
throw out redundant copies. In practice, this
policy works fairly well despite seeming
rather delicate and vulnerable to serialization
conventions. Nevertheless, it seems likely that
in the future some system involving the
assignment of unique model identifiers which
change with every modification as in SBML
(Hucka et al., 2001) or the Modeler’s
Workspace (Forss et al., 1999) will be required.

Internal and External Documentation

Early versions of Catacomb (Cannon,
2001a) experimented with the idea of internal
documentation for all model components.
That is, one of the parameters of every object
was a text document in which the creator of
the model could provide whatever informa-
tion they saw fit. This text would then be an
inextricable part of the model. The immediate
advantage is that anyone who has the model
also has the documentation. The disadvantage
is that the information provided this way is
unstructured. Adding further fields such as
“author,” “date,” and “keywords” to every
object would be very wasteful since only a
small fraction of model components ever need
documenting separately.

This option has now been replaced by
a more structured external documentation
mechanism based on the Axiope (www.axiope.

org) non-curated distributed database project
(Cannon et al., 2002). This allows complete
models or subcomponents such as individual
ion channel models, to be documented accord-
ing to external or user-generated templates.
The information can be exported as both a col-
lection of web pages and as XML files, consti-
tuting a self-contained website. This can be
kept locally as a data-management system, or
exposed on the web as part of a distributed
model database. In the latter case, the software
can request one or more Axiope servers to
visit and catalog the site. They then provide
collective indexes and search services where
the provided models appear among similar
items from other participating sites. This
approach to model documentation and publi-
cation is still very much in its infancy but is
hoped to overcome many of the hurdles
involved in submitting models to centralized
databases. With the Axiope scheme, it is made
very clear that authors retain complete physi-
cal and intellectual control over their work,
while still making it accessible through collec-
tive access points.

Interactive Tutorials

Online help is provided as a set of local
web pages which can be viewed from any
standard web browser or from a simplified
built-in HTML browser. The latter has the
advantage that it also understands Catacomb-
specific links built into the web pages which
can be used to issue commands to the inter-
preter. These may typically be used to load
example model files, open display windows
for particular subcomponents, or perform
actions such as running a model. The present
implementation of such links is to use a pseu-
do-URL which includes a command name
and optional arguments. Current commands
include “show,” “run,” “load,” “press,” and
“set.” What is required for subsequent argu-
ments depends on the action being applied,
but in most cases there is a single argument

28 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

which is the fully qualified name of a model
component.

Extensibility and Interaction
with Other Modeling Systems

Software capable of computing the behav-
ior of models of biological systems, is neces-
sarily complex and there is a continual drive
to be able to accommodate larger and more
complex models. It is therefore essential to
find mechanisms for widespread collaborative
work both in building model descriptions and
in developing software implementations. This
problem is shared with many parts of the soft-
ware industry and solutions have been under
development for many years. The situation in
neuroscience differs from many commercial
applications however, because of the complete
lack of hierarchical organization, and the con-
sequent need for structures which correctly
apportion academic credit and intellectual
property rights to all participants.

Perhaps the closest parallel to academic
software may be found in the free software
community (Raymond and Young, 2001)
which has developed working structures
based largely on conventions. The history of
free software would suggest that widely
accepted solutions are indeed likely to emerge
given time, but that there may be substantial
duplication of effort in the process. In the
meantime, Catacomb2 provides a number of
mechanisms for users to extend its capabilities
according to their needs, ranging from the use
of its built in model definition structure, to
cutting parts out for use in quite separate soft-
ware packages.

Component Grouping
A simple, yet versatile, way of making new

components that show functionality not
found in the standard set of frameworks is
provided by the component grouping mecha-
nism. As discussed in “Model Structure,”

primitive components can be connected
together and encapsulated as a single item for
future use. Since the primitive components
can come from any of a wide variety of logical
and biological components, as well as other
grouped components, it is possible to imple-
ment models this way that bear no relation to
the problem domains of the constituents. A
very common case of extension by component
grouping, is the construction of single-cell
models, which are nowhere represented in the
elementary components, as discussed in
“Modeling Philosophy.”

Scripting

The jythonScript component mentioned in
Table 5 provides an interface from a model to
arbitrary logic implemented as a script written
in Jython (www.jython.org), the Java flavor of
Python (www.python.org). Any number of
such scripts can be incorporated in a model.
They can communicate with other compo-
nents through vectors or discrete events. This
approach to model extension is provided for
flexibility and prototyping but is deprecated
as part of any permanent model description
because it breaks the convention about purely
declarative model descriptions. The internal
working of a script is generally opaque to
archiving systems or search engines, and diffi-
cult for other users to understand.
Functionality that is initially implemented in
scripts should be migrated to new model
frameworks if it proves to be widely used.

Writing New Frameworks

The dynamic nature of Java class loading
and instantiation allows Catacomb to be very
liberal about what constitutes a model
description framework. Indeed, any public
class with a default constructor can be used.
Any fields that are declared public and are
within the set used in the software (“Data
Structures for Model Description”) will be

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___29

made accessible through the user interface.
Furthermore, if models use Catacomb’s own
set and reference objects, or those declared in
the NeuroML development kit, then the full
functionality of the model description frame-
work will be available on the imported class.
Adding a framework for the model descrip-
tion does not involve adding any numerical
code for implementing a model. Models that
use external class definitions can still be creat-
ed, modified stored and retrieved. In general,
adding numerical code so that a model could
also be run would involve writing corre-
sponding classes in the model implementa-

tion package. This type of extension, however,
is very specific to one software package and
therefore wastes much of the generality
afforded by the technology. Instead of requir-
ing package-specific extensions, Catacomb2
also supports a system-neutral extension
mechanism at the code level that is being
developed in the wider context of NeuroML
as discussed in the next section.

Interfaces for Runtime Interaction
One of the most attractive ways to enable

distinct software packages to work together
when neither is strictly dependent on the

Fig. 6. T-maze, virtual rat and network as it appears in Catacomb2. The symbols correspond to the items in
Tables 3–7. Larger boxes with a ladder down the left hand side are populations of cells, and double lines rep-
resent 1-1 or all-all projection patterns between populations. [CFO]

30 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

other, is to establish a small area of common
ground in some neutral space between them
via which all communications should pass.
Each package must then know about the com-
mon ground, but can be insulated from any
changes in the other package. In software
terms, this common ground should be part of
the global namespace which is not associated
with either package. Much software written in
Java now uses globally unique names depen-
dent on ownership of particular domains. For
example, the full names of classes developed
by Sun Microsystems often begin com.sun. as
in com.sun.j3d.loaders.Loader. By convention,
this name is unique to Sun because they own
the domain sun.com.

One natural piece of common ground for
interaction between modeling packages is the
neuroml.org domain which is already exten-
sively used by various packages because of the
facilities it provides for working with XML
files. However, before sufficient agreement is
reached as to exactly what such middle ground
should contain, Catacomb uses an alternative
neutral area under compneuro.org which is
co-hosted with neuroinf.org. Amongst other
things, this site holds documentation and inter-
faces which can be used to build Catacomb-
compatible components without needing to
read or use any of the source code. This pro-
tects developers from changes that may take
place to the software itself, and guarantees that
their work is genuinely system independent. It
also allows Catacomb developers to modify
and refactor the internal architecture at will,
without the risk of breaking dependent code
because they only need to ensure that the inter-
face definitions remain unchanged. At present,
these interfaces cover everything needed for
compatibility with the event send/receive and
vector read/provide mechanisms. That is, pro-
vided objects from an external package imple-
ment the right interfaces from the org.comp-
neuro package then it is possible to instantiate
them through the user interface, connect them

to other components with the spike and vector
connections, and run the resulting model.

Case Study: Modeling Spatial
Navigation

Much of the development effort behind
Catacomb to date has been directed at build-
ing increasingly effective models of spatial
navigation and food seeking behavior in order
to explore the role of theta rhythm in hip-
pocampal function. The development and
structure of these models has been described
elsewhere (Hasselmo et al., 2000, 2002a,b):
here the focus is on how they have been
implemented and refined using Catacomb2.
First a brief overview is given of the problems
under study and the hypotheses to be
explored. Then the structure of the model is
examined with reference to two key design
issues: how to separate encoding and retrieval
within the network so they do not interfere;
and how to make the virtual rat move towards
the food. The full model, as it appears on first
loading in Catacomb is shown in Figure 6.
Only a few aspects will be considered here.

A Mechanism for Environment Learning

Behavioral data suggest a role for parahip-
pocampal regions in memory guided behavior
(Hagan et al., 1992) and the patterns of activi-
ty in particular regions have been extensively
recorded during spatial navigation tasks
(Yound et al, 1997; Suzuki et al., 1997; Frank et
al., 2000). Cellular physiological properties
have also been isolated which could be impor-
tant for memory function (Klink and Alonso,
1997; Fransen et al., 2002). The model consid-
ered here is based on the idea of place fields in
which patterns of neural activity are related to
specific locations in the environment (O’Keefe
and Dostrovsky, 1997; McNaughton et al.,
1983; Muller et al., 1987). A number of models
have addressed both the formation of place
fields (Sharp, 1991; Kali and Dayan, 2000) and

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___31

the conversion of place information to turning
direction (Sharp et al., 1996; Burgess and
O’Keefe, 1996; Redish and Touretzky, 1998).
Instead of this, the current example focuses on
the learning and use of a representation of the
environment. The creation of place fields is of
course necessary, but is handled here by a sin-
gle algorithmic component.

The idea to be implemented is that as the rat
moves around its environment, place fields
are created which map an area in the environ-
ment to spiking activity in a group of cells.
When the rat moves between place fields it
learns an adjacency association between the
corresponding groups of cells. Eventually,
when it reaches a food reward, it also learns
an association between the presence of food

and the place field in which the food was
found. Now, when the rat is placed in any part
of the explored environment, a mechanism is
required for it to find the food. This involves a
diffusion-like process where the desire for
food excites the pattern of the place field cor-
responding to the location of the food. The
learned adjacency relations are then used to
propagate the activity into patterns for place
fields one step removed from the food. The
process is continued until the diffusing signal
reaches a place field which is adjacent to the
rat’s current place field. The rat then moves
into this place field, and so on until it gets to
the food. In effect, there is a signal diffusing
back through its internal representation of the
environment and it heads to the point where

Fig. 7. Physical and logical components implementing a virtual rat and its interaction with a maze.The animat
itself is composed of the two components to the upper left which confer on it the property of having a phys-
ical position and size relative to the walls of the T-maze (“spatial location”), and the ability to eat from the dis-
penser (“ingester”).The straight arrows from the spatial location component indicates where it is placed in
the maze. In this case, the arrow goes through a switch, allowing the animat to be moved between predefined
tracks and free running mode according to the event sequence object on the left.The position output goes to
a feature discretizer component which creates place fields as required when the rat moves around.The out-
put of the feature discretizer forms the input to the biologically motivated parts of the model. [CFO]

32 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

this signal meets a short range signal moving
out from its current location.

Just as with the design of software,
although this scenario may seem plausible, it
is next to impossible to find its flaws or weak-
nesses without actually implementing it. For
example, one problem with the above which
may not be immediately obvious is that the
association learning mechanism is still active
while recall is taking place, causing the
strengths of learned associations to change in
the absence of new information, and rapidly
corrupting the internal representation of the
environment. But this soon becomes apparent
in the process of building a model to perform
the task. The first step is to decide which fea-
tures should be implemented with biological-
ly plausible mechanisms, and which ones
should be done with higher level components.
Because the main interest is in the learning
and use of representations of the environment,
motor control and the formation of place
fields will be handled by logical components
as described in the next subsection. Pop-
ulations of spiking cells will be used for the
hippocampal regions as described in “A
Framework for Studying Interaction Between
Network Models and A Simulated Environ-
ment” through “Goal-Directed Behavior and
Action Selection.”

A Framework for Studying Interaction
Between Network Models
and a Simulated Environment

The components used to represent the envi-
ronment and to make contact between the vir-
tual rat and the hippocampal network are
shown in Figure 7. The meanings of the icons
can be read with the aid of Tables 2 to 7. See
the figure caption for a detailed description of
their internal connections. There are two areas
of interaction between this part of the model
and the rest: definition of the experimental
protocol; and closing the sensory to motor
loop through the network model. In this case,

the experimental protocol is very simple,
defined by a sequence of events controlling
the insertionSwitch which moves the animat
around. More complex protocols might use
the ports on the dispenser and other devices to
encode, for example food delivery in response
to lever presses. The access points that make
contact with the network are the ports on the
ingester and the feature discretizer. The
ingester sends periodic events when the ani-
mat is within range of food, and can be
instructed to eat by sending events to its input
port. The feature discretizer acts as a single-
component solution to the problem of creating
place fields, which is not the focus of the pre-
sent study. It keeps a list of known feature vec-
tors, and continually reads the position of the
rat. When the rat is far enough from any pre-
vious features, it creates a new one and adds it
to the list. The index of the current feature is
the main input to the rest of the model. The
feature discretizer also works in reverse, tak-
ing a feature index provided by the hip-
pocampal network, and converting it back to a
feature vector. This is combined with the cur-
rent position of the rat in the direction calcula-
tor in order to produce a command signal for
the motor system.

Buffering Sensory Input

The algorithm outlined above requires
information about the environment, essential-
ly adjacency relations among place fields, to be
coded in the synaptic weights of projections
between patterns corresponding to different
fields. For convenience, the present model uses
single element patterns, so this involves
strengthening a single selected recurrent con-
nection within a fully connected network of
place cells. The source of the adjacency infor-
mation is the environment itself—the rat mov-
ing from one place field to the next provides
the information that they are adjacent. But the
rat moves between fields relatively slowly
compared to the pre-to-post synaptic spike

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___33

intervals of well under 100 ms over which
synaptic potentiation is experimentally
observed to occur (Markram et al., 1997; Bi and
Poo, 1998). There is therefore a need for some
sort of buffering to provide persistent activity
in one place field which overlaps with activity
in the next field that the rat enters.

There is extensive physiological data sug-
gesting that persistent action potential firing
can occur in certain cells of the entorhinal cor-
tex in response to activation of muscarinic
receptors which results in prolonged calcium
sensitive cation currents (Alonso and Klink,
1993; Klink and Alonso, 1997). This has also
been implemented in detailed biophysical

models (Hasselmo et al., 2000; Fransen et al.,
2002). In the current model, persistent firing is
achieved with a slow after-depolarization, as
in part B of the examples in Figure 1. Once a
cell in the buffer population fires, it initiates a
slow after-depolarization (ADP) which, in the
absence of other input, is sufficient to bring it
back to threshold in about 50 ms. Connections
between cells and through an inhibitory net-
work allow for this persistent firing to be sup-
pressed in the presence of other activity.

Using Theta Oscillations to Separate
Encoding and Retrieval

The next step in implementing the outline

Table 8—Summary of Synapse Population Properties.
Synapse populations are among the most complex single components in Catacomb, and mix biophysical proper-
ties with logical properties, such as direct plasticity modulation, to capture a wide range of possible functions.

34 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

design is to introduce the synapses in which
the adjacency relations are to be encoded. The
buffering network provides temporally over-
lapping activity patterns so it is sufficient to
use a one-one projection to transfer these to a
population of cells with recurrent connections
which implement a long term potentiation
rule. The parameters of synapse population
components can be set to implement a wide
range of spike timing dependent plasticity
laws. The possible features are shown in Table
8. First, the spiking output of the cell must
be connected to the backward propagating
spike port on the synapse population. This is
necessary because the normal insertion con-
nection between a synapse population and a
membrane works in only one direction: the
synapses affect the membrane conductance,
but the membrane has no effect on the synaps-
es. Once a synapse is receiving both afferent
and back-propagating spike information, it is
sufficient to specify the weight modification
profile, normally by linear interpolation for
the pre-to-post or post-to-pre time difference
in a set of points.

Using recurrent connections with an LTP
window of 40 ms, the network readily learns
the adjacency relations as increased synaptic
weights, and the properties of the buffering
population prevent any learning of second-
neighbor relations. However, problems arise
when the model is extended to make use of
the weights, because the LTP mechanism
makes no distinction between firing which
results from supplied information and firing
which results from internal recall. The encod-
ed information risks being swamped by spuri-
ous connections learned during recall, which
will typically involve more network activity
within the LTP window than during encod-
ing. In software terms, some sort of clocking
or gating mechanism seems to be necessary to
switch between the two modes. Possible bio-
logically-based solutions can be found in a
number of experimental studies which have

tested the relationship between theta oscilla-
tions (4–12 Hz) in the hippocampus and the
induction of long term potentiation (Pavlides
et al., 1998; Holscher et al., 1997; Orr et al.,
2001; Wyble et al., 2000). These experiments all
show the strongest long-term potentiation at
the peak of the theta cycle, which corresponds
to the weakest synaptic transmission. This is
exactly the function required here: when the
information is internal, propagated by strong
synaptic transmission, there should be no
potentiation, but when the synaptic transmis-
sion is weak, indicating that spiking activity is
driven externally, then the synapses should
potentiate. Although it would be possible to
implement this mechanism with biophysical
units, Catacomb2 also allows direct modula-
tion of plasticity and transmission at synapses
as described in Table 8. Using this mechanism
it is sufficient to attach a signal generator with
the right waveform directly to the synaptic
transmission port, and for the same signal to
be sent to the plasticity modulation port after
passing it through a delay buffer component
which induces a half-cycle delay. This allows
the network to operate in two distinct modes,
performing one encoding frame and one recall
frame on each theta cycle. This illustrates
another feature of the modeling philosophy
described in “Modeling Philosophy”: a possi-
ble mechanism is implemented rapidly with
algorithmic components to see if it fulfills the
desired function. Only now that it has proved
to be useful is it worth looking further for bio-
logical correlates and refining the model to
incorporate biophysical mechanisms such as
calcium-dependent gating of transmission
and modulation.

Goal-Directed Behavior
and Action Selection

The second design issue to be considered is
how information about the goal and the cur-
rent location can be used to generate motor
signals for the virtual rat. As discussed in “A

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___35

Mechanism for Environment Learning,” the
feature discretizer component works in both
directions, so it is sufficient for the network to
send spikes of the right index (coming from
the right cell in a population with place fields)
into the feature discretizer, which will recon-
struct the locations in the environment. The
direction calculator then computes a direction
for the virtual rat, which advances at a default

speed in the absence of any other signals from
the network.

Although the discussion of encoding and
retrieval focuses on a single recurrent net-
work, the algorithm outlined in the introduc-
tion requires several populations, each with
cells corresponding to place fields in the maze.
In the current model region CA3 encodes an
episodic memory of paths taken during explo-

Fig. 8. Illustration of visualization features during the T-maze task. All images are captured directly from the
software as the model is running at the point when the rat has just chosen to turn left instead of right.The
camera (A) view shows the position of the rat in the maze as the model runs. A combined spike and vector
recorder (B) shows the points visited by the rat during environment learning. A new point is added each time
a spike arrives, at the position given by the current vector input.The place fields that were created by the fea-
ture discretizer are shown by the color coding of points.The spiking activity of the buffer population of place
cells is shown as recorded by a standard spike recorder (C).The synaptic weights (D) of recurrent connec-
tions in the CA1 population are shown as a connectivity matrix. Darker shading indicates stronger weights:
strong connections only exist between place cells for adjacent locations. [CFO]

36 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

ration, learning adjacency relations between
place fields in the direction of the rat’s motion.
During the navigation task, activation of a
CA3 cell corresponding to current location
then recalls known neighboring place cells
through the strengthened recurrent connec-
tions. The activity of recalled neighbors prop-
agates to the CA1 population, where the affer-
ent input elicits a persistent sub-threshold
depolarizing response.

In the ECIII population, afferent input is
received from a second oscillatory buffer
(hypothesized to involve pre-frontal cortex)
that maintains the activity of a place cell cor-
responding to the location at which the food
reward was discovered. This afferent input
causes recall along strengthened recurrent
connections that encode associations between
place fields in the reverse of the direction of
motion during learning. Activity therefore
spreads backwards through the ECIII repre-
sentation of the environment via fast synaptic
responses. Just as with CA3, the cells in ECIII
projects onto CA1 with synaptic weights
which induce sub-threshold depolarizations.

Both signals therefore combine in CA1: nei-
ther is strong enough on its own to activate
any CA1 cells, but when a cell receives input
from both ECIII and CA3, then it reaches
threshold and fires an action potential. The
first such spike on a cycle constitutes the
desired next location signal which is sent back
to the virtual rat. It is important that the
spread of activity is greater in ECIII than in
CA3, because the next desired location select-
ed by the network should to be adjacent to the
current location, not somewhere further afield
or the virtual rat would try to head for a
remote location and would be stopped by the
wall. This is just one example of how using the
simulated environment helps motivate and
structure solutions to the network design. The
broader spread of activity in ECIII than in
CA3 is consistent with experimental data from
recordings of the entorhinal cortex (Barnes et

al., 1990; Quirk et al., 1992; Frank et al., 2000)
that show much larger place fields in ECIII
than in CA3.

A variety of views of the final model are
shown, for illustrative purposes only, in
Figure 8. These are all captured directly from
the user interface at the point where the rat is
deciding to turn left, towards the food instead
of right. The most recent full model is avail-
able for download and examination along
with the software at askja.bu.edu.

Further Model Development

Although discussion of the model has been
based entirely on the T-maze task, the modu-
lar construction allows the same virtual rat to
be inserted in other mazes and tested on other
tasks. The maze-building components have
been designed to allow representation of a
wide variety of experimental configurations,
with interacting levers, lights, sounds, and
food rewards. One direction of development
is therefore to build increasingly robust virtu-
al rat models which use the same network to
perform a variety of tasks. An essential com-
ponent of this work is the generation of explic-
it predictions about spike timing in particular
cell populations during navigation tasks.
Comparison of these predictions with experi-
mental results drives the next step of iterative
refinement. Another direction for the model is
to replace some of the algorithmic parts, such
as the synaptic modulation, with more realis-
tic biophysical components that allow direct
comparison with electrophysiological or
imaging data. At the same time, however, an
equally fruitful direction may be to replace
some of the features currently implemented
by populations of cells with higher level com-
ponents that capture the desired function but
can be computed more efficiently. This keeps
the running time down (the present model
takes about a minute to learn the environment
and then find the food reward on a fast PC)
and allows attention to be focused on the

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___37

areas of the model that are intended to be
directly comparable to experimental data.

Discussion and Future Directions
Catacomb2 is a highly modular software

system for modeling neuronal processes over
a wide range of scales from ion channel kinet-
ics to animal behavior. It has graphical compo-
nents for setting up purely declarative model
descriptions and an independent set of numer-
ical components for evaluating and studying
model behavior. The emphasis throughout is
on modeling by design rather than modeling
by mimicking biology as closely as possible.
Features are added to the model only where it
is found that particular behaviors are needed
in order to achieve functional goals. This con-
trasts with the kitchen-sink approach where
extra detail is added to a model simply
because the real system is known to have such
detail, irrespective of whether it is sufficiently
well constrained to improve the predictive
performance, or only adds more noise. In
order for the design approach to work, it is
essential to have a well defined task for the
model to perform. It is also necessary that the
model should succeed, in a loose sense, at the
task in an early stage of model development in
order to provide realistic feedback to internal
components so that they can be iteratively
improved to achieve a closer match to the sys-
tem under study. This is achieved by allowing
models to contain an eclectic mix of compo-
nents capturing both biologically realistic and
purely algorithmic behaviors.

One criticism of the design-based approach
is that it provides no guarantees of arriving at
the same solution to a particular problem as
has been adopted by nature, either globally, in
the overall structure of the model, or locally in
the properties of individual components.
Indeed, the use of components working at dif-
ferent levels of description may exacerbate the
problem of the solution settling into an artifi-
cial local minimum created by the unbiologi-

cal properties of higher level components. As
with any optimization process, there is a
trade-off to be made between the smoothness
of the error function and the time it takes to
evaluate the function and pick a new point in
parameter space. If the error function has a
guaranteed unique minimum, then it is worth
investing heavily in a slow but sure iterative
procedure. If the function is irregular with
many local minima, then examining points
and generating new guesses should be much
quicker, because many more guesses will be
required to arrive at the right answer. In the
present context, evaluating the error function
corresponds to the two part question: does the
model perform the task, and does it do it the
same way as a real system? Picking a new
point in parameter space corresponds to gen-
erating a new model. The design of
Catacomb2 is focused on the second of the
two optimization scenarios: the optimization
surface is sure to be complex, so it should be
quick and easy to generate and test models.
The single most important point is simply that
the error function should exist. That is, there
should be a way to examine and test a model
independent of the empirical data on which it
is based. Moreover, this test should be readily
accessible to any interested researcher with
minimal effort (“Publication, Dissemination,
and Archiving”). Essentially, exhibiting a
model that does something interesting by the
wrong mechanism so it can be shot down can
be a much more fruitful step in research than
providing a collection of correct mechanisms
that do nothing very much.

The case study presented in “Case Study:
Modeling Spatial Navigation” highlights a
number of directions in which future develop-
ment is required. Some of these depend main-
ly upon exploiting recent progress in the soft-
ware industry to make new applications pos-
sible. Others require further research work in
the application of computational methods to
biological problems.

38 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

Technology-Driven Development

The growth of application libraries and
progress in software engineering technology,
make many technical problems much more
accessible today than they have been in the
past. Creating complex, multi-author software
systems in a distributed academic environ-
ment requires mechanisms whereby each
author can work in their own area, with mini-
mal dependence on others and yet where their
resulting software is useful outside the origi-
nating lab. The development of tools and
interface standards within the NeuroML
framework promises to make this much easier
than has hitherto been the case. Even before
such tools are mature, projects such as
Catacomb2 can be both providers, and users
of such modules. For example, Catacomb2
already relies on the XML parser provided by
the NeuroML project and it provides visual-
ization facilities for a variety of NeuroML
models. These interactions currently work on
a somewhat ad-hoc basis, but form one of the
many cases to be considered in the develop-
ment of NeuroML standards. In the same way,
the Neosim (Goddard et al., 2001a) discrete
event simulator is being incorporated as an
optional layer between the model description
and execution stages. It will add the ability to
run network models on parallel machines and
workstation clusters, and the parallelization
should be almost transparent to the user.
Neosim handles all issues related to the con-
figuration of a particular machine, and the
model description is completely independent
of how it is to be run.

Another area of substantial recent invest-
ment is what is being known as “e-science”
(www.escience-grid.org.uk), which encom-
passes “grid computing” (www.gridforum.
org) and the “semantic web” (www.seman-
ticweb.org). These are technologies for turn-
ing the web from a browsable data storage
medium into a distributed computing and

knowledge management platform. One core
focus is on facilitating collaborative work
through shared databases, ontologies, and
computing resources. The modularization of
modeling systems envisaged by the NeuroML
project, and the Axiope (www.axiope.org)
model publication and sharing system clearly
fall within this framework, along with many
rather more nebulous concepts. The utility of
these technologies to the neuroscience com-
munity should become clear as they take on
more concrete forms.

Models and Modeling Strategies

One of the goals in the development of
Catacomb2, as outlined in “Constraining
Possible Models,” has been to structure mod-
els so that the parameter space is rich in bio-
logically plausible models, and excludes
implausible models as far as possible. The
provision of large sets of standard compo-
nents makes it much easier to construct mod-
els based on these than models using different
formalizations. Thus, for example, even the
simplest cell and synapse models are based on
conductances and reversal potentials, instead
of additive currents or potentials, because
conductance-based models are both more
realistic and intrinsically more stable.
However, fragility and excessive sensitivity to
certain parameters remains a major weakness
of many models. There are at least two ways
of tackling this problem: increasing the cer-
tainty about the properties of the systems on
which a model is based by using database and
ontology resources in model construction; and
changing the parameterization so as to
describe slow processes such as neuronal
development and self-regulation instead of
the instantaneous state of a system.

One example of how database access could
work is present in Catacomb2 as a graphical
browser for the CoCoMac (Stephan et al.,
2000) database of connectivity in the Macaque

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___39

brain. This is able to query the database across
the web for connectivity data between regions
in selected brain maps and presents the results
superimposed on the maps with color coded
connection information. At present the infor-
mation is extracted from the database accord-
ing to user generated queries and presented
through the graphical interface. But it is a rela-
tively small step from here to allowing queries
to be generated automatically by the software.
One could ask, for example, whether the pro-
jection patterns built into a model are backed
up by anatomical data. A further step would
see the modeling process begin with database
queries in order to set up the connectivity
structure of the model. This structure would
then be fleshed out by providing single-cell
models for populations in different regions
(perhaps coming from some other database),
and by refining the details of the connectivity
patterns. Following a recurrent theme of this
paper, the model construction process would
then be broken down from being one long sin-
gle-user procedure into many smaller declara-
tive steps in which existing resources are
drawn together and combined in a novel way
to construct the next layer.

But perhaps the biggest single problem of
these and other models is their fragility. This
comes mainly from the sensitivity of model
behavior to uncertain parameters as discussed
in “Constraining Possible Models.” From the
perspective of applied mathematics, when the
numerical calculation of the behavior of a
physical model is very difficult to implement
or requires very high accuracy to be repro-
ducible, it often means that the methods or
equations are inappropriate, not that the sys-
tem is genuinely delicate. This is even more
likely in biology where the real systems are
known to be robust to changes in temperature
or chemical composition. Models which
require parameters to be expressed to more
than a couple of significant figures are there-

fore intrinsically implausible (Borg-Graham,
1999). Since this applies to at least some part
of most models, there is scope for reformulat-
ing many models with more robust structures.
One of the first aims of future Catacomb
development is to move away from static
descriptions of the instantaneous state of a
model (such as actual ion channel densities for
example) towards artificial or, where possible,
more realistic parameterization of slow self-
regulatory processes which govern these
quantities. In general, systems are far less sen-
sitive to the parameterization of regulatory
mechanism than to their instantaneous state.
In modeling biochemical cascades, for exam-
ple it has even been argued that the only
essential information is the presence or
absence of reactions between particular
species, not the details of their rates at all.
Allowing the design of systems where the
structure of what is possible, and perhaps
order-of-magnitude parameter values are all
that matters is therefore central to the devel-
opment strategy.

Finally, the most realistic, and perhaps also
the most reliable way of constructing working
models of neural system, is to model the pro-
cesses of growth and development which give
rise to the real systems. The complete separa-
tion between the model description and com-
putation leaves open the possibility of adding
further layers of processing between them
which would make changes in the executable
system itself according to rules expressed in a
model of growth and development. Although
it is within the overall design, much further
work is required in order to make such mod-
eling readily accessible in Catacomb2.

Acknowledgments

This work was supported by grants NSF
IBN 9996177, NIH MH 60013, NIH 60450, and
NIH MH 61492 to Mike Hasselmo, a visiting

40 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

postdoctoral fellowship to Robert Cannon
from the FWO, Belgium and the United
Kingdom Medical Research Council. Robert
Cannon is particularly grateful to Hugo
Cornelis for numerous valuable discussions
and for his careful reading of the manuscript.
The authors also thank the two reviewers for
their thoughtful commentary on the original
version.

References
Alonso, A. and Klink, R. (1993) Differential elec-

troresponsiveness of stellate and pyramidal-like
cells of medial entorhinal cortex layer II. J
Neurophysiol 70:128–143.

Barnes, C. A., McNaughton, B. L., Mizumori, S.,
Leonard, B. W., and Lin, L. H. (1990)
Comparison of spatial and temporal characteris-
tics of neuronal activity in sequential stages of
hippocampal processing. Prog Brain Res
83:287–300.

Beeman, D., Bower, J. M., De Schutter, E.,
Efthimiadis, E. N., Goddard, N., and Leigh, J.
(1997) The GENESIS simulator-based neuronal
database. In: Neuroinformatics: An Overview of the
Human Brain Project. Chapter 4. (Koslow, S. H.
and Huerta, M. F., eds.) Lawrence Erlbaum
Associates, Mahwah, NJ.

Bi, G. Q. and Poo, M. M. (1998) Synaptic modific-
tion in cultured hippocampal neurons: depen-
dence on spike timing, synaptic strength and
postsynaptic cell type. J Neurosci 18(24):10,
464–10,472.

Borg-Graham, L. (1999) Interpretations of data and
mechanisms for hippocampal pyramidal cell
models. In: Cerebral Cortex Vol. 13—Cortical
Models, (Jones, E., Ulinski, P., and Peters, A.,
eds.) Plenum Publishing Corporation.
pp.19–138.

Borg-Graham, L. (2001) The surf-hippo neuron
simulation system, v3.0. (http://www.cnrs-
gif.fr/iaf/iaf9/surf-hippo.html).

Bower, J. M. and Beeman, D. (1994) The Book of
GENESIS. Teleos Publishing, Los Angeles, CA

Burgess, N. and O’Keefe, J. (1996) Neuronal com-
puting underlying the firing of place cells and
their role in navigation. Hippocampus
6(6):749–762.

Cannon, R. C. (2001a) CD-ROM. Computational
Neuroscience-Realistic Modelling for

Experimentalists. (De Schutter, E., ed.) CRC
Press, Boca-Raton, FL.

Cannon, R. C. (2001b) Eggleton ‘71 revisited. In:
ASP Conf. Ser. 229: Evolution of Binary and
Multiple Star Systems, pp. 15+.

Cannon, R. C., Howell, F. W., Goddard, N., and De
Schutter, E. (2002) Non-curated distributed
databases for experimental data and models in
neuroscience. Network, in press.

Cannon, R. C., Turner, D. A., Papyali, G., and
Wheal, H. V. (1998) An on-line archive of recon-
structed hippocampal neurons. Journal of
Neuroscience Methods 84(1–2):49–54.

Cornelis, H. and De Schutter, E. (2003)
NeuroSpaces: New approaches in neuronal
modeling software. Neurocomputing, in press.

Eggleton, P. P. (1971) The evolution of low mass
stars. Monthly Notices of the Royal Astronomical
Society 151:351.

Faulkner, D. J. (1968) The evolution of helium
shell-burning stars. Monthly Notices of the Royal
Astronomical Society 140:223.

Forss, J., Beeman, D., Bower, J. M., and Eichler-
West, R. (1999) The Modeler’s Workspace: a dis-
tributed digital library for neuroscience. Future
Generation Computer Systems 16:111–121.

Fox, P. A., Hall, A. D., and Schryer, N. L. (1978) The
PORT mathematical subroutine library. ACM
Trans Math Software 4:104–126.

Frank, L. M., Brown, E. N., and Wilson, M. (2000)
Trajectory encoding in the hippocampus and
entorhinal cortex. Neuron 27(1):168–178.

Fransen, A., Alonso, A., and Hasselmo, A. E. (2002)
Simulation of the role of the muscarinic-activat-
ed calcium-sensitive non-specific cataion cur-
rent I(NCM) in entorhinal neuronal activity dur-
ing delayed matching tasks. J Neurosci
22(3):1081–1097.

Funge, J. D. (1999) AI for Computer Games and
Animation: A Cognitive Modeling Approach. J
D Peters.

Gamma, E., Horn, R., Johnson, R., and Vlissides, J.
(1995) Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Goddard, N., Hood, G., Howell, F., Hines, M., and
De Schutter, E. (2001a) NEOSIM: Portable large-
scale plug and play modelling. Neurocomputing
38:1657–1661.

Goddard, N. H., Hucka, M., Howell, F., Cornelis,
H., Shankar, K., and Beeman, D. (2001b)
Towards NeuroML: model description methods
for collaborative modelling in neuroscience.

Volume 1, 2003 ___ Neuroinformatics

Catacomb2 and Models for Spatial Navigation ___41

Philos Trans R Soc Lond B Biol Sci 29(352):
1209–1228.

Hagan, J. J., Verheijck, E. E., Spigt, M. H., and
Ruigt, G. S. (1992) Behavioral and electrophysi-
ological studies of entorhinal cortex lesions in
the rat. Physiol Behav 51(2):155–266.

Hasselmo, M. E., Bodelon, C., and Wyble, B. P.
(2002a) A proposed function for hippocampal
theta rhythmn: Separate phases of encoding and
retrieval enhance reversal of prior learning.
Neural Computation 14(4):792–812.

Hasselmo, M. E., Fransen, E., Dickson, C. T., and
Alonso, A. A. (2000) Computational modeling of
entorhinal cortex. Annals NY Acad Sci
911:418–446.

Hasselmo, M. E., Wyble, B. P., and Cannon, R. C.
(2002b) From spike frequency to free recall:
How neural circuits perform encoding and
retrieval. The Cognitive Neuroscience of Memory:
Encoding and Retrieval (Wilding, E., Parler, A.,
and Busey, T. J., eds) Psychology Press.

Hines, M. (1984) Efficient computation of branched
nerve equations. Int J Bio Med Comput 15:69–76.

Hines, M. L. and Carnevale, N. T. (2001) NEURON:
a tool for neuroscientists. The Neuroscientist
7:123–135.

Holscher, C., Anwyl, R., and Rowan, M. J. (1997)
Stimulation on the positive phase of hippocam-
pal theta rhythm induces long-term potentiation
that can be depotentiated by stimulation on the
negative phase in area CA1 in vivo. J Neurosci
17(16):6470–6477.

Hucka, M., Finney, A., Sauro, H., and Bolouri, H.
(2001) Systems Biology Markup Language
(SBML) Level 1: Structures and Facilities for
Basic Model Definitions. (http://www.cds.cal-
tech.edu/erato/sbml/).

Kali, S. and Dayan, P. (2000) The involvement of
recurrent connections in area CA3 in establish-
ing the properties of place fields: a model. J
Neurosci 20 (19):7463–7477.

Klink, R. and Alonso, A. (1997) Muscarinic modu-
lation of oscillatory and repetitive firing proper-
ties of entorhinal cortex layer II neurons. J
Neurphysiol 77:813–1828.

Kotter, R., Nielse, P., Dyhrfjeld-Johnsen, J.,
Sommer, F. T., and Northoff, G. (2002) Multi-
level neuron and network modeling in compu-
tational neuroanatomy. In: Computational
Neuroanatomy: Principles and Methods. (Ascoli,
G., ed.) Humana Press, Totowa, NJ.

Lattanzio, J. C. (1986) The asymptotic giant branch
evolution of 1.0–3.0 solar mass stars as a func-
tion of mass and composition. Astrophysical
Journal 311:708–730.

Lattanzio, J. C., Frost, C. A., Cannon, R. C., and
Wood, P. R. (1997) Hot bottom burning nucle-
osynthesis in 6 M stellar models. Nuclear Physics
A 621 (1–2):C435–C438.

Markram, H., Lubke, J., Frotscher, M., and
Sakmann, B. (1997) Regulation of synaptic effi-
cacy by coincidence of postsynaptic APs and
EPSPs. Science 275(5297):213–215.

McNaughton, B. L., Barnes, C. A., and O’Keefe, J.
(1983) The contributions of position, direction
and velocity to single unit activity in the hip-
pocampus to freely-moving rats. Exp Brain Res
52(1):41–49.

Muller, R. U., Kubie, J. L., and Ranck Jr., J. B. (1987)
Spatial firing patterns of hippocampal complex-
spike cells in a fixed environment. J Neurosci
7(7):1935–1950.

O’Keefe, J. and Dostrovsky, J. (1997) The hip-
pocampus as a spatial map. Preliminary evi-
dence from unit activity in the freely-moving
rat. Brain Res 34(1):171–175.

Orr, G., Rao, G., Houston, F. P., McNaughton, B. L.,
and Barnes, C. A. (2001) Hippocampal synaptic
plasticity is modulated by theta rhythm in fascia
dentata of adult and aged freely behaving rats.
Hippocampus 11(6):647–654.

Pavlides, C., Greenstein, Y. J., Grudman, M., and
Winson, J. (1998) Long-term potentiation in the
dentate gyrus is induced preferentially on the
positive phase of theta-rhythmn. Brain Res
439(2):383–387.

Press, W. H., Teukolsky, S. K., Flannery, B. P., and
Vetterling, T. (1993) Numerical Recipes. In C:
The Art of Scientific Computing. Cambridge
University Press, Cambridge, UK.

Quirk, G. J., Muller, R. U., Kubie, J. L., and Ranck,
J. B. (1992) The positional firing properties of
medial entorhinal neurons: description and
comparison with hippocampal place cells. J
Neurosci 12(5):1945–1963.

Raymond, E. S. and Young, B. (2001) The Cathedral
and the Bazaar : Musings on Linux and Open
Source by an Accidental Revolutionary.
O’Reilley and Associates.

Redish, A. D. and Touretzky, D. S. (1998) The role
of hippocampus in solving the Morris water
maze. Neural Comp 10:73–111.

42 ___ Cannon et al.

Neuroinformatics ___ Volume 1, 2003

Schroedinger. (1956) What is Life? And Other
Scientific Essays. Doubleday, Garden City, NY.

Sharp, P. E. (1991) Computer simulation of hip-
pocampal place cells. Psychobiology 19:103–115.

Sharp, P. E., Blair, H. T., and Brown, M. (1996)
Neural network modeling of the hippocampal
formation spatial signals and their possible role
in navigation a modular approach. Hippocampus
6(6):720–734.

Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G.
A., Young, M. P., and Kotter, R. (2000) Advanced
database methodology for the collation of con-
nectivity data on the macaque brain (CoCoMac).
Philos Trans R Soc Lond B Biol Sci 355(1393):
37–54.

Suzuki, W. A., Miller, E. K., and Desimone, R.
(1997) Object and place memory in the macaque
entorhinal cortex. J Neurophysiol 78:1062–1081.

Vanier, M. C. and Bower, J. M. (1999) A compara-
tive survey of automated parameter-search
methods for compartmental neural models.
Comp Neurosci 7(2):149–171.

Wenger, M., Ochsenbein, F., Egret, D., Dubois, P.,
Bonnarel, F., Borde, S., Genova, F., Jasniewicz,
G., Laloüe, S., Lesteven, S., and Monier, R. (2000)
The SIMBAD astronomical database: the CDS
reference database for astronomical objects.
Astronomy and Astrophysics Supplement 143:9–22.

Wyble, B. P., Linster, C., and Hasselmo, M. E. (2000)
Size of CA1 evoked synaptic potentials is relat-
ed to theta rhythm phase in rat hippocampus. J
Neurophysiol 83:2138–2144.

Young, B. J., Otto, T., Fox, G., and Eiechenbaum, H.
(1997) Memory representation within the
parahippocampal region. J Neurosci 17:
5183–5195.

