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INTRODUCTION

Researchers have described numerous hypotheses of hippocampal function based on lesion

data, attempting to present these hypotheses entirely in verbal terms -- using terms such as “inter-

ference”, “response inhibition”, “context”, “temporal contiguity”, “snapshot memory” etc.  This

method of hypothesis presentation results in an incomplete and distorted perception of the experi-

mental data, as it is filtered through the multiple associations that each individual has with these

verbal terms.  Even the terms used in the title of this chapter, such as episodic memory and spatial

navigation, come laden with semantic associations that may distract from the essential features of

hippocampal function.

Theories of hippocampal function will only converge on a comprehensive account of a full

range of behavioral data when hypotheses are directly presented in terms of physiological and

anatomical data, without any distortion by verbal description.  Linking these levels requires com-

putational models which are constructed at a neural level within the constraints of physiological

and anatomical data.  Ultimately, linking these levels will require not only that the models of

information processing proceed on a neural level, but that the input and output of the network

should be defined in terms of the actual interactions with the environment.  In other words, it may

not be enough to build a biological model.  We may only avoid the distorted perceptions of verbal

hypotheses when biological models directly interact with a virtual animal moving in a virtual

environment.  Only then can every element of the behavioral data be tested in the context of the

biological data.
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 This chapter will present an overview of existing models of hippocampal function, which con-

stitute only an initial sketch of what must ultimately become a sophisticated computational frame-

work.  The first half will focus on some standard models of episodic memory function, and

important open research questions.  The latter half will present models of spatial navigation,

including a first attempt at directly guiding navigation behavior with a neural simulation.

MODELING HUMAN EPISODIC MEMORY FUNCTION.

An extensive literature concerns the mechanisms of human episodic memory (Tulving and Mark-

ovitch, 1999).  For the purpose of the modeling presented here, episodic memory is defined as the

memory of an individual for a set of related events within an episode experienced by the subject

within a specific delimited time period at a specific spatial location, and which the subject can

access in a flexible and comprehensive manner.  This is usually measured with specific laboratory

tests using verbal materials.  Damage to the hippocampal formation has been demonstrated to

impair a number of tasks requiring memory for verbal information in a specific behavioral con-

text.  For example, damage to the hippocampus significantly decreases the percent accuracy of

performance on delayed free recall of an encoded list of words, or encoding and retrieval of paired

associates (Scoville and Milner, 1957; Graf et al., 1984).  Selective lesions of hippocampal subre-

gions due to hypoxia cause statistically significant memory impairments in these tasks, though the

effects may be somewhat less severe in some cases (Zola-Morgan et al., 1986; Rempel-Clower et

al., 1996).  



                                                                                                                   Hasselmo et al.     4

Thus, when a subject participates in a specific experiment and learns an arbitrary association

between a pair of words (e.g. dishtowel-locomotive), the encoding of that association in the spe-

cific experimental context appears to depend upon circuitry within the hippocampal formation.

Here we will focus on some features of a model (Hasselmo and Wyble, 1997), which demon-

strates how populations of hippocampal neurons might be involved in specific human memory

tasks, such as paired associate memory, free recall and recognition.  This model has many features

in common with other models of hippocampal memory function (Marr, 1971; McNaughton and

Morris, 1987; Levy, 1996; Treves and Rolls, 1994; Hasselmo and Wyble, 1997).  The model

attributes particular functional roles to individual subregions of the hippocampal formation, as

summarized in Figure 1.

FIGURE 1 ABOUT HERE.

Region CA3

In this model, the primary locus for encoding of associations was in region CA3 of the hippocam-

pal formation.  Two features of region CA3 make it particularly appealing as the locus for storage

of episodic memory.  1.) the convergence of multimodal sensory information on this region

means that strengthening of synapses here could provide associative links between distinct sen-

sory stimuli without any strong prior associative link -- e.g. between the word “dishtowel” and the
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word “locomotive”,  2.) the capacity for rapidly inducing large changes in size of synaptic poten-

tials (long-term potentiation) at the excitatory connections between neurons in this region sug-

gests that this region can more rapidly encode associations than many other pathways.   As an

initial example, we will consider the role of hippocampal region CA3 in paired associate memory

function (Hasselmo and Wyble, 1997), separately considering the dynamics necessary for encod-

ing and retrieval (though as noted below, these encoding and retrieval dynamics could occur rap-

idly within short time periods).

Encoding

How might the association between the words “dishtowel” and “locomotive” be stored in neural

network models of the hippocampus?  First, recognition of the two words activates regions of

temporal lobe language cortex.  Patterns of activity then spread into populations of neurons in the

entorhinal cortex.  Physiological and behavioral evidence suggests that the parahippocampal and

entorhinal cortices provide the means for holding information about this event for a period of time

(Young et al., 1997; Fransen et al., 1999; Hasselmo et al., 2000).  During this period of entorhinal

activity, the activity will also influence the hippocampus.  A specific subset of neurons in the den-

tate gyrus receives input from the entorhinal cortex.  These neurons do not represent the use of the

words “dishtowel” and “locomotive” in all contexts, but instead represent the specific use of the

words in the specific behavioral context.  The same neurons will play a role in portions of a wide

variety of different memories.  These neurons provide the basic code for the episodic memory.

Activity in the dentate gyrus is then passed on to region CA3.  In this area, widely distributed
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connections give the potential for random associations between a number of disparate percep-

tions.  Thus, even if different neurons within the inferotemporal cortex or dentate gyrus become

activated the two words, region CA3 has the capability of binding together these disparate items

into a unified memory for the event.

This process is summarized in Figure 2.  Within region CA3, activity in a subset of neurons

representing the word “dishtowel” (item #1) occurs at the same time or as activity in a subset of

neurons representing the word “locomotive” (item #2).  As this activity repetitively activates the

neurons, the processes of synaptic modification gradually increases the efficacy of synapses

between these two sets of neurons.  This forms the basic trace of the event.

FIGURE 2 ABOUT HERE.

Connections within region CA3 may not be the only synapses being modified.  Synapses

between region CA3 and the entorhinal cortex may also be modified, forming stronger connec-

tions between each element of the memory and the patterns of activity occurring in other cortical

areas.  Whatever the case, this distributed change in the pattern of synaptic connectivity will allow

later retrieval of the episodic memory.

Synapses constantly change in synaptic strength, under the influence of a variety of factors.

The process of long-term potentiation could result from the same processes altering synaptic

strength during learning, and has been studied extensively as an experimental phenomenon (Bliss

and Collingridge, 1993; Levy and Steward, 1983).  Several different time courses have been

described, all of which may map to specific features of the decay of memory.  This process of for-

getting has been studied extensively on a behavioral level, but surprisingly little effort has focused
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on related the specific time course of long-term potentiation to the specific time courses of behav-

ioral forgetting.

Retrieval

What processes allow retrieval of this association?  In the paired associate memory task, the

experimenter gives the first word (e.g. “dishtowel”) as a cue.  First this information must activate

language representations in my auditory cortex.  The activity will evoke some activity in the

entorhinal cortex, which can activate the episodic representation of that word formed within the

dentate gyrus.  Activity spreads from the dentate gyrus into region CA3.  Within region CA3, the

population of neurons associated with the word “dishtowel” becomes active.  

As shown in Figure 3, once the population of neurons in region CA3 associated with the word

“dishtowel” becomes active, then the activity spreads across the previously modified synapses

into a specific separate population of neurons.  These are the neurons representing the word “loco-

motive.” 

FIGURE 3 ABOUT HERE.

One or more passes of activity through the hippocampus could retrieve other aspects of the epi-

sodic event -- the expression on the experimenter’s face, or the layout of furniture in the room.

Each of these pieces of information can be extracted from different overlapping sequences all of

which together constitute the episodic memory for that event.  The interitem associations neces-

sary to construct this memory depend upon the flow of activity across sets of synaptic connec-

tions, allowing specific populations of neurons in region CA3 to evoke activity in other specific
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populations of neurons.  See Figure 4 for description of flexible retrieval within an associative

network.

FIGURE 4 ABOUT HERE.

Once the activity has been evoked in region CA3, it will spread along backprojections into neu-

rons of the entorhinal cortex, and subsequently neurons of the parahippocampal cortex, temporal

cortex and frontal cortex.  An important function for these regions is to receive specific items

evoked within sequences in region CA3, and to hold memory for these specific items until the

time when the response is necessary.  In this way, a full narrative of the event can be generated, or

individual specific questions can be answered without requiring repeated access to the original

memory.

Free recall and recognition

The same model was used to simulate hippocampal involvement in free recall and recogni-

tion (Hasselmo and Wyble, 1997).  In free recall experiments, subjects are presented with a list of

words during encoding.  In a separate retrieval phase, they are asked what words were on the list,

and retrieve them in arbitrary order.  No specific cue elicits the retrieval of each word.  Instead,

the general experimental context must serve as a cue for retrieval of each word.  Thus, in the sim-

ulation of free recall (Hasselmo and Wyble, 1997), region CA3 provides a network in which the

memory for individual words then takes the form of associations between a single episodic repre-

sentation of the context and the episodic representation of the individual word items.

In this simulation, activation of the context attractor state causes activity to spread to multiple
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different item attractors.  These item attractors compete, allowing only one item attractor to pre-

dominate and be retrieved.  After a period of activity, a wave of inhibition shuts off all attractors

(porribly analogous to the oscillatory inhibition associated with theta rhythm oscillations).  Subse-

quently, activation of the context attractor state again causes activity to spread to multiple item

attractors, but the previously retrieved item has sufficient residual adaptation that it cannot be

retrieved repetitively.

Recognition memory for individual words has been proposed to involve two different pro-

cesses: 1.) explicit remembering of the episode when the word was encoded, and 2.) the fluency of

activation of single items, regardless of an assocation to context.  The first type of recognition was

modeled in conjunction with free recall (Hasselmo and Wyble, 1997), simply using activation of the

item as a cue, and evaluating whether the context can be activated by spread along strengthened

associative synapses.  The second type of recognition probably does not involve hippocampal cir-

cuits, but may instead be located in the neocortex (O’Reilly et al., 1998).

This description focused on simple sequential activation of separate populations of neurons,

but the extensive excitatory connections within the network could allow explosive growth of activ-

ity.  Thus, there must be some mechanism for preventing continuous explosive growth.  A simple

mechanism for controlling excitatory feedback uses subtractive inhibition (Wilson and Cowan,

1972; Hasselmo et al., 1995; Hasselmo and Wyble, 1997).  Other mechanisms for preventing explo-

sive growth of activity include shunting inhibition providing division of activity (McNaughton and

Morris, 1987; Levy, 1996; Treves and Rolls, 1994) saturation of excitatory synaptic transmission

(Fransen and Lansner, 1995), or imposing a “k-winners-take-all” scheme (O’Reilly et al., 1998), in

which only a set number of neurons can be active.  Whereas most existing models have focused on
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obtaining a stable activity level, it may be sufficient to utilize cycles of inhibition on the time

course of gamma or theta rhythm oscillations, which will initially allow a spread of activity which

is then curtailed  (Wallenstein and Hasselmo, 1997).

Problem of differential dynamics during encoding and retrieval.

In addition to the potential for causing explosions of activity, excitatory recurrent connec-

tions also have the potential to interfere with the encoding of new patterns. This would cause

severe proactive interference in episodic memory, and would prevent construction of useful asso-

ciative links for spatial navigation (see Figure 7 below).  Because of this, most associative mem-

ory models have had separate dynamics during encoding, with clamping of activity to the desired

input pattern (Kohonen, 1984: Amit, 1988).  In those models, spread of activity along excitatory

connections between units within the network is only allowed during retrieval.  

What physiological mechanisms could provide these separate dynamics for encoding and

retrieval?  In a number of models, I have proposed that these separate dynamics can be obtained

by selectively regulating the relative strength of three variables: 1.) excitatory synaptic transmis-

sion within the hippocampus, 2.) excitatory input from entorhinal cortex, and 3.) long-term poten-

tiation (Hasselmo et al., 1995; 1996; 2001).  Modulatory input from the medial septum can

potentially cause these changes in network dynamics on different time scales, causing fast

changes in dynamics through effects at GABA receptors during theta rhythm (Hasselmo et al.,

1996; 2001), and causing slow changes in dynamics through effects at muscarinic acetylcholine

receptors (Hasselmo et al., 1995).
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Appropriate encoding dynamics require strong afferent input from entorhinal cortex.  At the

same time, the internal connections of the hippocampus (including both recurrent connections in

region CA3 and the Schaffer collaterals from CA3 to CA1) would undergo strong synaptic modi-

fication, but weak synaptic transmission.  In contrast, retrieval dynamics would have weaker

afferent input, with strong internal synaptic transmission, but weak synaptic modification.  Previ-

ous research has not emphasized these requirements, but existing physiological data demonstrates

these changes during theta rhythm oscillations in the EEG.  Theta rhythm appears when animals

are actively exploring the environment or attending to behaviorally relevant stimuli (Buzsaki et

al., 1983; Chrobak and Buzsaki, 1994).  Physiological data shows that theta is associated with

sequential phases of strong entorhinal input to region CA1, followed by strong CA3 input to

region CA1 (Ruddell et al., 1981; Brankack et al., 1993; Bragin et al., 1996; Wyble et al., 2000).

The dynamics described above have the paradoxical requirement that long-term potentiation of

the connections from region CA3 should be strongest when the synaptic transmission at these

connections is weakest.  Surprisingly, previous physiological data already supports this paradoxi-

cal requirement, showing that induction of LTP works best at the peak of local theta -- when syn-

aptic transmission is the weakest (Huerta and Lisman, 1993; Holscher et al., 1997).  Thus, theta

rhythm dynamics could provide rapid switching between encoding and retrieval dynamics (Has-

selmo et al., 2001).  The encoding phase would also be enhanced by strong input from the dentate

gyrus.  Physiological data demonstrates that stimulation of septum enhances dentate gyrus

response to entorhinal input, possibly through inhibition of the dentate interneurons (Mizumori et

al., 1989; Fantie and Goddard, 1982; Bilkey and Goddard, 1985) and reversible inactivation of the
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medial septum reduces spontaneous firing of neurons in dentate gyrus (Mizumori et al., 1989). 

Cholinergic innervation from the medial septum could provide slower changes between

encoding and consolidation dynamics.  Acetylcholine reduces the strength of synaptic transmis-

sion at excitatory recurrent connections in region CA3 (Hasselmo et al., 1995) and from region

CA3 to region CA1. Cholinergic modulation also serves to directly enhance modification of syn-

aptic strength, as demonstrated in experiments showing enhancement of long-term potentiation by

cholinergic agonists (Huerta and Lisman, 1993).  This direct enhancement of changes in synaptic

strength ensures that new learning only occurs at the time that the other cholinergic effects are

present to set appropriate dynamics for new encoding (Hasselmo and Linster, 1999).

This theoretical role of medial septum in regulating encoding dynamics through cholinergic

and GABAergic effects is consistent with data on drug effects, which demonstrate that encoding

can be seriously impaired by two types of drugs: 1.) drugs which block muscarinic acetylcholine

receptors (e.g. scopolamine), and 2.) drugs which enhance GABAergic receptor effects (e.g. diaz-

epam or midazolam).  Both of these types of drug impair the encoding of words for subsequent

free recall, but do not impair the free recall of words encoded before administration of the drug

(Ghoneim and Mewaldt, 1975).

Sequence storage models 

Fixed patterns of activity in networks can be used to model storage of individual items, or

simultaneously presented pairs of items, but these fixed patterns do not effectively represent

sequential storage of associations between multiple different items, such as the interitem associa-
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tions which could cause a higher probability of retrieving words which were adjacent on the list.

These interitem and cross-temporal associations can be more effectively represented by stor-

age of multiple patterns in a sequence rather than a single pattern.  The storage of a sequence of

activity patterns has been proposed as an alternative function of the excitatory recurrent collater-

als in region CA3 (Marr, 1971; McNaughton and Morris, 1987; Jensen and Lisman, 1996; Levy,

1996; Wallenstein and Hasselmo, 1997).

Encoding of multiple overlapping sequences runs into the problem of interference between

stored sequences.  Theta rhythm oscillations induced by cholinergic and GABAergic input from

the medial septum could assist in disambiguating overlapping sequences (Sohal and Hasselmo,

1998).  Encoding of sequences provides the flexibility necessary for relational processing in the

hippocampus, including both the flexible goal directed retrieval of episodic memories, and the

flexible choice of specific pathways during spatial navigation described below.

Relational processing in an associative net.  

Extensive data suggests that the hippocampus is particularly important for flexible retrieval

of relational information about recent events (Cohen and Eichenbaum, 1993). That is, rather than

being locked into a particular stereotypical pattern or sequence of patterns, the hippocampus

appears to mediate flexible access to causal relationships within a large network of interitem asso-

ciations.

This framework corresponds to a case of multiple overlapping sequences encoded in region

CA3, which can be accessed not only in a rigid manner specific to individual sequences, but with
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flexible transitions across the elements of the network, picking out different components in differ-

ent sequences.

As an example, imagine an event in which I observe my Siamese cat knock a bowl of cante-

lope off the table.  One aspect of episodic memory is the sense of flexible access to multiple dif-

ferent components of the memory, as if a full video of the sequence were available and we could

play through segments of it forward and backward with pausing and focused inspection of differ-

ent elements.  This flexible retrieval of different events within an episode, or different relational

features could be obtained if the recurrent connections of region CA3 set up an associative net-

work, within which specific subsequences of activity could be evoked depending upon the condi-

tional features of the retrieval cue.  This type of flexible access is schematized in Figure 4.  If I

look at my cat, I might be reminded of the cat knocking the bowl off the table.  But if I eat a can-

taloupe, I might be reminded of the cantaloupe pieces falling on the carpet after the cat knocked

them off the table.

Dentate gyrus

Most theories and models of hippocampal memory function include an important functional

role for the dentate gyrus.  In these models, the dentate gyrus serves to reduce the overlap between

different patterns of activity stored within region CA3 of the hippocampus.  The dentate gyrus

activity then strongly activates region CA3 pyramidal cells via the mossy fibers.

This problem of reducing overlap relates to the problem of interference between patterns

encoded within an associative memory.  A simple means of preventing this type of interference
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between encoded pattern involves pre-processing the patterns to make their representation less

overlapping when they activate region CA3.  This requires two processes: 1.) a mechanism for

automatically reducing overlap between multiple sequentially presented patterns, and 2.) a mech-

anism for mapping the altered, less overlapping representations in region CA3 back to the original

input patterns in association neocortex.  The overlap between stored patterns can be reduced by

allowing modification of the perforant path inputs from entorhinal cortex to dentate gyrus.  This

results in self-organization of the dentate gyrus representation due to competition between

encoded representations.  

Many models of episodic memory have proposed self-organization of input to dentate gyrus,

but have utilized interleaved presentation of different patterns (O’Reilly et al., 1998; Rolls et al.,

1997).  These networks can obtain competitive self-organization without modification of inhibi-

tion, but the requirement of interleaved learning may be unrealistic for encoding of episodic mem-

ories, unless these memories are repeatedly reactivated and utilized to refine the dentate gyrus

representation (see discussion of McClelland et al., 1995).  By definition, episodic memories are

encoded at one point in time.  This means that any representation for the initial encoding of this

memory must be formed on the basis of that single presentation.  The afferent input could persist

for a period of time (see discussion of the possible role of entorhinal cortex as a buffer), but it is

not intermixed with the reactivation of other encoded memories.  Thus, the encoded memories are

not interleaved during learning.  This presents a special problem for models of the dentate gyrus

in episodic memory, as most models of self-organization and competitive learning utilize inter-

leaved learning of a large set of input patterns.
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Sequential self-organization of representations in the dentate gyrus has been obtained by uti-

lizing modification of inhibitory connections (Hasselmo and Wyble, 1997).  In the model, indi-

vidual representations in dentate gyrus are initially activated due to random divergent input.  At

this point, excitatory feedforward connections undergo Hebbian modification to strengthen the

drive on that dentate representation.  This would allow smaller entorhinal patterns to activate den-

tate gyrus, but this excitatory modification is offset by enhancement of inhibitory feedback con-

nections within the dentate gyrus (Hasselmo and Wyble, 1997).  These can then prevent any

patterns which do not strongly resemble the initial input pattern from activating the same repre-

sentation.

Region CA1

If the associations encoded in region CA3 require a transformation in the dentate gyrus to

make them less overlapping, then there must be some means of reversing the transformation in

order to map the encoded patterns back to the activity patterns associated with sensory processing

in association cortex.  However, there are no direct connections from region CA3 to neocortical

structures such as the entorhinal cortex.  How can this mapping back to neocortical sensory activ-

ity take place?

Region CA1 appears well suited to this putative mapping function (McClelland and Goddard,

1996; Hasselmo et al., 1995; Hasselmo and Wyble, 1997).   However, in addition to simple

remapping, region CA1 could play an important role in determining whether the reconstructed

pattern in region CA3 satisfies criteria for remapping to neocortical structures, based on a com-
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parison of the region CA3 output with the current sensory input relayed through entorhinal cortex

(Gray, 1982; Eichenbaum and Buckingham, 1989; Hasselmo and Wyble, 1997).  This process is

summarized in Figure 5.

FIGURE 5 ABOUT HERE.

This matching function could be very important for ensuring that incorrect retrieval does not

propagate back to entorhinal cortex.  For example, if the input pattern has not been previously

encoded, the immediate retrieval from region CA3 will not have any useful information.  In addi-

tion, if there is severe interference of the new pattern with previously stored patterns, the immedi-

ate retrieval from region CA3 will contain additional undesired information which should be

restricted from passing back to entorhinal cortex.

Region CA1 has the appropriate anatomical connectivity for this type of comparison func-

tion.  The output from region CA3 pyramidal cells arrives via the Schaffer collaterals and syn-

apses in stratum radiatum of region CA1.  The direct input from entorhinal cortex arrives via the

perforant path and synapses in stratum lacunosum-moleculare of region CA1.  The output of

region CA1 pyramidal cells flows back to entorhinal cortex, either directly or via the subiculum. 

Thus, the activity of region CA1 pyramidal cells reflects the convergence of Schaffer collat-

eral input from region CA3 and perforant path input from entorhinal cortex (see Figure 5).  If

region CA1 pyramidal cells would require inputs from both pathways in order to fire (or would

require the inputs to match if there is perforant path input), then only matching patterns would

activate region CA1 and only matching patterns could spread back to entorhinal cortex.

Region CA3 actually contains direct afferent input from the entorhinal cortex in stratum
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lacunosum-moleculare, but the longitudinal association fibers (laf) only contact region CA3 pyra-

midal cells and interneurons, and the Schaffer collaterals only contain region CA1 pyramidal cells

and interneurons.  Thus, even if region CA3 performs a comparison function, all output must pass

through the potential comparison function of region CA1 as well.  Having a separate comparison

stage might be important in that it can allow region CA3 to settle into an attractor, without imme-

diately vetoing this attractor or sequence on the basis of input from entorhinal cortex.  Thus,

region CA3 has the flexibility to generate multiple associations and region CA1 sorts through

these to pick out valid retrieval candidates.

The theory of a comparison function in region CA1 has been described verbally in a number

of locations (Gray, 1982; Eichenbaum and Buckingham, 1989), but only in a few publications

have the actual mechanisms of such a comparison been described in detail and analyzed mathe-

matically or simulated (Hasselmo and Schnell, 1994; Hasselmo et al., 1995).  In some simula-

tions, the sum of region CA1 activity was utilized to regulate levels of modulatory input from the

medial septum (Haselmo and Schnell, 1994; Hasselmo et al., 1995).  Regulation of cholinergic

and GABAergic modulatory input from the septum could also determine the capacity for informa-

tion to flow back to entorhinal cortex.

As shown in Figure 5, retrieval in region CA3 generates predictions which are evaluated by

matching in region CA1.  This same basic function could be applicable to neocortical function,

with supragranular layers II/III playing the same retrieval role as CA3, and holding these predic-

tions in working memory until converging input from layer II/III and other sources (thalamus or

lower cortical areas) generates matching activity in infragranular layers (V/VI).  This matching
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criteria would then allow activity to spread to other cortical or subcortical regions.  This amounts

to a gating process, in which predictions in working memory are matched with current input cues,

and matching allows progression to new state.  For example, in a simulation of counting, a work-

ing memory representation of zero would predict the first presentation of an ojbect.  When the

object is seen, this match of cue and prediction would cause activation of a gate which would acti-

vate the representation of “one.”  This would then predict the second presentation of input from

the exact same object representation.  The second presentation of the object would only activate

the neuron receiving predictive input from “one”, and the activated gate would only activate the

new representation for “two.”  In this manner, matching of prediction and cue could allow gating

functions which could form the basis for rule representations in neocortical circuits.

The general process of comparison between retrieval and input plays an important role in a

more abstract class of models described with the term: Adaptive Resonance Theory (ART).  The

connectivity of ART networks has not been explicitly mapped to physiological structures, but

these networks regulate the formation of new representations on the basis of a comparison

between the current input and the representations formed in response to previously presented

input (Carpenter and Grossberg, 1993).

Entorhinal cortex

In many models of hippocampal memory function, the entorhinal cortex plays a simple role

as the source of input and recipient of output from the hippocampus.  The entorhinal cortex cer-

tainly fits this role with regard to anatomical data.  As summarized in Figure 1, input from neocor-
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tical association cortices converges on the entorhinal cortex, which provides the primary afferent

input to the dentate gyrus as well as providing input to stratum lacunosum-moleculare of region

CA3 and region CA1. On the output side, efferent connections from region CA1 and subiculum

provide a major projection to the deep layers of entorhinal cortex, which send divergent projec-

tions to association neocortex.

The entorhinal cortex can be seen as the gateway to the hippocampus.  In this role, it could

play an important functional role in regulating whether particular sensory input reaches the hip-

pocampus.  The limited capacity of episodic memory storage can be used more efficiently if only

important information is relayed.  In this context, the modulatory state of entorhinal cortex could

be very important.  This structure exhibits changes in physiological state associated with different

behavioral states, including theta EEG oscillations which appear to be regulated by the medial

septum to provide input to region CA1 which is out of phase with the region CA3 input (Mitchell

and Ranck, 1980; Alonso and Garcia-Austt, 1987).

An important means by which entorhinal cortex could regulate input to hippocampus is by

acting as a buffer for incoming information, holding behaviorally relevant information for a

period of time longer than the presence of the sensory input itself.  This potential role is supported

by evidence that lesions of the entorhinal cortex and perirhinal cortex impair performance in

delayed non-match to sample tasks in non-human primates (Zola-Morgan et al., 1994) and rats

(Otto and Eichenbaum, 1992).  In these tasks, a stimulus is presented at the start of the trial, and

after a delay period the animal must respond to the object which they did not see at the start of the

trial.  This lesion effect suggests that entorhinal cortex may retain activity during the delay period.
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Electrophysiological recording demonstrates that some neurons in this region do maintain

stimulus selective activity during delay periods in a DNMS task (Young et al., 1997).  This sus-

tained activity may depend upon induction of self-sustained activity on a cellular level due to

effects of acetylcholine (Klink and Alonso, 1997; Fransen et al., 1999; Hasselmo et al., 2000).

This retention of activity could be very important for providing a sustained source of afferent

input for a time period sufficient to induce synaptic modification within the dentate gyrus and hip-

pocampal subregions.

In addition to its potential role in holding input during encoding in the hippocampus, the

entorhinal cortex may play an important role in regulating the flow of output from the hippocam-

pus.  This could take place both during interaction with the environment and during quiet waking

and slow-wave sleep.  During interaction with the environment, the validity of retrieved informa-

tion needs to be compared with sensory input (see discussion of region CA1 above).  During quiet

waking or slow-wave sleep, this output does not play a direct role in guiding behavior, but could

mediate the consolidation of memory function (Hasselmo, 1999).

SPATIAL NAVIGATION MODELS

This section focuses on modeling the mechanisms of spatial navigation -- the process of encoding

spatial locations and following paths between different locations.  Nothing about the mechanisms

of cortical or hippocampal function requires that there be a distinction between episodic memory

function and spatial navigation.  Given that both these functional categories appear to depend

upon hippocampus, an effective model of hippocampus should account for both sets of data.



                                                                                                                   Hasselmo et al.     22

However, at this point in time there is a clear set of empirical data and computational model-

ing of memory function which specifically focuses on spatial memory function.   In particular, 

many studies of hippocampal function in rats focus on behaviors involving memory for specific 

locations, and rats provide a greater opportunity for electrophysiological and neurochemical mea-

surements in awake, behaving animals.

Physiological data 

Considerable physiological data relevant to rat spatial navigation has been obtained.  The 

responses of many neurons in hippocampus have been defined as “place cells”, which respond 

selectively to a specific location within the environment (O’Keefe and Recce, 1993; Skaggs et al., 

1996; Wilson and McNaughton, 1993).  This definition of place cell implies a specific role in spa-

tial coding, but these responses could be a specific manifestation of a more general property of 

encoding events in an episode (Eichenbaum et al., 1999).  

In behavioral tasks, hippocampal and entorhinal neurons demonstrate responses to most 

behaviorally relevant components.  For example, in operant conditioning tasks hippocampal neu-

rons respond to task elements including approaching and obtaining water reward (Wiener et al., 

1987; Otto et al., 1992; Young et al., 1997), sampling an odor stimulus (Wiener et al., 1987; Otto 

et al., 1992), sampling local features of the environment such as texture (Shapiro et al., 1997 ) and 

making incorrect or correct responses (Wiener et al., 1987; Otto et al., 1992).  In addition, during 

performance of delayed nonmatch to sample tasks, neurons show specificity for match or non-

match trials in hippocampus (Otto et al., 1992) and entorhinal cortex (Young et al., 1997).  Neu-
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rons show activity during the delay period of the task in entorhinal cortex (Young et al., 1997).  In 

hippocampus, studies of single neurons do not show distinct delay activity (Otto et al., 1992) 

whereas the ensemble code appears to maintain information across the delay (Hampson and 

Deadwyler, 1996).  This response to all behaviorally relevant variables suggests that hippocampal 

neurons are not constrained to any specific sensory dimension but encode a range of events which 

constitute individual episodes (Eichenbaum et al., 1999).

In recent experiments, it has been explicitly shown that place cells show responses more sug-

gestive of episodic memory function than pure spatial encoding (Frank et al., 2000; Wood et al., 

2000).  These experiments used tasks in which rats would run along a single central arm of the 

maze in the same direction, but on different trials they would have to turn either left or right at the 

end of the central arm.  Some neurons recorded in these tasks would show differential responses 

on “go--left” versus “go-right” trials.  Thus, the response depended on the past and future trajec-

tory of the rat, despite the fact that the rat had exactly the same external cues and movements 

along the central arm.  

Computational modeling of spatial navigation

A number of models of spatial navigation have utilized the basic connectivity structure of 

region CA3.  In these  models, individual spatial  locations are encoded as a pattern of activity 

across a sub-population of place cells, and the strengthening of synaptic connections between 

these place cells allows activity representing one location along a path to evoke the neuronal 

activity representing the next location along the path.  During retrieval, neuronal activity elicited 
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by one location can spread to adjacent locations dependent upon the prior strengthening of excita-

tory recurrent connections during encoding.

These models can be categorized on the basis of differences in the process of encoding the 

environment.  Some models involve encoding of individual paths through the environment, with a 

global representation built from these pathways, whereas others start with a two-dimensional rep-

resentation of the full environment which is then modified to encode goal location.  Here, these 

different categories will be termed “path-based” and “grid-based” models.

Path-based models versus grid-based models.

The encoding and retrieval of specific pathways through the environment has been modeled 

in recurrent networks representing region CA3 (Levy, 1996; Wallenstein and Hasselmo, 1997; 

Hasselmo et al., 2001).    In the Levy laboratory, simplified models of region CA3 have been 

developed with neurons represented by units with binary output states.  In these models, the 

encoding of a path is modeled with sequential activation of different sets of units, for example, 

pattern A, B, C, D and E.  Application of an asymmetric Hebbian learning rule strengthens con-

nections where the activity of a presynaptic unit precedes the activity of a post-synaptic unit, con-

sistent with neurophysiological data (Levy and Steward, 1983).  Retrieval is then obtained by 

providing input to units in pattern A, and allowing the activity to sequentially spread across mod-

ified connections to activate units in pattern B, then pattern C, then D, then E.

These models deal with the problem of overlapping components of sequences by allowing 

strengthening of connections across multiple time-steps.  For example, synaptic modification can 
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allow units not receiving afferent input to become associated with specific segments of the stored 

paths.  Levy calls these local context units.  The local context units enhance the capacity for dis-

ambiguating sequences, as well as allowing activity later in the sequence to influence earlier 

activity.

This type of path based framework was used in a network of compartmental biophysical sim-

ulations of region CA3 pyramidal cells (Wallenstein and Hasselmo, 1997; Wallenstein et al., 

1998).  This network demonstrates many of thepathway encoding properties of the Levy model 

using a more biologically realistic framework.  Theta rhythm oscillations in the model greatly 

enhanced the encoding of new sequences.  

More recent models developed in my laboratory have focused on the selection of specific 

pathways dependent upon the current goal location.  In these models, activity spreads backward  

from the goal location along associative circuits strengthened in the entorhinal cortex.  This activ-

ity then cues the spread of activity in region CA3 representing the forward spread from current 

location.   The convergence of the forward and backward representations in region CA1 allow 

selection of the first pathways receiving convergent activation from goal and current location, 

which usually results in selection of the shortest pathway, as described in the simulation below 

(Gorchetchnikov and Hasselmo, 2001).

In grid based models, place cell representations are also assumed to be present when an ani-

mal initially encounters a new environment.  However, in contrast to the pathway based models, 

these representations are assumed to be laid out in a full two-dimensional interconnected grid, 

presetting the nature of place cell interconnections without any role of context.  The grid-based 
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models are proposed to set up a representation which can guide subsequent behavior.  In this 

framework, the simulated rat performs multiple traversals through the environment, and recently 

activated connections are modified when the rat reaches the goal location.  Eventually, the con-

nections form a two-dimensional gradient of responses which are directed toward the goal loca-

tion in the network (Blum and Abbott, 1996; Gerstner and Abbott 1997).

The starting conditions of these models are very similar, in that they both assume some initial 

mapping of sensory features to specific place cell representations.  Other models explicitly model 

the formation of place cell representations through self-organization of afferent input to the hip-

pocampus (Sharp et al., 1996; Burgess et al., 1997.  The path based models assume that as an ani-

mal passes through different locations along a path, specific place cell representations are 

activated (implicitly assuming these place cells are initially only connected with the standard 

default connection strengths).  The grid based models assume a network with homogeneous con-

nectivity except where the animal has actually traversed the grid and modified connections.  Thus, 

venturing into an area without paths is initially similar to going onto a portion of the grid that has 

no modified connections.  However, if you have a gap and then cross it in one direction, left to 

right, then later cross it right to left, in the path based model the initial path would be direction 

selective, context propeties would cause it to have a representation distinct for each direction.  

These direction selective responses could then be associated together to provide a non-directional 

response (Kali and Dayan, 2000).  In contrast, in grid based models the place cell representations 

are already multidirectional and any directionality would have to involve later modification based 

on context, i.e. choosing of different grids on the basis of context.  Thus, they make different pre-
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dictions about the initial directionality of place cell representations.

Because grid-based models do not focus on the episodic, context-dependent components of 

individual pathways, they would be difficult to utilize for showing how separate representations 

can be set up in the same environment.  The use of a single two-dimensional grid results in loss of 

episodic features which are preserved in a path-based model.  Thus, a path-based model would 

more effectively account for a change in place cell representations when a rat is switched from a 

broad exporatory task to a specific directional traversal of the same space (Markus et al., 1997), 

and could account for differential responses in the stem of a T-maze before a rat makes differen-

tial responses in a spatial alternation task (Wood et al., 2000). 

Guiding a virtual rat with a hippocampal simulation.

Many of the hypotheses described above make strong assumptions about the nature of behavioral 

input during a task and the output required for guidance of movement.  These additional assump-

tions about the input and output can be reduced if the network directly interacts with an agent 

moving through an environment.  This section presents a recent simulation developed in java, in 

which a hippocampal simulation directly guides movement of a virtual rat through a virtual envi-

ronment, and receives its sensory input on the basis of those movements.

This simulation was developed within a general purpose neural simulation package devel-

oped by Robert Cannon under the name “catacomb” (DeSchutter, 2000; Cannon, 2000).   This 

package allows flexible creation of multiple different environments including arbitrary barrier 

locations, and arbitrary locations for individual objects.  A virtual rat can be placed into a given 
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virtual environment, and its movements can be controlled in one of three ways: 1.) according to 

pre-determined trajectories, 2.) with random choice of direction and speed of movement, and 3.) 

with output from a neural simulation.  Numerous parameters of the environment and rat can be 

adjusted within the simulation.

The hippocampal simulation developed within this package contains the essential features of 

the simulations described in the preceding sections of this chapter.  But the guidance of a rat in an 

environment required multiple additional functional components of the network.  The structure of 

the network and its interaction with the virtual rat in the virtual environment is summarized in 

Figure 6. 

FIGURE 6 ABOUT HERE.

Navigation in this model depends upon encoding and retrieval of pathways through the envi-

ronment, in the form of strengthened excitatory synapses between individual place cell represen-

tations.  The network receives direct sensory input representing location within the environment 

from the “place” node shown in Figure 6.  Thus, place cell representations are assumed de facto, 

similar to other simulations (Blum and Abbott, 1996; Redish and Touretzky, 1998) -- the model 

does not explicitly model processes which could set up place cell representations, such as self-

organization of the excitatory input from entorhinal cortex (Sharp et al., 1996; Burgess et al., 

1997), or the self-organization of excitatory connections arising from region CA3 pyramidal cells 

(Levy, 1996; Wallenstein and Hasselmo, 1997).
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Encoding

During encoding, the network receives input from precoded trajectories covering the full T-maze.  

This causes sequential activation of  neurons in entorhinal cortex layer II.  The activity spreads 

from entorhinal cortex layer II into region CA3 and entorhinal cortex layer III, and from entorhi-

nal cortex layer III to region CA1.  As place cells are sequentially activated, excitatory connec-

tions between these place cells are strengthened according to a brief window of Hebbian synaptic 

modification corresponding to the relative timing of pre and post-synaptic spiking necessary for 

induction of long-term potentiation during paired cell recording (Levy and Steward, 1983; Bi and 

Poo, 1998).   Those experiments showed that long-term potentiation would be induced if a pre-

synaptic spike preceded a post-synaptic spike by less than 100 msec, and long-term depression 

would be induced if a presynaptic spike followed a post-synaptic spike by a similar time window.  

In the simulation, we focus on a single step function which causes synaptic strengthening for any 

post-synaptic spike falling within a 70 msec period after a presynaptic spike.  As can be seen in 

Figure 7, this results in strengthening of connections in the network between adjacent place cells, 

but not between non-adjacent place cells.

This aspect of the simulation already raised an important problem not discussed in other sim-

ulations.  The window of induction for long-term potentiation (Bi and Poo, 1998) is too small rel-

ative to the average interval between activation of individual place cells.  Rats take seconds or 

more to cover the distances in the maze, and often pause to investigate individual locations.  This 

slow movement and frequent pausing causes difficulties in forming associations between adjacent 

locations, unless there is some mechanism for buffering place information to bridge across delays 
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between individual locations.  To address this problem, I incorporated a simplified representation 

of intrinsic afterdepolarization mechanisms which have been modeled previously in greater bio-

physical details (Fransen et al., 1999; 2000; Hasselmo et al., 2000).  In these simplified represen-

tations, generation of a single action potential initiates dual exponential time courses to cause a 

period of afterhyperpolarization followed by afterdepolarization.  This results in repetitive firing 

of a neuron at about theta frequency for 3 to 4 spikes.  This repetitive self-sustained intrinsic 

activity assists in ensuring that activity is sufficient to allow strengthening of all connections 

between adjacent locations, as shown in Figure 7 above.

Retrieval

During retrieval dynamics, network activity guided by the location of food reward (goal) and the 

current location converges within the simulation to activate the appropriate next location for 

movement toward the chosen goal.  The activity within individual regions during this phase is 

shown in Figure 8, and summarized below.

FIGURE 8 ABOUT HERE.

Entorhinal cortex layer III:

This region is activated by the goal location in prefrontal cortex.  Each time this goal location is 

activated, the activity spreads backward from the goal location across the connections of the net-

work, as shown in the row showing entorhinal cortex in Figure 8.  The broad spread of activity 

within this network results in a much larger place field representation for individual cells in the 
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entorhinal portion of the model, consistent with data from recordings of the entorhinal cortex 

(Barnes et al., 1990; Quirk et al., 1992; Frank et al., 2000).  The pattern of activity in entorhinal 

cortex layer III causes subthreshold activation of layer II and region CA1.

Entorhinal cortex layer II:

This region receives subthreshold input from the current location, as well as subthreshold input 

from entorhinal cortex layer III.  When the backward spread from the goal converges with the 

input of current location, this causes spiking activity corresponding to current location at the 

appropriate time.  This activity then causes suprathreshold activation of region CA3.

Region CA3:

When region CA3 receives suprathreshold input from entorhinal cortex layer II, the spiking activ-

ity spreads forward along strengthened excitatory recurrent connections corresponding to previ-

ously encoded pathways through the environment, as shown in the row illustrated region CA3 in 

Figure 8.  The spread of activity is terminated by activation of feedback inhibition which prevents 

excessive spread of excitation within the region (corresponding to the relatively small size of 

place fields for neurons recorded in region CA3).  Synaptic output from region CA3 causes sub-

threshold activation of region CA1.

Region CA1:

This region receives subthreshold input from both region CA3 and entorhinal cortex layer III.  
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Neurons in this region only spike when they receive simultaneous input from region CA3 and 

entorhinal cortex layer III, as shown in the row illustrating region CA1 in Figure 8.  This input is 

accurately timed such that it only causes spiking when the forward spread from current location 

matches the backward spread from goal which activated the current location.  Excessive spiking 

activity is prevented by feedforward inhibition of region CA1 neurons by the output of region 

CA3.  This activity in region CA1 causes spiking corresponding to the next location a rat needs to 

enter in order to start moving toward its goal.  For each new current location, the cycle repeats to 

allow updating of the next desired location.

Theta rhythm modulation of network dynamics.

In the sections above, encoding and retrieval dynamics are described separately.  However, a rat is 

presumably always able to encode new information, even in the midst of performing a learned 

navigation task in the maze.  Thus, these phases of encoding and retrieval should not persist for 

long periods.

Theta frequency oscillations provide a mechanism to obtain effective encoding and retrieval 

in the network during continuous behavior.   These theta rhythm oscillations are large amplitude 

3-10 Hz oscillations which appear in the hippocampal EEG when a rat is actively exploring the 

environment (Buzsaki et al., 1983; Chrobak and Buzsaki, 1994).  In contrast, the EEG shows 

irregular activity during immobility or consummatory activities such as eating or grooming.

Theta rhythm oscillations in the EEG of region CA1 result from sequential changes in the 

amplitude of synaptic currents in different layers of region CA1.  As proposed in recent publica-
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tions (Hasselmo and Wyble, 2000; Hasselmo et al., 2001), these changes in synaptic current dur-

ing each cycle of the theta rhythm may correspond to successive phases of encoding and retrieval 

during each cycle.  

During the encoding phase of the theta cycle, afferent input from entorhinal cortex is very 

strong, whereas the excitatory recurrent connections in region CA3, and the connections from 

region CA3 to region CA1 are very weak.  This allows effective clamping of network activity to 

the afferent input, which is optimal for strengthening of excitatory recurrent connections to form 

an accurate representation of environmental features (such as adjacent place cells).  Note that this 

requires that long-term potentiation of the excitatory recurrent connections and Schaffer collater-

als should be maximal at the time that synaptic transmission at these connections is the weakest.  

This is consistent with physiological data showing that long-term potentiation is best induced at 

the peak of the local EEG, which is the time when synaptic currents are the weakest (Huerta and 

Lisman, 1993; Holscher et al., 1997).

During the retrieval phase of the theta cycle, afferent input from entorhinal cortex is at its 

weakest, but the excitatory recurrent collaterals in region CA3 and the Schaffer collaterals from 

region CA3 to region CA1 are at their strongest.  This allows activity to be predominantly driven 

by spread of activity across previously modified synapses.  Note that this retrieval will cause dis-

tortion of the pattern of connectivity unless there is no long-term potentiation at these connections 

during this time (thus, LTP must be weakest when synaptic transmission is the strongest.)  If 

retrieval occurs during encoding, the spread of activity causes spiking to occur in a large number 

of neurons during the window for induction of LTP.  This retrieval during encoding results in 
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strengthening of connections between distant, non-adjacent locations, causing a severe break-

down in network function, as shown in Figure 7.

Possible mechanisms of selective episodic activity.

This detailed model of the role of hippocampus in spatial navigation allows generation of 

multiple potential mechanisms for particular behavioral and electrophysiological phenomena.  In 

particular, the differential firing of neurons in the stem of the T-maze during performance of 

delayed spatial alternation (Wood et al., 2000) could arise from a number of different network 

interactions during behavior, including the following potential mechanisms:

1. Modification of afferent input from entorhinal cortex could allow gradual separation of firing 

activity based on slight differences in the context input from neocortical structures.  This mecha-

nism would require that there are sufficient differences in neocortical activity dependent on the 

next turn, which are amplified by differences in perforant path connectivity to result in distinct 

cell firing patterns depending on the next turn.

2. Forward self-organization of excitatory connections in region CA3.

Prior location of the rat could cause gradual separation of sequence representations in region 

CA3.  In this framework, the network would start out with a single representation of the stem, but 

as the task becomes more familiar self-organization of the excitatory connections within region 

CA3 could cause distinct activity in different paths which progressively spreads forward -- like 
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the unzipping of a zipper.

3. Backward self-organization of region CA3 connections.

The future location of the rat could cause activity to spread backward through the local context 

units described in previous work (Levy, 1996; Wallenstein and Hasselmo, 1997).  This mecha-

nism is unlikely, as activity in region CA3 associated with the end of the pathway is not consistent 

with the small size of place fields in region CA3.  

4. Backward spread of activity from the goal could dictate which neurons in region CA1 can fire.

In the framework described for spatial navigation above, the backward spread of activity from a 

goal location representation in entorhinal cortex can determine which representation in region 

CA1 will be activated.  In this framework, region CA3 neurons would tend to show nonspecific 

activity in the stem of the maze, but the convergence of this nonspecific spread of activity from 

the current location with the entorhinal input to region CA1 would allow selectivity dependent 

upon the future trajectory.

The detailed simulation presented here provides the opportunity to explore these multiple differ-

ent mechanisms for causing selective firing in the stem of the T-maze, and for determining spe-

cific features of spike timing associated with individual hypothetical mechanisms.  Thus, the 

interaction of a detailed spiking model of the hippocampal formation with a virtual rat moving 

through a virtual environment will provide a means of evaluating detailed quantitative mecha-
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nisms directly with regard to both behavior and physiology, without the mediation of imprecise 

verbal hypotheses.
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FIGURE LEGENDS 

Figure 1. Left: Overview of the anatomical connectivity of the hippocampal formation.  These

connections include: 1.) perforant path connections from entorhinal cortex layer II to the dentate

gyrus, 2.) mossy fibers projecting from the dentate gyrus and synapsing on region CA3 pyramidal

cells, 3.) the longitudinal association fibers providing excitatory recurrent connections between

pyramidal cells in region CA3, 4.) the Schaffer collaterals connecting pyramidal cells of region

CA3 to pyramidal cells of region CA1, 5.) excitatory feedback projections from region CA1 and

subiculum to deep layers of the entorhinal cortex, 6.) direct perforant path projections from

entorhinal cortex layer III to region CA1.  Most sensory input entering the hippocampus arrives

via layers II and III of entorhinal cortex, which receives convergent input from a range of multi-

modal association cortices.  Output to cortical structures projects via deep layers of entorhinal

cortex.  Right: Summary of the basic components of hippocampal memory models.  Individual

subregions of the hippocampus shown on the left are modeled with populations of processing

units with connections summarized on the right.  Each rectangle in the figure on the right repre-

sents a population of processing units in the model.  Arrows represent synaptic connectivity

within the models.  In addition to the connections summarized in Figure 3.1, computational mod-

els include 7.) direction perforant path projections from entorhinal cortex layer II to region CA3,

8.) connections from region CA1 and CA3 to subcortical circuits influencing the activity of neu-

rons in the medial septum, 9.) modulatory cholinergic and GABAergic innervation from the

medial septum to the hippocampus, 10.) bidirectional connections between entorhinal cortex and

higher order association cortices, including perirhinal cortex and parahippocampal gyrus.  



                                                                                                                   Hasselmo et al.     48

Figure 2.  Left: Afferent input evokes a pattern of activity in region CA3.  Filled circles represent 

active neurons in the network.  Different inputs evoke different patterns of activity in region CA3.  

For example, presentation of the first word in the context of a specific memory task (item #1) 

might evoke activity in one set of neurons.  Presentation of the second word in that task (item #2) 

might evoke a second pattern of active neurons.  Right: Hebbian synaptic modification strength-

ens synapses between active neurons.

Figure 3.  LEFT: A retrieval cue evokes activity in a subset of neurons in region CA3.  RIGHT: 

Activity spreads along excitatory recurrent connections within region CA3 to evoke the full pat-

tern of activity.

Figure 4.  Example of retrieval of distinct relational properties or sequences of events from a net-

work of encoded associations.  Responses to different questions about an episodic event can result 

in different sequences of accessing the necessary information to answer the question.   

Figure 5. Overview of comparison function.  Episodic input from entorhinal cortex passes 

through dentate gyrus and region CA3, where retrieval based on previously encoded representa-

tions takes place.  This retrieval then passes on via the Schaffer collaterals to region CA1, where 

there can be a direct comparison with episodic input from entorhinal cortex.  If region CA3 and 

dentate have not previously encoded the memory, this comparison function might reveal a poor 
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match.  B. Overview of matching function.  Top two lines represent activity of synaptic input to 

specific neurons from different sources (EC input and CA3 retrieval).  Bottom lines represents the 

sum of input effects on postsynaptic activity for each neuron relative to threshold.  Mismatch: for 

unfamiliar patterns, the retrieval from region CA3 does not match with EC input, and postsynap-

tic activity is below threshold for most neurons.  Match: for familiar patterns, the retrieval from 

region CA3 matches EC input and brings neurons in the pattern above threshold . 

Figure 6.  The essential components of the network simulation are summarized here.  Input from a 

place representation (“place”) depend upon the location of the virtual rat in the virtual environ-

ment.  This input activates entorhinal cortex layer II, which has intrinsic properties allowing self-

sustained activity, and sends excitatory output to entorhinal cortex layer III and region CA3.  

Region CA3 and entorhinal cortex layer III send converging input to region CA1.  The place rep-

resentation also sends subthreshold input to a prefrontal cortex region.  Sensory input for proxim-

ity to objects (“proxim”) activates a unit representing activation of ventral tegmental area by food 

reward.  The input from ventral tegmental area enters the a prefrontal region along with input rep-

resenting space.  The convergence of ventral tegmental and place input to prefrontal cortex causes 

spiking and activation of intrinsic mechanisms maintaining working memory for reward location.  

During retrieval phases, the convergence of activity from entorhinal cortex layer III and region 

CA3 causes spiking in region CA1 indicating the appropriate next location.  This spiking output 

guides the movements of the virtual rat toward the desired goal.
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Figure 7.  Pattern of connectivity within region CA3 of the integrate and fire simulation. Lines 

represent excitatory connections between CA3 pyramidal cells which have been strengthened dur-

ing encoding.  Connections in opposite directions are offset from one another to illustrate the 

strengthened connections are bidirectional in this simulation, though larger scale simulations 

should be able to function with unidirectional connections.  LEFT:  When encoding of sequential 

input from entorhinal cortex occurs at separate phases from the retrieval activity spreading along 

recurrent connections in CA3, then the network forms an effective representation of the T-maze, 

with connections (black lines) only between place cells representing adjacent locations in the 

maze.  RIGHT: When encoding and retrieval are not separated, the spread of activity across the 

excitatory recurrent connections during encoding causes broadly distributed firing during encod-

ing.  This broadly distributed firing causes strengthening of connections between place cells rep-

resenting locations which are not adjacent, and prevents accurate navigation of the virtual rat 

within the virtual environment.

Figure 8.

Spread of activity in the network during retrieval.  The different rows of this figure show activity 

in different subregions of the simulation during retrieval (only retrieval dynamics are simulated in 

this example, to clarify the patterns of activity).  Bottom row: Entorhinal cortex (EC).  Activity 

spreads backward from goal location, causing sequential spiking in neurons representing loca-

tions throughout the maze.  Top row: Region CA3.  When the spread in entorhinal cortex reaches 

the current location, activity spreads forward in region CA3 from the current location of the rat (at 
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the start of the stem in this example).  Middle row: Region CA1.  Synaptic input from entorhinal 

cortex and region CA3 converges in this region, causing spiking of a neuron representing the next 

desired location (at the T-junction of the maze).  
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	As shown in Figure 3, once the population of neurons in region CA3 associated with the word “dish...
	FIGURE 3 ABOUT HERE.
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	This region receives subthreshold input from the current location, as well as subthreshold input ...
	Region CA3:
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