Mortgage Design in an Equilibrium Model of the Housing Market

Adam M. Guren,∗ Arvind Krishnamurthy† and Timothy J. McQuade‡§

May 29, 2018
First Version: March 20, 2017

Abstract

How can mortgages be redesigned to reduce housing market volatility, consumption volatility, and default? How does mortgage design interact with monetary policy? We answer these questions using a quantitative equilibrium life cycle model with aggregate shocks, long-term mortgages, and an equilibrium housing market, focusing on designs that index payments to monetary policy. Designs that raise mortgage payments in booms and lower them in recessions do better than designs with fixed mortgage payments. The welfare benefits are quantitatively substantial: ARMs improve household welfare relative to FRMs by the equivalent of 0.83 percent of annual consumption under a monetary regime in which the central bank lowers real interest rates in a bust. Among designs that reduce payments in a bust, we show that those that front-load the payment reductions and concentrate them in recessions outperform designs that spread payment reductions over the life of the mortgage. Front-loading alleviates household liquidity constraints in states where they are most binding, reducing default and stimulating housing demand by new homeowners. To isolate this channel, we compare an FRM with a built-in option to be converted to an ARM with an FRM with an option to be refinanced at the prevailing FRM rate. Under these two contracts, the present value of a lender’s loan falls by roughly an equal amount, as these contracts primarily differ in the timing of expected repayments. The FRM that can be converted to an ARM, which front loads payment reductions, improves household welfare by four times as much.

∗Boston University, guren@bu.edu
†Stanford University Graduate School of Business and NBER, a-krishnamurthy@stanford.edu
‡Stanford University Graduate School of Business, tmcquade@stanford.edu
§The authors would like to thank Chaojun Wang and Xuiyi Song for excellent research assistance and seminar participants at SED, SITE, Kellogg, Queen’s, Indiana, LSE, Boston University, HULM, Housing: Micro Data, Macro Problems, NBER Summer Institute Capital Markets and the Economy, CEPR Housing and the Macroeconomy, Chicago Booth Asset Pricing, UCLA, University of Pittsburgh, MIT Sloan, Wharton, the University of Pennsylvania, Tomasz Piskorski, Erwan Quintin, Jan Eberly, Alex Michaelides, Alexei Tchistyi, and Andreas Fuster for useful comments. Guren acknowledges research support from the National Science Foundation under grant #1623801 and from the Boston University Center for Finance, Law, and Policy.
1 Introduction

The design of mortgages is crucial to both household welfare and the macroeconomy. Home equity is the largest component of wealth for most households, and mortgages tend to be their dominant source of credit, so the design of mortgages has an outsized effect on household balance sheets (Campbell, 2013). In the mid-2000s boom and subsequent bust, housing wealth extraction through the mortgage market boosted consumption in the boom and reduced consumption in the bust (e.g., Mian and Sufi, 2011; Mian, Rao, and Sufi, 2013). Mortgage debt also led to the wave of foreclosures that resulted in over six million households losing their homes, badly damaging household balance sheets and crippling the housing market (e.g., Guren and McQuade, 2018; Mian, Sufi, and Trebbi, 2015). Finally, in the wake of the recession, there has been increased attention paid to the role that mortgages play in the transmission of monetary policy to the real economy through household balance sheets (e.g., Auclert, 2017; Wong, 2018; Di Maggio et al., 2017; Beraja et al., 2017).

In this paper, we study how to best design mortgages in order to reduce household consumption volatility and default and to increase household welfare. There is considerable evidence that implementation frictions prevent financial intermediaries from modifying mortgages ex post in a crisis (e.g., Agarwal et al., 2015; Agarwal et al., 2017). As a result, a better-designed ex ante contract can likely deliver significant welfare benefits (e.g., Campbell and Cocco, 2015; Piskorski and Tchistyi, 2017; Greenwald, Landvoigt, and Van Nieuwerburgh, 2018; Piskorski and Seru, 2018). We are further motivated by the evidence that not just the level of household mortgage debt (e.g., loan-to-value or payment-to-income ratio), but also the design of such debt, can impact household outcomes including consumption and default. For example, Fuster and Willen (2017) and Di Maggio et al. (2017) study cohorts of borrowers with hybrid adjustable rate mortgages contracted in the years before the crisis. Exploiting heterogeneity in the timing of monthly payment reductions as mortgages transitioned from initial fixed rates to adjustable rates during the crisis, these papers show that downward resets resulted in substantially lower defaults and increased consumption. Similarly, studies that exploit quasi-random variation in housing market interventions in the Great Recession such as the Home Affordable Refinance Program (HARP) (Agarwal et al., 2017) and the Home Affordable Modification Program (HAMP) (Agarwal et al., 2017; Ganong and Noel, 2017) have found that monthly payment reductions significantly reduced default and increased consumption.

Such empirical evidence suggests that given the cyclicity of interest rates, indexing mortgage payments to interest rates can improve household outcomes and welfare. We pursue this indexation question systematically using a quantitative equilibrium model featuring heterogeneous households, endogenous mortgage spreads, and endogenous house prices. In a crisis, default increases the supply of homes on the market, further pushing down prices, which in turn generates more default. Using this framework, we quantitatively assess a variety of questions related to mortgage design. How would consumption, default, home prices, and household welfare change if we were to alter the design of mortgages in the economy, particularly in a deep recession and housing bust like the one experienced during the Great Recession? In an economy that transits between booms, recessions, and crises, how well do different indexed mortgages perform? What is the most effective simple form of indexation?

Designs in which mortgage payments are higher in booms and lower in recessions do better than
designs with fixed mortgage payments for risk and insurance reasons. But among such designs the most effective ones front-load the payment reductions so that they are concentrated during recessions rather than spread out over the life of the mortgage. Front-loading payment relief smooths consumption and limits default for homeowners who are liquidity constrained and stimulates housing demand by constrained renters. The reduction in default and increase in demand helps short-circuit a price-default spiral. Consequently, the benefit of different designs depends largely on how effectively they deliver immediate payment reductions to highly constrained households.

Our model features overlapping generations of households subject to both idiosyncratic and aggregate shocks, making endogenous decisions over home purchases, borrowing, consumption, refinancing, and costly default. We consider different relationships between the interest rate and the exogenous aggregate state, reflecting alternative monetary policies. Competitive and risk-neutral lenders set spreads for each mortgage to break even in equilibrium, so lenders charge higher interest rates when a mortgage design hurts their bottom line. Equilibrium in the housing market implies that household decisions, mortgage spreads, and the interest rate rule influence the equilibrium home price process. Household expectations regarding equilibrium prices and mortgage rates feed back into household decisions, and we solve this fixed-point problem in a rich quantitative model using computational methods based on Krusell and Smith (1998).

A key aspect of our analysis is that mortgage design affects household default decisions and hence home prices, which in equilibrium feeds back to household indebtedness. The quantitative implications of our model depend on accurately representing the link between home prices and default. Consequently, after calibrating our model to match standard moments, monetary policy since the 1980s, and the empirical distributions of mortgage debt and assets, we evaluate its ability to quantitatively capture the effect of payment reductions on default by simulating the Fuster and Willen (2017) quasi-experiment in our model. The model does a good job matching their findings quantitatively. Simulating quasi-experiments in our calibration procedure is an innovation that ensures that our model accurately captures the effects of changes in LTVs and interest rates as we alter mortgage design.

The calibrated model provides a laboratory to assess the benefits and costs of different mortgage designs. Our primary application is the impulse response to a housing crisis, although we also consider the unconditional performance of different mortgages. We begin by comparing an economy with all fixed rate mortgages (FRMs) against one with all adjustable rate mortgages (ARMs). While ARMs and FRMs are not necessarily optimal contracts, they provide the simplest and starkest comparison for us to analyze the benefits of indexation. We find that in a counterfactual economy suffering a crisis similar to the 2007-2009 recession with all ARMs instead of all FRMs, house prices fall by 2.7 percentage points less, 26.1 percent fewer households default, consumption falls by 0.8 percentage points less, and the overall welfare impact of a housing crisis is ameliorated by the equivalent of 0.83 percent of annual consumption. Young, liquidity constrained households benefit to an even greater extent, with ARMs increasing their welfare by up to four percent of annual consumption relative to FRMs.

ARMs alleviate the impact of the crisis for three reasons. First, ARMs deliver larger payment reductions to constrained homeowners due to front-loading. ARM rates fall significantly more than...
FRM rates during the crisis because FRM rates are determined by the long end of the yield curve, which falls by less due to the logic of the expectations hypothesis. With FRMs, the payment relief is spread out over the remaining life of the mortgage, but with ARMs it is concentrated in the crisis. Second, ARMs automatically pass interest rate reductions through to households. By contrast, FRMs only pass-through rate reductions when households refinance, which is not possible for households that, due to the fall in house prices, have insufficient equity to satisfy the LTV constraint. Therefore, underwater homeowners who are most at risk of default and in need of liquidity relief are unable to receive any. Since ARMs provide greater hedging benefits against declining labor income during the crisis, there is less default by underwater homeowners which short-circuits the equilibrium price-default spiral and leads to a less-severe housing crisis. Third and finally, because ARM rates fall more than FRM rates, ARMs are more effective at stimulating housing demand by constrained renters in the crisis, which further limits price declines and the price-default spiral.

One issue with a pure ARM is that in an inflationary episode, real interest rates can spike up while real income falls, with potentially catastrophic consequences. We consequently consider a new mortgage design that partially protects from this scenario: a fixed rate mortgage with a one-time option to convert to an adjustable rate mortgage, as suggested by Eberly and Krishnamurthy (2014). Of course, borrowers pay for the prepayment option with a higher average loan rate, which is offset somewhat by banks anticipating fewer defaults and losses in a crisis. Despite this cost, this “EK convertible” mortgage delivers much better outcomes than a standard fixed rate mortgage: it realizes 90 percent of the benefits of the all-ARM economy when rates fall in a downturn, but experiences only 45 percent of the downside in an inflationary episode in which rates rise during a housing bust.

We also consider a “FRM with an underwater refinancing option” (FRMUR) in which households with a fixed-rate mortgage have an option to refinance in a crisis into another fixed-rate mortgage with equal principal regardless of their loan-to-value ratio. This is motivated by the fact that lower long rates were not passed through to underwater households, which also motivated the government’s HARP program. While the FRMUR does help these households, it does so by relatively little because the long end of the yield curve does not fall by much, and so the payment relief provided by the FRMUR is limited. Indeed, the consumption equivalent welfare gain relative to FRM for the FRMUR is a quarter of that of the EK convertible mortgage. This is the case despite the fact that the decline in the present value of the bank’s mortgage portfolio when the crisis hits is similar under these two designs. Intuitively, because lenders are not liquidity constrained, they care only about the present value of their portfolio, which, modulo differences in default risk and prepayment risk, is largely unchanged by trading lower payments in the short run for higher payments in the future because of an endogenously-holding yield curve.

The comparison of the EK convertible mortgage with the FRM with an option to be refinanced underwater provides the sharpest example of our central finding that the best designs are those that deliver immediate payment relief to liquidity constrained households rather than spreading the relief over the entire term of the mortgage. Consistent with this, we show that an option ARM design, which allows households to negatively amortize the mortgage up to a cap when liquidity...
needs arise at a cost of higher payments in the future, delivers welfare benefits superior to both EK and ARM. Unlike those designs, the option ARM allows borrowers to defer payments as a function of her idiosyncratic state. Our analysis quantifies the benefits of such insurance in the mortgage contract, although we do not model the adverse selection it can induce.

Our analysis also calls attention to an important externality: when deciding their personal debt position, households do not internalize the impact of their debt choice and liquid asset position on macro fragility. This has important consequences in our model. For instance, ARMs provide more relief relative to FRMs if they are introduced at the moment the crisis occurs rather than ex ante. This is the case because homeowners expect the central bank to provide insurance by reducing short rates in the ARM economy and take on more risk by leveraging up more and holding less liquid savings, undoing some of the insurance benefit. Similarly, the insurance benefits of an option ARM (OARM) design encourage households to take on more leverage risk ex ante, which creates a more fragile pre-crisis LTV distribution than would otherwise be the case and limits the welfare benefits of the option ARM, which would be enormous if one were to neglect the change in the ex ante distribution of households across states. These results highlight that policy makers must account for the fact that households do not share their macro-prudential concerns and may take on too much debt from a social planner’s perspective when insurance is offered.

Finally, we find that monetary policy and mortgage design should not be studied in isolation. Indeed, monetary policy efficacy depends on mortgage design, and mortgage design efficacy depends on monetary policy. We highlight this interaction by considering the performance of various mortgage designs under alternate monetary policies. We show that mortgage designs tied to the long rate such as FRM and FRMUR are most effective when combined with unconventional monetary policies, such as the Fed’s quantitative easing (QE) purchases of mortgage-backed securities to lower long-term mortgage rates. This result also implies that ex-post policies such as HARP need to be combined with QE policies in order to be maximally effective. Still, FRMUR coupled with quantitative easing does not improve welfare relative to an ARM or EK mortgage under conventional monetary policy, which suggests that many of the benefits of unconventional monetary policy for the housing market can be achieved more directly through mortgage design coupled with conventional monetary policy. This highlights the importance of studying mortgage design and monetary policy jointly.

The remainder of the paper is structured as follows. Section 2 describes the relationship to the existing literature. Section 3 presents our model, and Section 4 describes our calibration procedure. Section 5 compares the performance of ARM-only and FRM-only economies to develop economic intuition. Section 6 compares more exotic mortgage designs that combine beneficial features of both FRMs and ARMs, and Section 7 considers the interaction of mortgage design with monetary policy. Section 8 concludes.

2 Related Literature

This paper is most closely related to papers that analyze the role of mortgages in the macroeconomy through the lens of a heterogeneous agents model. In several such papers, house prices are
exogenous. Campbell and Cocco (2015) develop a life-cycle model in which households can borrow using long-term fixed- or adjustable-rate mortgages and face income, house price, inflation, and interest rate risk. They use their framework to study mortgage choice and the decision to default. In their model, households can choose to pay down their mortgage, refinance, move, or default, and mortgage premia are determined in equilibrium through a lender zero-profit condition. Our modeling of households shares many structural features with this paper, but while they take house prices as an exogenous process, we crucially allow for aggregate shocks and determine equilibrium house prices. This critical feature of our model allows us to study the interaction of mortgage design with endogenous price-default spirals. A prior paper, Campbell and Cocco (2003), use a more rudimentary model without default and with exogenous prices to compare ARMs and FRMs and assess which households benefit most from each design. Similarly, Corbae and Quintin (2015) present a heterogeneous agents model in which mortgages are priced in equilibrium and households select from a set of mortgages with different payment-to-income requirements, but again take house prices as exogenous. They use their model to study the role of leverage in triggering the foreclosure crisis, placing particular emphasis on the differential wealth levels and default propensities of households that enter the housing market when lending standards are relaxed. Conversely, we focus on the impact of mortgage design and monetary policy on housing downturns, allowing for endogenous house price responses.

Other heterogeneous agent models of the housing market have endogenous house prices but lack aggregate shocks or rich mortgage designs. Kung (2015) develops a heterogeneous agents model of the housing market in which house prices are determined in equilibrium. His model, however, lacks aggregate shocks and household saving decisions. He focuses specifically on the equilibrium effects of the disappearance of non-agency mortgages during the crisis. By contrast, we include aggregate shocks and a rich set of household decisions that Kung assumes away. We also study a variety of mortgage designs and analyze how mortgage design interacts with monetary policy. Kaplan, Mitman, and Violante (2017) present a life-cycle model with default, refinancing, and moving in the presence of idiosyncratic and aggregate shocks in which house prices are determined in equilibrium. Their focus, however, is on explaining what types of shocks can explain the joint dynamics of house prices and consumption in the Great Recession. They simplify many features of the mortgage contract for tractability in order to focus on these issues, while our paper simplifies the shocks and consumption decision in order to provide a richer analysis of mortgage design.

Our paper also builds on a largely theoretical literature studying optimal mortgage design. These papers identify important trade-offs inherent in optimal mortgage design in a partial equilibrium settings. Concurrent research by Piskorski and Tchistyi (2017) studies mortgage design in a setting with equilibrium house prices and asymmetric information in a two-period model. The intuition they develop about the insurance benefits of state contingent contracts is complementary to our own, which is is more focused on the timing of payments over the life of the loan. Concurrent research by Greenwald, Landvoigt, and Van Nieuwerburgh (2017) studies shared appreciation mortgages (SAMs) that index payments to aggregate house prices in a model with a fragile financial

\footnote{For instance, Kaplan, Mitman, and Violante (2017) assume that all mortgages have a single interest rate and that lenders break even by charging differential up front fees. By contrast, we maintain each borrower’s interest rate and contract choice as a state variable.}
sector. They show that the losses incurred by banks in a deep recession quantitatively outweigh the benefits to household balance sheets under a SAM. Our papers are highly complementary: we highlight the benefits of front-loading payment relief in mortgage designs that shift risk from households to financial intermediaries to a much more limited degree than a SAM, while GLVN study whether such risk shifting would be beneficial. Indeed, we have experimented with SAMs in our framework and found that the losses that banks incur in a crisis are an order of magnitude larger than in the designs we consider. Piskorski and Tchistyi (2010; 2011) consider mortgage design from an optimal contracting perspective, finding that the optimal mortgage looks like an option ARM when interest rates are stochastic and a subprime loan when house prices are stochastic. Brueckner and Lee (2017) focus on optimal risk sharing in the mortgage market. Our paper is also related to a literature advocating certain macroprudential polices aimed at ameliorating the severity of housing crises. Mian and Sufi (2015) advocate for modifications through principal reduction, while Eberly and Krishnamurthy (2014) advocate for monthly payment reductions. Greenwald (2017) advocates for payment-to-income constraints as a macroprudential policy to reduce house price volatility.

To calibrate our model, we draw on a set of papers which document empirical facts regarding household leverage and default behavior. Foote et al. (2008) provide evidence for a “double trigger” theory of mortgage default, whereby most default is accounted for by a combination of negative equity and an income shock as is the case in our model. Bhutta et al. (2010), Elul et al. (2010), and Gerardi et al. (2013) provide further support for illiquidity as the driving source of household default. Fuster and Willen (2017) and Di Maggio et al. (2017) show that downward rate resets lead to reductions in default and increases in household consumption, respectively. Agarwal et al. (2015), Agarwal et al. (2017), and Ganong and Noel (2017) study the HAMP and HARP programs and find similarly large effects of payment on default and consumption and limited effects of principal reduction for severely-underwater households, which they relate to the immediate benefits of payment relief versus the delayed benefits of principal reduction. This micro evidence motivates our focus on mortgage designs with state-contingent payments, and we use Fuster and Willen’s evidence to evaluate the quantitative performance of our model.

Finally, our research studies how mortgage design interacts with monetary policy and thus relates to a literature examining the transmission of monetary policy through the housing market. Caplin, Freeman, and Tracy (1997) posit that in depressed housing markets where many borrowers owe more than their house is worth, monetary policy is less potent because individuals cannot refinance. Beraja, Fuster, Hurst, and Vavra (2017) provide empirical evidence for this hypothesis by analyzing the impact of monetary policy during the Great Recession. Relatedly, a set of papers have argued that adjustable-rate mortgages allow for stronger transmission of monetary policy since rate changes directly affect household balance sheets (Calza et al., 2013; Auclert, 2017; Cloyne et al., 2017). Garriga et al. (2016) provide a model with long-term debt that features a yield curve and is related to our findings about the differential effects of mortgage designs that are priced off the short end relative to the long end of the yield curve. Di Maggio et al. (2017) show empirically that the pass-through of monetary policy to consumption is stronger in regions with more adjustable rate mortgages. Finally, Wong (2018) highlights the role that refinancing by young households plays in the transmission of monetary policy to consumption.
3 Model

This section presents an equilibrium model of the housing market that we subsequently use as a laboratory to study different mortgage designs. Home prices and mortgage spreads are determined in equilibrium. Short-term interest rates, on the other hand, are exogenous to the model and depend on the aggregate state of the economy, reflecting an exogenous monetary policy rule. For ease of exposition, we present the model for the case of an all-FRM economy or an all-ARM economy, but consider other designs when presenting our quantitative results.

3.1 Setup

Time is discrete and indexed by t. The economy consists of a unit mass of overlapping generations of heterogeneous households of age $a = 1, 2, ..., T$ who make consumption, housing, borrowing, refinancing and default decisions over their lifetime. Household decisions depend both on aggregate state variables Σ_t and agent-specific state variables s^j_t, where j indexes agents. Unless otherwise stated, all variables are agent-specific, and to simplify notation, we suppress their dependency on s^j_t.

The driving shock process in the economy is Θ_t, which is part of Σ_t. Θ_t follows a discrete Markov process over five states $\Theta_t \in \{\text{Crisis With Tight Credit, Recession With Tight Credit, Recession With Loose Credit, Expansion With Tight Credit, Expansion With Loose Credit}\}$. Θ_t is governed by a transition matrix Ξ^{Θ} described subsequently.

Each generation lives for T periods. At the beginning of a period, a new generation is born and shocks are realized. Agents then make decisions, and the housing market clears. Utility is realized and the final generation dies at the end of the period. Households enter period t with a state s^j_{t-1} and choose next period’s state variables s^j_t in period t given the period t housing price p_t. Utility is based on period t choices, and the short rate r_t realized at time t is the interest rate between t and $t + 1$.

Households receive flow utility from housing H_t and non-durable consumption C_t:

$$U(C_t, H_t) = \frac{C_t^{1-\gamma}}{1-\gamma} + \alpha_a H_t.$$

In the last period of life, age T, a household with terminal wealth b receives utility:

$$\frac{C_T^{1-\gamma}}{1-\gamma} + \psi \frac{(b + \xi)^{1-\gamma}}{1-\gamma},$$

where $H_T = 0$ because the terminal generation must sell.\(^3\) For simplicity, we assume that households use their wealth to finance housing and end-of-life care after their terminal period. Consequently,

\(^2\)The term α_a describes the utility from homeownership as a function of age. In our calibration, we will assume that α_a is decreasing in age so as to reflect the fact that at older ages the homeownership rate declines slightly.

\(^3\)Including terminal wealth in the utility function is standard in OLG models of the housing market because otherwise households would consume their housing wealth before death. In the data, however, the elderly have substantial housing wealth which they do not consume. The functional form for the utility derived from terminal wealth is standard.
the wealth \(b \) is not distributed to incoming generations, who begin life with no assets. Households receive an exogenous income stream \(Y_t \):

\[
Y_t \equiv \exp \left(y_{agg}^t(\Theta_t) + y_{id}^t \right).
\]

Log income is the sum of an aggregate component that is common across households and a household-specific idiosyncratic component. The aggregate component \(y_{agg}^t \) is a function of the aggregate state \(\Theta_t \). The idiosyncratic component \(y_{id}^t \) is a discrete Markov process over a set \(\{ Y_{id}^t \} \) with transition matrix \(\Xi^{id}(\Theta_t) \).

Households retire at age \(R < T \). After retirement, households no longer face idiosyncratic income risk and keep the same idiosyncratic income they had at age \(R \), reduced by \(\rho \) log points to account for the decline in income in retirement. This can be thought of as a social security benefit that conditions on terminal income rather than average lifetime income for computational tractability, as in Guvenen and Smith (2014).

There is a progressive tax system so that individuals’ net-of-tax income is \(Y_t - \tau(Y_t) \). The tax system is modeled as in Heathcote et al. (2017) so that:

\[
\tau(Y_t) = Y_t - \tau_0 Y_t^{2-\tau_1}.
\]

Houses in the model are of one size, and agents can either own a house \((H_t = 1) \) or rent a house \((H_t = 0) \). There is a fixed supply of housing and no construction implying that the homeownership rate is constant. Buying a house at time \(t \) costs \(p_t \), and owners must pay a per-period maintenance cost of \(mp_t \). With probability \(\zeta \), homeowners experience a life event that makes them lose their match with their house and list it for sale, while with probability \(1 - \zeta \), owners are able to remain in their house.

The rental housing stock is entirely separate from the owner-occupied housing stock. Rental housing can be produced and destroyed at a variable cost \(q \), so in equilibrium renting costs \(q \) per period. Although this assumption is stark, it is meant to capture that while there is some limited conversion of owner-occupied homes to rental homes and vice-versa in practice, the rental and owner-occupied markets are quite segmented (Glaeser and Gyourko, 2009; Halket et al., 2015). This assumption implies that movements in house prices are accompanied by movements in the price-to-rent ratio. Indeed, in the data, the price-to-rent ratio has been nearly as volatile as price, and the recent boom-bust was almost entirely a movement in the price-to-rent ratio. Our modeling of the rental market implies that changes in credit conditions will affect aggregate demand for housing as potential buyers enter or exit the housing market, in contrast to models with perfect arbitrage between renting and owning that is unaffected by credit conditions, such as Kaplan, 4We assume that houses are one size to maintain a computationally tractable state space in an environment with rich mortgage design. In practice, the average house size does grow over the life cycle with age (see e.g., Li and Yao, 2007) and house size grows with income. Assuming one house size leads richer agents in our economy to have more liquid assets and lower LTVs than in the data. This is not problematic for our calibration as the marginal agents for purchasing and default are poorer.

5We assume a fixed housing supply to keep the model tractable given the lags required to realistically model construction. Adding a construction response would dampen a boom but would not dramatically affect busts given the durability of housing (Glaeser and Gyourko, 2005).

A household’s end of period t mortgage balance is $M_t \geq 0$ and carries interest rate i_t. We make a timing assumption that the interest paid at date t is $i_t M_t$, so that households pay their interest between periods t and $t+1$ in advance at time t. With an annual calibration, this implies that the realization of interest rates immediately impacts payments for both an adjustable- and fixed-rate mortgage. An alternative timing convention would be to incur the payment of $i_t M_t$ at date $t+1$, which would imply that interest rate changes would affect FRMs a year after ARMs. In practice, mortgage payments are monthly and homeowners make decisions at an even higher frequency, so that our up-front payment timing is a better representation of reality within our model and puts ARMs and FRMs on equal footing. We assume that all debt in our model has this same timing convention, and when we calibrate our model we convert interest rates to be consistent with the timing in our model.\footnote{In particular, the interest rate i_t is a “pre-paid” interest rate (interest from t to $t+1$ paid at t), whereas the interest rate r_t and most interest rates observed in the data are “post-paid” interest rates (interest from t to $t+1$ paid at $t+1$). We convert post-paid interest rates r_t to pre-paid interest rates i_t using $i_t = \frac{r_t}{1 + r_t}$ or back using $r_t = \frac{i_t}{1 - i_t}$.}

Mortgage interest is tax deductible, so that taxes are $\tau (\max \{ Y_t - i_t M_t, 0 \})$. In order to economize on state variables, the mortgage amortizes over its remaining life as in Campbell and Cocco (2003, 2015). This rules out mortgage designs with variable term lengths, but still allows for the analysis of mortgage designs that rely on state-dependent payments. The appendix shows that the minimum payment on a mortgage for an agent who does not move or refinance at time t given our timing assumption is:

$$M_{t-1} \left(\frac{i_t (1 + \frac{i_t}{1-i_t})^{T-a+1}}{(1 + \frac{i_t}{1-i_t})^{T-a+1} - 1} \right).$$

(1)

For an FRM, the household keeps the same interest rate i_t determined at origination $i_t^{FRM}(\Theta_t)$, which is the same for all borrowers who originate in aggregate state Θ_t and determined competitively as described below. The interest rate on an adjustable-rate mortgage is $i_t = \frac{r_t}{1 + r_t} + \chi_t^{ARM}(\Theta_t)$ where $\chi_t^{ARM}(\Theta_t)$ is a spread over the short rate that borrowers keep over the life of their loan, also determined at origination and dependent on origination state Θ_t.\footnote{When we refer to an ARM in this paper, we refer to a fully-adjustable-rate mortgage that adjusts every year. In many countries, hybrid ARMs that have several years of a fixed interest rate and float thereafter are known as “adjustable rate.” Aside from replicating the Fuster-Willen quasi-experiment in evaluating our calibration, we do not consider hybrid ARMs to maintain a tractable state space.}

This will also be the same for all borrowers in a given aggregate state Θ_t and determined competitively as described below. The short interest rate $r_t(\Theta_t)$ is a function of the exogenous and stochastic aggregate state Θ_t.

At origination, mortgages must satisfy a loan to value constraint :

$$M_t(a) \leq \phi_t p_t H_t(a),$$

(2)

where ϕ_t parameterizes the maximum loan-to-value ratio. Mortgages are non-recourse but defaulting carries a utility penalty of d which is drawn each period i.i.d. from a uniform distribution over $[d_a, d_b]$.\footnote{The assumption that d is drawn from a distribution rather than a single value helps smooth out the value functions in some cases.} Defaulting households lose their house today and cannot buy a new house in the period...
of default due to damaged credit. The default goes on their credit record, and they are unable to purchase until the default flag is stochastically removed.

Each period, homeowners can take one of four actions in the housing market: take no action with regards to their mortgage and make at least the minimum mortgage payment (N), refinance but stay in their current house (R), move to a new house and take out a new mortgage (M), or default (D). Note that if a household refines or moves to a new house, they must take out an entirely new mortgage which is subject to the LTV constraint in equation (2). Moving has a cost of \(k_m + c_m p_t \) for both buying and selling, while refinancing has a cost of \(k_r + c_r M_t \).

Homeowners occasionally receive a moving shock that forces them to move with probability \(\zeta \). In this case, they cannot remain in their current house and either move or default, while agents who do not receive the moving shock are assumed to remain in their house and can either do nothing, refinance, or default. Households reaching the end of life must sell. Regardless of whether they receive a moving shock \(\zeta \), renters can either do nothing and pay their rent (N) or move into an owner-occupied house (M) each period.

3.2 Decisions and Value Functions

Consider a household at time \(t \). This household enters the period with owned housing \(H_{t-1} \in \{0, 1\} \), a mortgage with principal balance \(M_{t-1} \), and \(S_{t-1} \geq 0 \) in liquid savings. The household may also have a default flag on its credit record \(D_{t-1} \in \{0, 1\} \). The state of the economy at time \(t \), \(\Theta_t \), is realized. The household receives income \(Y_t \). The agent-specific state households enter period \(t \) with is \(s_{t-1}^j = \{S_{t-1}, H_{t-1}, M_{t-1}, i_{t-1}^{FRM}, Y_t, D_{t-1}, a_t\} \), a vector of the household’s assets, liabilities, income, credit record default status, interest rate for an FRM (or spread \(\chi_{t-1} \) for an ARM), and age. The vector of aggregate state variables \(\Sigma_t \) includes the state of the economy \(\Theta_t \), and \(\Omega_t(s_{t-1}^j) \), the cumulative distribution of individual states \(s_{t-1}^j \) in the population. The home price \(p_t \) is a function of \(\Sigma_t \).

The household faces two constraints. The first is a flow budget constraint:

\[
Y_t - \tau (Y_t - i_t M_t) + S_{t-1} + (1 - i_t) M_t = C_t + \frac{S_t}{1 + r_t} + M_{t-1} + p_t (H_t - H_{t-1}) + q_1 [H_t = 0] + mp_t [H_t = 1] + K (\text{Action}),
\]

where \(K (\text{Action}) \) is the fixed or variable cost of the action the household takes. The left hand side of this expression is the sum of net-of-tax income, liquidated savings, and new borrowings. The right hand side is the sum of consumption, savings for the next period, payments on existing mortgage debt, net expenditures on owner-occupied housing, rental or maintenance costs, and the fixed and variable costs of the action that the household takes.

The second constraint addresses the evolution of a household’s mortgage. Given a mortgage balance \(M_t \), implicitly define \(\Delta M_t \) as the change in the mortgage balance over and above the minimum payment:

in the numerical implementation, but is not crucial for our results. In practice, \(d_a \) and \(d_b \) are close and the model is essentially a single default cost model.
\[
\Delta M_t = M_t - M_{t-1} + M_{t-1} \left(i_t \left(1 + \frac{\mu_t}{1-i_t} \right)^{T-a+1} \right) - M_t i_t
\]

If \(\Delta M_t \) is positive, the mortgage balance has risen relative to the minimum payment and the homeowner has extracted equity, and if \(\Delta M_t \) is negative the mortgage balance has prepaid. Thus, households that do not move, refinance, or default face a constraint of \(\Delta M_t \leq 0 \). If a household moves, it pays off its mortgage balance and chooses a new mortgage balance \(M_t \), subject to the LTV constraint \((2) \). Finally, a household may also choose to default, in which case it loses its house today and cannot buy, so \(M_t = H_t = 0 \). The household also receives a default on its credit record so \(D_t = 1 \) and cannot buy again until its credit record is cleared, which occurs each period with probability \(\lambda \).

We write the household’s problem recursively. Denote \(V_a \left(s_{t-1}; \Sigma_t \right) \) as the value function for a household, and \(V^A_a \left(s_{t-1}; \Sigma_t \right) \) as the values when following action \(A = \{ N, R, M, D \} \). Then,

\[
V_a \left(s_{t-1}; \Sigma_t \right) = \begin{cases}
\zeta \max \left \{ V^D_a \left(s_{t-1}; \Sigma_t \right), V^M_a \left(s_{t-1}; \Sigma_t \right) \right \} + \\
(1 - \zeta) \max \left \{ V^D_a \left(s_{t-1}; \Sigma_t \right), V^R_a \left(s_{t-1}; \Sigma_t \right), V^N_a \left(s_{t-1}; \Sigma_t \right) \right \}
\end{cases} \quad \text{if } H_{t-1} > 0
\]

\[
\max \left \{ V^M_a \left(s_{t-1}; \Sigma_t \right), V^N_a \left(s_{t-1}; \Sigma_t \right) \right \} \quad \text{if } H_{t-1} = 0 \text{ and } D_{t-1} = 0
\]

\[
V^N_a \left(s_{t-1}; \Sigma_t \right) \quad \text{if } H_{t-1} = 0 \text{ and } D_{t-1} = 1.
\]

On the top line, if the household receives the moving shock with probability \(\zeta \), it must decide whether to default on the existing mortgage and be forced to rent, or pay off the mortgage balance, in which case it can freely decide whether to rent or finance the purchase of a new home. On the second line, if the household does not receive the moving shock, it decides between defaulting, refinancing, or paying the minimum mortgage balance. Finally, in the last two lines, a household that currently has no housing (currently a renter or just born) and does not have a default on their credit record can decide whether to purchase a house and take on a new mortgage or continue to rent. Renters with a default on their credit records \(D_t = 1 \) cannot purchase.

We next define the value functions under each of the actions \(A = \{ N, R, M, D \} \). Households who continue to pay their mortgage choose their mortgage payment, savings, and consumption and have a value function:

\[
V^N_a \left(s_{t-1}; \Sigma_t \right) = \max_{C_t, S_t, M_t} U \left(C_t, H_t \right) + \beta E_t \left[V_{a+1} \left(s_{t+1}; \Sigma_{t+1} \right) \right] \quad \text{s.t. } (3),
\]

\[
S_t \geq 0,
\]

\[
H_t = H_{t-1},
\]

\[
i_t = i_{t-1} \text{ for FRM}, \quad \chi_t = \chi_{t-1} \text{ for ARM}
\]

\[
\Delta M_t < 0.
\]

Households who refinance make the same choices, but pay the fixed and variable costs of refinancing.
and face the LTV constraint rather than the $\Delta M_t < 0$ constraint. They have a value function:

$$V^R_a \left(s^j_{t-1}; \Sigma_t \right) = \max_{C_t, S_t, M_t} \left\{ U(C_t, H_t) + \beta E_t \left[V_{a+1} \left(s^j_t; \Sigma_{t+1} \right) \right] \right\} \quad \text{s.t. (3)},$$

$$S_t \geq 0,$$

$$M_t \leq \phi p_t H_t,$$

$$H_t = H_{t-1},$$

$$i_t = i^{FRM}_t \text{ for FRM, } \chi_t = \chi^{ARM}_t \text{ for ARM.}$$

Households who move choose their consumption, savings, and if buying, mortgage balance, as refinancers do, but also get to choose their housing H_{t+1}. They have a value function:

$$V^M_a \left(s^j_{t-1}; \Sigma_t \right) = \max_{C_t, S_{t+1}, M_{t+1}, H_{t+1}} \left\{ U(C_t, H_t) + \beta E_t \left[V_{a+1} \left(s^j_t; \Sigma_{t+1} \right) \right] \right\} \quad \text{s.t. (3)},$$

$$S_t \geq 0,$$

$$M_t \leq \phi p_t H_t,$$

$$i_t = i^{FRM}_t \text{ for FRM, } \chi_t = \chi^{ARM}_t \text{ for ARM.}$$

Households who default lose their home but not their savings. The defaulting households choose consumption and savings and have a value function:

$$V^D_a \left(s^j_{t-1}; \Sigma_t \right) = \max_{C_t, S_t} \left\{ -d + U(C_t, H_t) + \beta E_t \left[V_{a+1} \left(s^j_t; \Sigma_{t+1} \right) \right] \right\} \quad \text{s.t. (3)}$$

$$S_t \geq 0,$$

$$H_t = M_t = 0$$

$$D_t = 1.$$

In the final period, a household must liquidate its house regardless of whether it gets a moving shock, either through moving or defaulting:

$$V_T \left(s^j_t; \Sigma_t \right) = \max \left\{ V^N_T \left(s^T_t; \Sigma_t \right), V^D_T \left(s^T_t; \Sigma_t \right) \right\}.$$

3.3 Mortgage Spread Determination

We assume that mortgages are supplied by competitive, risk-neutral lenders.\(^9\) In the event of default, the lender forecloses on the home, sells it in the open market, and recovers a fraction Υ of its current value.

Define the net present value of the expected payments made by an age a household with idiosyncratic state s^j_{t-1} and aggregate state Σ_t, which is the value of the mortgage to a lender, as

\(^9\)Alternatively, it would be straightforward to allow for possible lender risk aversion by assuming a flexible, state-dependent SDF which prices the mortgages. The inclusion of such an SDF, which would be equivalent to endogenizing κ, would not change the insights of the analysis but would quantitatively affect our results.
\[\Pi_a \left(s_{t-1}; \Sigma_t \right). \] This can be written recursively as:

\[
\begin{align*}
\Pi_a \left(s_{t-1}; \Sigma_t \right) &= \delta \left(s_{t-1}; \Sigma_t \right) \Upsilon p_t + \sigma \left(s_{t-1}; \Sigma_t \right) M_{t-1} + \\
&\quad \left(1 - \delta \left(s_{t-1}; \Sigma_t \right) - \sigma \left(s_{t-1}; \Sigma_t \right) \right) \left[\frac{M_{t-1} - M_t (1 - i_t)}{1 + r_t + \kappa} + \frac{1}{\Pi_{a+1} \left(s^j_{t+1}; \Sigma_{t+1} \right)} \right].
\end{align*}
\]

where the household policy functions, \(\sigma \left(s_{t-1}, \zeta; \Sigma_t \right) \) is an indicator for whether a household moves or refinances, \(\delta \left(s_{t-1}, \zeta; \Sigma_t \right) \) is an indicator for whether a household defaults, and \(\kappa > 0 \) is the bank’s per-period cost of capital over the short-term interest rate. In the present period, the lender receives the recovered value in the event of a foreclosure, the mortgage principal plus interest in the event the loan is paid off, and the required payment on the mortgage plus any prepayments made by the borrower if the loan continues. The lender also gets the discounted expected continuation value of the loan at the new balance if the loan continues.

We assume that the interest rate on an FRM originated at time \(t, i_{t,FRM} \), and the spread over the short rate on an ARM originated at time \(t, \chi_{t,ARM} \), are determined competitively such that lenders break even on average in each aggregate state given their cost of capital \(\kappa \):

\[E_{\Theta_i=\Theta_t} \left[E_{\Omega_{t,orig}} \left[\frac{1}{1 + r_t + \kappa} \Pi_a \left(s^j_t; \Sigma_{t+1} \right) - (1 - i_t) M_t \right] \right] = 0 \quad \forall \Theta_t \in \Theta, \tag{6} \]

where \(\Omega_{t,orig} \) is the distribution of newly originated mortgages at time \(t \). The expectation integrates out over all periods in which \(\Theta_t \) takes on a given value \(\Theta_t \) and over all loans originated at time \(t \).\(^{10}\) This pools risk across borrowers but prices the mortgage to incorporate all information on the aggregate state of the economy, \(\Theta_t \). By allowing the pricing to depend on the aggregate state, we allow mortgage rates to depend on the interest rate in that state as well as the expected path of interest rates conditional on that state, as encoded in the yield curve. We also allow pricing to depend on the endogenous prepayment risk and default risk of mortgages as originated in a given state. Thus, our assumptions imply that if a mortgage design shifts risks from borrowers to lenders in a given state, the spread rises until the lenders are compensated for this risk.

Our assumption of a single spread for each aggregate state implies that there is cross-subsidization in mortgage pricing. Because default is low in equilibrium, the amount of cross-subsidization is not substantial.\(^{11}\) Moreover, in practice, there is cross-subsidization in GSE mortgage pricing: Hurst et al. (2016) document that GSE mortgage rates for otherwise identical loans do not vary spatially.

We determine the interest rates \(i_{t,FRM} (\Theta_t) \) and the ARM spreads \(\chi_{t,ARM} (\Theta_t) \) using this pricing condition for each mortgage design. To set \(\kappa \), we match data on the spread between the 10-year Treasury bond and the average 30-year fixed rate mortgage from FRED. This spread averaged 1.65

\(^{10}\) \(M_t \) is the end of period mortgage balance. Given the timing, the household immediately makes a mortgage payment if \(i_t M_t \), and so on net the bank gives the household \((1 - i_t) M_t \).

\(^{11}\) Banks would make large losses on low-income homeowners who cannot afford their mortgage payment. However, such households cannot make a down payment and cannot afford the fixed and variable costs of home purchase and thus do not purchase in equilibrium. Those homeowners that do obtain mortgages do vary in their default risk, but it is generally low.
percent from 1983 to 2013. We adjust κ so that the spread between a 10-year risk-free bond with pre-paid interest in the model with a yield determined by the expectations hypothesis and the FRM rate in the model averages to 1.65 percent. In doing so, we convert a bond where the interest between t and $t+1$ is paid at time $t+1$ at rate r to a bond where the interest between t and $t+1$ is paid at time t at rate i using the relationship $i = \frac{r}{1+r}$.

3.4 Equilibrium

A competitive equilibrium consists of decision rules over actions $A = \{N, R, M, D\}$ and state variables C_t, S_t, M_t, H_t, a price function $p(\Sigma_t)$, an FRM rate $i^{FRM}(\Theta)$ and an ARM spread $\chi^{ARM}(\Theta)$ for each aggregate state Θ, and a law of motion for the aggregate state variable Σ_t. Decisions are optimal given the home price function and the law of motion for the state variable. At these decisions, the housing market clears at price p_t, the risk-neutral lenders break even on average according to (6), and the law of motion for Σ_t is verified.

Given the fixed supply of homes, market clearing equates supply from movers, defaulters, and investors who purchased last period with demand from renters, moving homeowners, and investors. Let $\eta\left(s_{t-1}^j, \zeta; \Sigma_t\right)$ be an indicator for whether a household moves and $\delta\left(s_{t-1}^j, \zeta; \Sigma_t\right)$ be an indicator for whether a household defaults. Movers and defaulters own $H_{t-1}\left(s_{t-1}^j; \Sigma_t\right)$ housing, while buyers purchase $H_t\left(s_{t}^j; \Sigma_t\right)$ housing. The housing market clearing condition satisfied by the pricing function $p(\Sigma_t)$ is then:

\[
\int \delta\left(s_{t-1}^j, \zeta; \Sigma_t\right) H_{t-1}\left(s_{t-1}^j; \Sigma_t\right) d\Omega_t + \int \eta\left(s_{t-1}^j, \zeta; \Sigma_t\right) H_{t-1}\left(s_{t-1}^j; \Sigma_t\right) d\Omega_t = \int \eta\left(s_{t-1}^j, \zeta; \Sigma_t\right) H_t\left(s_{t}^j; \Sigma_t\right) d\Omega_t,
\]

where the first line side is supply which includes defaulted homes and sales and the second line is demand.

3.5 Solution Method

Solving the model requires that households correctly forecast the law of motion for Σ_t which drives the evolution of home prices. Note that Σ_t is an infinite-dimensional object due to the distribution $\Omega_t(s_{t-1}^j)$. To deal with this issue, we follow the implementation of the Krusell and Smith (1998) algorithm in Kaplan, Mitman, and Violante (2017). We focus directly on the law of motion for home prices and assume that households use a simple AR(1) forecast rule that conditions on the state of the business cycle today Θ_t and the realization of the state of the business cycle tomorrow Θ_{t+1} for the evolution of p_t:

\[
\log p_{t+1} = f(\Theta_t, \Theta_{t+1}) (\log p_t)
\]

where $f(\Theta_t, \Theta_{t+1})$ is a function for each realization of (Θ_t, Θ_{t+1}). We parameterize $f(\cdot)$ as a linear spline.12 Expression (8) can be viewed either as a tool to compute equilibrium in heterogeneous-

12We have found that a linear spline performs better than a linear relationship. The relationship is approximately linear in periods with no default and linear in periods with some default, although the line bends when default kicks
agent economies, following Krusell and Smith (1998) or as an assumption that households and investors are boundedly rational and formulate simple forecast rules for the aggregate state. To verify that the decision rule is accurate, we both compute the R^2 for each (Θ_t, Θ_{t+1}) realized in simulations and follow Den Haan (2010) by comparing the realized price with the 15, 30, 45, and 100-year ahead forecasts given the realized process of aggregate shocks to verify that the forecast rule does a good job of computing expected prices many periods into the future and that small errors do not accumulate. The Appendix shows this is the case.

The model cannot be solved analytically, so a computational algorithm is used. First, the household problem is solved for a given forecast rule and mortgage spreads by discretization and backward induction. The model is simulated for 19,000 periods with the home price determined by (7). Given the distribution of mortgages originated in each state, the break-even spread for each aggregate state is determined according to (6), and the AR(1) forecast regression (8) is run in the simulated data for each (Θ_t, Θ_{t+1}). Finally, the forecast rule is updated based on the regression and the spread is updated based on the break-even spread, and the entire procedure is repeated until the forecast rules and spreads converge.

4 Calibration

Our calibration proceeds in three steps. First, we select the aggregate and idiosyncratic shocks to reflect modern business cycles in the United States. Second, we exogenously calibrate a number of parameters to standard values in the macro and housing literature. The final parameters are calibrated internally to match moments of the data. Our model does a good job of matching the life cycle and population distributions of assets and mortgage debt. Furthermore, as a validation exercise, we show that our model quantitatively matches quasi-experimental evidence on the effects of payment reductions on default.

Throughout, we calibrate to the data using a model in which all loans are fixed rate mortgages to reflect the predominant mortgage type in the United States. Table 1 summarizes the variables and their calibrated values. κ, the fixed origination cost for the lender, is determined in the FRM equilibrium under the baseline monetary policy to match the average spread between mortgage rates and a 10-year risk-free bond and imposed in solving for the model’s equilibrium for other mortgages and monetary policies. The calibration is annual.

4.1 Aggregate and Idiosyncratic Shocks

We consider an economy that occasionally experiences crises akin to what occurred in the Great Recession. To trigger such a downturn, we combine a deep and persistent recession – which lowers aggregate income and leads to more frequent negative idiosyncratic shocks – with a tightening of credit in the form of a stricter downpayment constraints. Several papers argue that tightening credit helped amplify the bust and model this as a tightening LTV constraint (e.g., Favilukis et al., 2017; Justiniano et al., 2017). We consequently assume that credit always tightens in a
Table 1: Model Parameters in Baseline Parameterization

<table>
<thead>
<tr>
<th>Param</th>
<th>Description</th>
<th>Value</th>
<th>Param</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Years in Life</td>
<td>45</td>
<td>c_m</td>
<td>Variable Moving Cost as % of Price</td>
<td>3.0%</td>
</tr>
<tr>
<td>R</td>
<td>Retirement</td>
<td>35</td>
<td>k_m</td>
<td>Fixed Moving Cost</td>
<td>0.1</td>
</tr>
<tr>
<td>ρ</td>
<td>Log Income Decline in Retirement</td>
<td>0.35</td>
<td>c_r</td>
<td>Variable Refi Cost as % of Mortgage</td>
<td>1.0%</td>
</tr>
<tr>
<td>τ_0</td>
<td>Constant in Tax Function</td>
<td>0.8</td>
<td>k_r</td>
<td>Fixed Refi Cost</td>
<td>0.04</td>
</tr>
<tr>
<td>τ_1</td>
<td>Curvature Tax Function</td>
<td>0.18</td>
<td>d_a</td>
<td>Default Cost Dist Lower Bound</td>
<td>53.5</td>
</tr>
<tr>
<td>γ</td>
<td>CRRA</td>
<td>3.0</td>
<td>d_b</td>
<td>Default Cost Dist Upper Bound</td>
<td>63.5</td>
</tr>
<tr>
<td>ξ</td>
<td>Bequest Motive Shifter</td>
<td>0.5275</td>
<td>q</td>
<td>Rent</td>
<td>0.20</td>
</tr>
<tr>
<td>ψ</td>
<td>Bequest Motive Multiplier</td>
<td>250</td>
<td>m</td>
<td>Maint Cost as % of Prices</td>
<td>2.5%</td>
</tr>
<tr>
<td>a</td>
<td>Utility From Homeownership</td>
<td>6.75</td>
<td>ζ</td>
<td>Prob of Moving Shock</td>
<td>1/9</td>
</tr>
<tr>
<td>β</td>
<td>Discount Factor</td>
<td>0.95</td>
<td>λ</td>
<td>Prob Default Flag Removed</td>
<td>1/3</td>
</tr>
<tr>
<td>Υ</td>
<td>Foreclosure Sale Recovery %</td>
<td>0.654</td>
<td>ϕ_{loose}</td>
<td>Homeownership Rate</td>
<td>65.0%</td>
</tr>
<tr>
<td>ϕ_{loose}</td>
<td>Max LTV, Loose Credit</td>
<td>95.0%</td>
<td>ϕ_{tight}</td>
<td>Max LTV, Tight Credit</td>
<td>80.0%</td>
</tr>
<tr>
<td>r</td>
<td>Short Rate</td>
<td>[0.26%, 1.32%, 3.26%]</td>
<td>(crisis, recession, expansion)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y^{agg}</td>
<td>Aggregate Income</td>
<td>[0.0976, 0.1426, 0.1776]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See appendix for transition matrix for Θ_t and Y_t^{agg}.

Note: This table shows parameters for the baseline calibration. Average income is normalized to one. There are five aggregate states, $\Theta_t \in \{\text{Crisis With Tight Credit, Recession With Tight Credit, Recession With Loose Credit, Expansion With Tight Credit, Expansion With Loose Credit}\}$, but we assume that income and monetary policy are the same in a recession with loose or tight credit and in an expansion with loose or tight credit. The tuples of interest rates reflect the interest rate in a crisis, recession, and expansion, respectively.

crisis and then stochastically reverts to being loose in expansions. Since there is insufficient data to evaluate how monetary policy differs in various credit regimes, we assume that income and monetary policy are identical in recessions with high and low credit and expansions with high and low credit. This implies that the transition matrix between the five aggregate states $\Theta_t \in \{\text{Crisis With Tight Credit, Recession With Tight Credit, Recession With Loose Credit, Expansion With Tight Credit, Expansion With Loose Credit}\}$ can be represented as a transition matrix between three states \{Crisis, Recession, Expansion\} along with a probability that credit switches form tight to loose in the tight credit expansion state.

We calibrate the Markov transition matrix between crisis, recession, and expansion based on the frequency and duration of NBER recessions and expansions. We use the NBER durations and frequencies to determine the probability of a switch between an expansion and crisis or recession, and we assume that crises happen every 75 years and that all other NBER recessions are regular recessions. We assume that every time the economy exits a crisis or recession it switches to an expansion and that crises affect idiosyncratic income in the same way as a regular recession but last longer and involve a larger aggregate income drop, with a length calibrated to match the average duration of the Great Depression and Great Recession. A regular recession reduces aggregate income by 3.5%, while a crisis reduces it by 8.0%, consistent with Guvenen et al.’s (2014) data on the decline in log average earnings per person in recessions since 1980. For the probability of reverting to loose credit from tight credit in an expansion, we choose 2.0%, so that when credit tightens it does so persistently but credit loosens quickly enough so that a large number of crises begin in the loose credit state. Our results are not sensitive to perturbing this target. The full
transition matrices can be found in the appendix.

We calibrate short rates and mortgages rates during expansions and recessions to historical real rates from 1985-2007.\footnote{We use a real model to focus the model on the benefits of interest-rate indexation in a scenario like the Great Recession. Indeed, our central points are fairly orthogonal to the literature on “mortgage tilt” and inflation, with the exception of the possibility that adjustable-rate borrowers may see their payments rise if inflation is high in a crisis and the central bank raises interest rates. We consider such a scenario in section 7.} We find that short rates equal 1.32\% on average during recessions and 3.26\% during expansions. For the crisis state, we assume that the real short rate is 3.0\% less than during expansions, or 0.26\%.\footnote{Our model abstracts from regional heterogeneity in the strength of housing cycles and recessions. Given such heterogeneity, monetary policy – and mortgage design – is a somewhat blunt instrument because it does not treat different regions differently. See Piskorski and Seru (2018) for a discussion of the potential gains from indexing mortgages to local economic conditions.}\footnote{In practice, interest rates adjust gradually to the aggregate state of the economy. We assume immediate adjustment to keep the number of aggregate states tractable. With gradual adjustment, ARMs would provide less insurance. This is another plus for the EK convertible mortgage, as agents may want to keep their mortgage as an FRM if ARM rates are not adjusting or are adjusting the wrong way.} As mentioned above, we set the bank cost of capital to match a spread of 1.65\% between the 30-year fixed mortgage rate and the 10-year bond rate in the data.\footnote{In practice, the 30-year fixed rate mortgage is priced off of the 10-year Treasury bond. We use the expectations hypothesis because we need to have counterfactual predictions of how changes in short rates are passed through into long rates and the literature on time-varying term premia remains unsettled. If term premia shocks are random, we can ignore them. There is some evidence that term premia are higher in recessions, which would mean long rates move less than in our calibration. By contrast, there is some evidence that term premia overreact to monetary policy at short horizons, which would mean that long rates move more than in our calibration.} We maintain these mortgage rates as we vary the mortgage contract and monetary policy to put different contracts on the same footing. In practice, mortgage design affects monetary policy, as we discuss in Section 7, and so with a different mortgage design the Central Bank may set different interest rates.

For the idiosyncratic income process, we match the countercyclical left skewness in idiosyncratic income shocks found by Guvenen et al. (2014). Left skewness is crucial to accurately capturing the dynamics of a housing crisis because the literature on mortgage default has found that large income shocks are crucial drivers of default. To incorporate left skewness, we calibrate log idiosyncratic income to follow a Gaussian AR(1) with an autocorrelation of 0.91 and standard deviation of 0.21 following Floden and Linde (2001) in an expansion but to have left skewness in the shock distribution in recessions and crises. We discretize the income process in an expansion by matching the mean and standard deviation of shocks using the method of Farmer and Toda (2017), which discretizes the distribution and optimally adjusts it to match the mean and variance of the distribution to be discretized. For the bust, we add the standardized skewness of the 2008-9 income change distribution from Guvenen et al. (2014) to moments to be matched, generating a shock distribution with left skewness. This gives a distribution with a negative mean income change in busts and leads to income being too volatile, so we shift the mean of the idiosyncratic shock distribution in busts to match the standard deviation of aggregate log income in the data. In doing so, we choose the income distribution of the newly born generations to match the lifecycle profile of income in Guvenen et al. (2016).\footnote{Rather than including a deterministic income profile, we start households at lower incomes and let them stochastically gain income over time as the income distribution converges to its ergodic distribution. This does a good job of matching the age-income profile in the data as shown in the Appendix.} We normalize the income process so that average aggregate income is...
equal to one.

4.2 Other Calibration Targets

We set a number of parameters to standard values in the literature or to directly match moments in the data.

We assume households live for 45 years, roughly matching ages 25 to 70 in the data. Households retire after 35 years, at which point idiosyncratic income is frozen at its terminal level minus a 0.35 log point retirement decrease. The tax system is calibrated as in Heathcote et al. (2017), with \(\tau_0 = 0.80 \) and \(\tau_1 = 0.18 \). We use a discount factor of \(\beta = 0.95 \) and a CRRA of \(\gamma = 3.0 \).

Moving and refinancing involve fixed and variable costs. We set the fixed cost of moving equal to 10% of average annual income, or roughly $5,000. The proportional costs, paid by both buyers and sellers, equal 3% of the house value to reflect closing costs and realtor fees. Refinancing involves a fixed cost of 4% of average annual income, or roughly $2,000, as well as variable cost equal to 1% of the mortgage amount to roughly match average refinancing costs quoted by the Federal Reserve.

Renters pay a rent of \(q = 0.20 \) to match a rent-to-income ratio of 20%. Homeowners must pay a maintenance cost equal to 2.5% of the house value every year. We calibrate the moving shock \(\zeta \) so that homeowners move an average of every 9 years as in the American Housing Survey. The homeownership rate is set to match a long-run average homeownership rate of 65 percent in the United States.

\(\Upsilon \), the fraction of the price recovered by the bank after foreclosure, is set to 64.5 percent. This combines the 27 percentage point foreclosure discount in Campbell, Giglio and Pathak (2011) with the fixed costs of foreclosing upon, maintaining, and marketing a property, estimated to be 8.5% of the sale price according to Andersson and Mayock (2014).\(^{18}\)

We assume that the maximum LTV at origination under loose credit is 95%, corresponding to the highest spike in the distribution of LTV at origination in the Great Recession, and under tight credit is 80%, which is the conforming loan limit LTV. This generates crises with a tightening of credit that feature a price decline similar to what we observed in the Great Recession.

We finally calibrate four parameters internally. We calibrate \(a \), the utility benefit of owning a home, so that house prices are approximately five times the average pre-tax income in our economy.\(^{19}\) We choose the bequest motive parameters \(\psi \) and \(\xi \) to match the ratio of total net worth at age 60 to age 45 in the SCF for the median and 10th percentile households. Intuitively, \(\psi \), which controls the overall strength of the bequest motive, is pinned down by the median growth rate, while \(\xi \), which controls the extent to which bequests are a luxury, is pinned down by the 10th percentile growth rate. We finally calibrate \(\bar{d} \), the average default cost, so that in simulations of the impulse response to a housing downturn akin to the Great Recession described below we match that roughly 8 percent of the housing stock was foreclosed upon from 2006 to 2013 (Guren and

\(^{18}\)Much of the literature calibrates to the “loss severity rate” defined as the fraction of the mortgage balance recovered by the lender. We calibrate to a fraction of the price because of a recent empirical literature that finds that in distressed markets, the loss recovery rate is much lower (e.g. Andersson and Mayock, 2014), which is consistent with a discount relative to price rather than a constant loss severity rate.

\(^{19}\)In the SCF, the mean price to income ratio for homeowners is 4. Because homeowners in our model are richer than the average household, the ratio of the mean price to average income is 5.
Figure 1: Lifecycle Patterns: SCF vs. Model

Panel A of Figure 1 shows the homeownership rate over the lifecycle. The model slightly underestimates the homeownership rate of the very young and over-estimates the homeownership rate of the middle aged.

Panels B and C of Figure 1 shows the mean, median, 10th percentile, and 90th percentile of the loan to value ratio (LTV) and payment to income ratio (PTI) by age, and panels A and B

Note: This figure compares the baseline calibration of the model with all FRMs (solid lines) to SCF data from 2001 to 2007 (dashed lines) in panels A-D. Panels E and F are constructed based only on the model. Panel A shows the homeownership rate. Panel B shows the mean, median, 10th percentile, and 90th percentile of loan to value ratios for homeowners, and panel C shows the same statistics for the payment to income ratio. Panel D shows the mean, median, 10th percentile, and 90th percentile of liquid assets along with median total wealth. Panel E shows the refinance rate, and Panel F shows consumption and income in the model.

McQuade, 2018).\(^{20}\) We match these moments closely as shown in the appendix.

4.3 Lifecycle Patterns and Distributions Across the Population

The model does a good job matching the lifecycle patterns and the overall distribution of debt and assets in the Survey of Consumer Finances for 2001, 2004, and 2007. Figure 1 shows the lifecycle patterns, while Figure 2 shows the distributions across the population. In both figures, the pooled SCF data for 2001 to 2007 is in dashed lines and the model analogues are in solid lines.

Panel A of Figure 1 shows the homeownership rate over the lifecycle. The model slightly underestimates the homeownership rate of the very young and over-estimates the homeownership rate of the middle aged.

Panels B and C of Figure 1 shows the mean, median, 10th percentile, and 90th percentile of the loan to value ratio (LTV) and payment to income ratio (PTI) by age, and panels A and B

\(^{20}\)We choose \(d_a \) and \(d_b \), the bounds of the uniform distribution from which \(d \) is chosen, to add a small bit of mass around \(\bar{d} \). In the calibration, \(\bar{d} = 58.5 \), \(d_a = 53.5 \), and \(d_b = 63.5 \).
Figure 2: Distributions Across Population: SCF vs. Model

Note: This figure compares the baseline calibration of the model with all FRMs (solid lines) to SCF data from 2001 to 2007 (dashed lines). Panel A shows loan to value ratios in 10 percentage point bins for homeowners, and panel B shows the payment to income ratio for homeowners in 0.025 bins. Panel C shows total wealth relative to mean income in bins of 0.2, while panel D shows liquid wealth relative to mean income in bins of 0.2. In all figures, the model and data are binned identically.

Panel A of Figure 2 shows the distribution of LTV and PTI across the population. The model somewhat over-predicts the LTV ratios of the young individuals in the bottom half of the LTV distribution. This has minimal impact on our quantitative results, however, since these homeowners are not at risk of default when the crisis hits. The model does reasonably well in capturing the LTV and PTI distributions across all ages, although it somewhat overstates the number of individuals with LTVs between 80 percent and 95 percent as is the case with any model with a single hard LTV constraint. We also find that PTIs that are too high for the old because mortgages amortize to the end of life. Because most of the equilibrium effects in our model come from the purchase, refinance, and default decisions of the young who have relatively high LTVs, the financial position of elderly homeowners has little impact on our results.

Panel D of Figure 1 shows percentiles of the liquid wealth and the median of total wealth by age, and panels C and D of Figure 2 show the distributions of total and liquid wealth in the population. The model does a reasonably good job matching median total wealth over the lifecycle and liquid wealth at young ages. Agents in the model accumulate more liquid assets in retirement than in the data. Again, this is not a significant issue, as the old do not play a crucial role in the housing market in our model. The data also has a thicker right tail of very wealthy individuals. Our model is designed to capture the impact of credit constraints and mortgages on housing markets,
so capturing the extremely wealthy is not relevant for our exercise.

Finally, Panels E and F of Figure 1 show the fraction of owners refinancing and income and consumption over the life cycle, respectively. Most refinancing is of the cash-out variety because the FRM rate does not fluctuate dramatically due to the expectations hypothesis. Refinancing is relatively low until retirement, at which point it jumps so that agents can smooth their consumption. The excessive refinancing of the old is not crucial to our results because the old are not the marginal buyer or defaulter. Income follows a standard lifecycle profile, and consumption is smoother than income and increasing as individuals age, consistent with buffer stock models of consumption.

4.4 Calibration Evaluation Using Quasi-Experimental Evidence on Default

To evaluate the extent to which our model quantitatively captures the impact of payment reductions, we compare our model to quasi-experimental evidence from Fuster and Willen (2017). Fuster and Willen study a sample of homeowners who purchased ALT-A hybrid adjustable-rate mortgages during 2005-2008 period and quickly fell underwater as house prices declined. Under a hybrid ARM, the borrower pays a fixed rate for several years (typically five to ten) and then the ARM “resets” to a spread over the short rate once a year. These borrowers were unable to refinance because they were almost immediately underwater, so when their rates reset to reflect the low short rates after 2008, they received a large and expected reduction in their monthly payment.

Fuster and Willen provide two key facts for our purposes. First, they show that even for ALT-A borrowers – who have low documentation and high LTVs relative to the population – at 135 percent LTV the average default hazard prior to reset was only about 24 percent.21 The fact that so many households with significant negative equity do not default implies that there are high default costs. It is also consistent with a literature that finds evidence for a “double trigger” model of default whereby both negative equity and a shock are necessary to trigger default, as is the case for most default in our model.

Second, Fuster and Willen use an empirical design that compares households just before and after they get a rate reset and show that the hazard of default for a borrower receiving a 3.0 percent rate reduction falls by about 55 percentage points.

We evaluate the extent to which our model can match Fuster and Willen’s estimates by simulating their rate reset quasi-experiment within our model. In particular, we compare the crisis default behavior of agents in our model with a 2/1 ARM that will reset next period with the behavior of an agent with a 1/1 ARM that has reset this period. This corresponds to the treatment and control used by Fuster and Willen. We assume that these borrowers are an infinitesimal part of the market, so we can consider them in partial equilibrium, and we compute their default rates at different LTVs with the 2/1 ARM and 1/1 ARM. To deal with the fact that the ALT-A sample used by Fuster and Willen is not representative of the population, we roughly match the assets, age, and income of the homeowners we consider to households with hybrid ARMs that have yet to reset in the 2007 Survey of Consumer Finances.22 Finally, we assume that homeowners have a

21 This figure is based on the default hazard in months 30 to 60 in Figure 1b. Fuster and Willen measure “default” as becoming 60 days delinquent rather than an actual foreclosure, so the actual default rate might be slightly lower.

22 In the SCF, we find that the ALT-A borrowers have low assets, are young, and have moderate-to-low income, as one would expect. Due to a limited number of observations, rather than using the ages and assets of households in
Figure 3: Fit to Fuster and Willen (2017) Natural Experiment

Note: The data from Fuster and Willen (2017) come from column 1 of Table A.1 in their paper, which is also used in Figure 3 of their paper. The model estimates come from comparing a 2/1 ARM to a 1/1 ARM in our model.

fixed rate corresponding to the FRM rate in the boom and reset to the ARM rate in the crisis.

Figure 3 compares the calibrated model with the findings of Fuster and Willen (2015). Panel A shows the impact of rate reductions on default in the model and Fuster and Willen’s estimates. Overall, the fit is quite good. The model slightly over-predicts the impact of small rate reductions on the default hazard and under-predicts the impact of large rate reductions. The right panel shows the baseline default rate under the 2/1 ARM at various LTVs relative to the default rate at 135 percent LTV. LTV reductions have modestly larger effects than in the data until one gets below 100 percent, at which point the default hazard falls off in the model but not in Fuster and Willen’s data.

The model’s fit to the Fuster and Willen quasi-experimental evidence suggests that the model will accurately capture the effect of payment and LTV changes on default.

5 ARM vs. FRM: The Economics of State Contingent Mortgages

Having created and calibrated a laboratory to study mortgage design and its interaction with monetary policy, we now use our model to assess various mortgages. We primarily focus on a

22

23Fuster and Willen find a substantial default hazard below 100 percent LTV for three likely reasons. First, the combined LTV that Fuster and Willen use is likely measured with error both due to missing liens in the data and due to error in the automatic valuation model. Second, Fuster and Willen measure default as 60 day delinquency and not a final foreclosure. In areas with substantial foreclosure backlogs, borrowers who are above water can become delinquent before they sell. Finally, there are some frictions in terms of time to sell and the fixed costs of sale that may cause above-water households to default. In our model, there is minimal default for above-water households because some households get a moving shock with very low equity and decide to default.
crisis scenario that combines a housing bust and a deep recession as in the Great Recession. This allows us to analyze mortgage designs proposed to address the problems revealed by the Great Recession, which is the focus of the recent literature. Additionally, the equilibrium feedbacks that our model features are most interesting and potent in a downturn with a price-default spiral. In this section we focus on conventional monetary policy that reduces real rates in a crisis, and we consider alternate monetary policies, including the case in which the central bank raises real rates in a bust, in Section 7.

To analyze a housing downturn, we simulate an impulse response where in the five years prior to the downturn the economy is in an expansion with loose credit and when the crisis hits the economy falls into a deep recession and the LTV constraint tightens. We assume that the crisis lasts at least three years, after which the economy stochastically exits according to the transition matrix so that the average crisis length is 5.66 years. We study the impulse responses of prices, default rates, and consumption to the resulting downturn, which we compute by averaging together 100 simulations with random shocks prior to the five-year expansion and subsequent to the first three years of the crisis. We also compare mortgage designs in stochastic simulations.

To analyze the effect of mortgage design in such a crisis, we first compare an economy with all FRM borrowers to an economy with all ARM borrowers. This provides us with most of the economic intuition regarding the benefits of adding state contingency to mortgages. In Section 6, we consider more complex mortgage designs.

5.1 Economic Intuition: FRM vs. ARM

Our baseline case is an economy in which the only available mortgage to home purchasers is a fixed-rate mortgage. The results are illustrated by the blue lines in Figure 4.

The model with all FRMs generates a housing crisis in the model of a similar magnitude to the one experienced in the United States between 2006 and 2012 as shown in Figure 4. Prices fall by about a third, which closely matches the peak to trough decline in national repeat sales house price indices. At the depths of the crisis, 40 percent of homeowners are underwater and 70 percent of homeowners have under 20 percent equity and cannot refinance given the tightened LTV constraint. The combination of negative equity and recession leads 7.9 percent of the housing stock to default (recall that matching the fraction of the housing stock that defaulted from 2006 to 2013 is a calibration target). Finally, consumption falls by 11.6 percent due to the sudden and persistent decline in income and the large number of constrained households. The decline is slightly higher than the decline in the data.

We examine the differential impacts of adjustable-rate mortgages through two experiments. In the first, we assume that home purchasers have fixed-rate mortgages pre-crisis, but that when the crisis hits, all mortgages are unexpectedly converted to adjustable-rate mortgages with the

24Our model does not match the time series of house price indices because prices fall to their lowest level on the impact of the shock, while in the data they decline gradually. This is the case because our Walrasian model does not have any house price momentum. See Guren (2018) for a summary of the literature on momentum.

25With a 2.5 percent annual trend, real personal consumption expenditures fell 9.4 percent relative to trend peak to trough in the recession. Our model may have a larger decline than in the data because we do not capture the upper tail of the income distribution well and because we do not model lenders.
Figure 4: FRM vs. FRM→ARM: Housing Market Outcomes

A. House Prices

B. Share Negative Equity

C. Default Rate

D. Consumption

Note: The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under FRM and FRM→ARM. In the downturn, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years.

spread based on the origination state of the mortgage. Because the central bank lowers the short rate in the crisis and this is fully passed through to households under ARM, mortgage payments fall dramatically. This experiment, which we call the FRM→ARM counterfactual, is a useful thought experiment to understand the mechanisms at work in our model because it holds fixed the distribution of individuals across idiosyncratic states when the crisis hits and isolates the ex-post effect of adjustable-rate mortgages on the severity of the crisis. In the second experiment, we consider an economy with ARMs both before and after the crisis hits, allowing for ex-ante behavior to affect the distribution of households across idiosyncratic states at the beginning of the crisis.

5.1.1 Ex-Post Effect of Switching From FRM to ARM

The FRM→ARM counterfactual is shown in purple lines in Figure 4. Relative to the baseline case, the housing crisis is less severe. House prices fall by 3.8 percentage points less and 33.6 percent fewer households default.

Under FRM, the rate reduction is not passed through to households to the same extent because
the long end of the yield curve moves by less and because some homeowners do not have the means to satisfy the tighter LTV constraint and cannot refinance. Because of left-skewness of the income shock distribution in the crisis, a significant fraction of the underwater homeowners experience a drop in their income. Those with little savings default because they would have to cut their consumption substantially – and in many cases to zero – to make their mortgage payment, which causes them to be willing to bear the utility cost of default. Default increases the supply of homes on the market, further pushing down prices, which in turn leads to more default. This phenomenon is the canonical price-default spiral.

In the ARM economy, by contrast, the mortgage payment is pegged to the prevailing short rate in the market, so payments fall automatically. They also fall by more than under FRM because the short end of the yield curve adjusts by more under the expectations hypothesis than the long end. Many households that default with an FRM can avoid default, short-circuiting the default spiral and causing a less severe housing crisis.

Additionally, because FRMs are priced off of long-term rates, which fall via the expectations hypothesis, buying is more affordable in the ARM economy for young renters during the crisis than in the FRM economy. This implies that the demand by renters is higher when the economy switches to ARMs, which further ameliorates the impact of the housing crisis.

These effects are summarized in Figure 5, which plots the mass of homeowners defaulting and renters purchasing by age in the period in which the crisis begins. The results are plotted for both the baseline FRM economy and the FRM→ARM counterfactual, along with the difference. Because the pre-downturn distribution is the same, this figure only reflects differences in policy
functions between the FRM and FRM→ARM economies. The gap in default is dominated by young and middle-aged households, and the gap in renter purchases is dominated by homebuyers around the age of first purchase. Similar comparisons by savings, income, and LTV reveal that the additional default under FRM comes from low income, low savings, and high LTV borrowers, while the additional demand comes from renters with the moderate savings and income reflective of first-time homebuyers.

5.1.2 Ex-Ante Effect of Switching From FRM to ARM

Of course, while useful for expositional purposes, the economy in which all mortgages suddenly switch to ARMs is unrealistic. We therefore now instead consider an economy in which all mortgages are adjustable-rate, both pre- and post-crisis. The results are presented in Figures 6, with the FRM economy shown in blue and the ARM economy shown in orange.

The benefits of adjustable-rate mortgages are reduced relative to the FRM→ARM counterfactual, with prices falling by 2.7 percentage points and 26.1 percent fewer households defaulting than
Table 2: FRM vs. ARM: Pre-Crisis LTV and Savings Distribution Differences

<table>
<thead>
<tr>
<th></th>
<th>Ages 26-45</th>
<th>Ages 36-45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owners With Savings Under .5, ARM - FRM</td>
<td>2.38%</td>
<td>2.27%</td>
</tr>
<tr>
<td>Renters With Savings Above 1, ARM - FRM</td>
<td>-0.23%</td>
<td>-0.76%</td>
</tr>
<tr>
<td>Owners With LTV > 0.9, ARM - FRM</td>
<td>0.20%</td>
<td>0.30%</td>
</tr>
</tbody>
</table>

Note: Each panel shows the difference in the percentage of owners or renters satisfying each criteria based on the average distribution in the pre-downturn period from 100 impulse response simulations. Each row shows the difference between the ARM and FRM economies.

under FRM rather than 3.8 percentage points and 33.5 percent under FRM→ARM. These figures are summarized for ARM and the mortgage designs we consider subsequently in Table 3.

The crisis is worse in the ARM economy relative to the FRM→ARM economy for two reasons. First, young homeowners understand the hedging properties of the ARM mortgage and take on more risk by both increasing their LTV and holding less savings in order to increase their consumption in constrained states. This creates macro fragility, which households do not internalize. Second, young renters hold less savings, and so fewer are able to meet the down payment in the bust, which increases despite the lower price due to the tightened LTV constraint. The effect of switching to ARM ex ante on the LTV and savings distributions of young agents is shown in Table 2. Under ARM there are more young owners with low savings and high LTV and fewer young renters with high savings. The degree to which the ex-post benefits of ARMs are undone by the ex-ante buildup of fragility – at least for house prices and default – is a numerical result. This highlights the need for realistic quantitative models of the type we analyze.

5.1.3 Welfare Benefits of Switching From FRM to ARM

To further evaluate the benefits of switching from FRM to ARM, we calculate the consumption-equivalent welfare cost of the crisis under each mortgage for generations that are alive when the crisis hits. To do so, we calculate how much each agent would be willing to reduce their consumption per year of their remaining life to avoid a crisis. This is calculated as equivalent variation and is aggregated by the pre-crisis distribution of individuals across states for agents living when the crisis hits, as detailed in the Appendix. Welfare relative to the FRM economy is shown for ARM and the mortgage designs we consider subsequently in Table 3.

Households alive when the crisis hits would be willing to give up 0.83 percent more of their annual consumption for their remaining life to avoid the crisis in the FRM economy than the ARM economy. However, this aggregate calculation masks substantial heterogeneity across groups, as shown in Figure 7, which reports the welfare difference separately by age, LTV in the first period of the crisis, savings, and idiosyncratic income for both renters and owners. A negative value indicates a larger welfare loss under FRMs than in the ARM counterfactual, and all figures are in percentage points of consumption.

Figure 7 reveals that the welfare benefits of ARMs are concentrated on two groups. The first group is young, low savings, low income, and high LTV homeowners, who would be willing to give up as much as four percent more of their annual consumption to avoid the crisis in the FRM.
Note: Each panel shows the percentage point difference in consumption equivalent welfare between FRM and ARM. Consumption equivalent welfare is calculated as the equivalent variation amount each agent would be willing to reduce their consumption per year of their remaining life to avoid a crisis for generations alive when the crisis hits. This is aggregated by age in panel A, by mortgage amount in panel B, by savings in panel C, and by idiosyncratic income in panel D using the pre-downturn distribution of agents across stage. The y axis in each panel is the difference between the FRM and ARM economies for this calculation, with a negative number indicating household are worse off under FRM. We repeat the calculations separately for renters and owners, as indicated in the legend.

5.2 ARM vs. FRM: The Importance of Equilibrium Effects

An important feature of our analysis that differentiates it from the preceding literature is that house prices and mortgage spreads are determined in equilibrium. Figure 8 shows the impact of
Table 3: Moments From Downturn Simulations For Various Mortgage Designs

<table>
<thead>
<tr>
<th>Design</th>
<th>FRM</th>
<th>ARM</th>
<th>EK</th>
<th>FRMUR</th>
<th>Option ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pct Point Reduction in Max ΔP Rel to FRM</td>
<td>2.66</td>
<td>2.49</td>
<td>0.34</td>
<td>6.46</td>
<td></td>
</tr>
<tr>
<td>Pct Point Reduction in Max ΔC Rel to FRM</td>
<td>0.76</td>
<td>0.66</td>
<td>0.08</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>Share Defaulting over 8 Years</td>
<td>7.91%</td>
<td>5.85%</td>
<td>6.02%</td>
<td>7.32%</td>
<td>6.17%</td>
</tr>
<tr>
<td>Increase in Household Welfare Rel to FRM</td>
<td>0.83%</td>
<td>0.75%</td>
<td>0.20%</td>
<td>0.97%</td>
<td></td>
</tr>
<tr>
<td>Decline in PV of Mortgages</td>
<td>1.70%</td>
<td>2.89%</td>
<td>2.47%</td>
<td>2.05%</td>
<td>3.18%</td>
</tr>
<tr>
<td>When Enter Crisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Table shows the indicated statistics for each mortgage design averaging across 100 simulations of a crisis that lasts 5.66 years after an expansion with loose credit as described in the main text. The top row shows the percentage point change in the peak-to-trough change in price relative to FRM, with a positive number indicating a less severe price decline. The second row shows the percentage point change in the peak-to-trough change in consumption relative to FRM, with a positive number indicating a less severe decline in consumption. The third row shows the share of the housing stock defaulting after 8 years. The fourth line shows the decline in household consumption-equivalent welfare relative to FRM reported as a percentage of annual consumption for the rest of the household’s life. The fifth row shows the percentage point decline in the present value of the mortgages in the economy when the crisis occurs, which represents the deterioration of lender balance sheets in the crisis.

these equilibrium effects on consumption and default in a simulated downturn in our model. To calculate the impulse response in the ARM economy with no equilibrium effects, we take the price path and distribution of agents across states from the FRM model as given and calculate default and consumption under ARM using ARM policy functions computed with the FRM forecast rule. Figure 8 reveals that the equilibrium feedbacks account for about 46% of the difference in default and 37% of the difference in consumption between the ARM and FRM counterfactuals. This result also highlights an externality that is present in our model: agents do not take into account the impact of their mortgage choices on equilibrium prices when making their decisions, and yet it is clear that their choices have a large quantitative impact on equilibrium prices.

5.3 ARM vs. FRM in Stochastic Simulations

Up until now, we have only considered the impacts of mortgage design conditional on a crisis. Using stochastic simulations, we now ask whether ARMs deliver welfare benefits unconditionally. The first column of Table 4 shows the standard deviation of price, default, aggregate consumption, and idiosyncratic consumption for an all-ARM relative to an all-FRM economy. It also shows welfare, which is calculated in terms of equivalent variation as percent increase in per-period consumption that would be required in the FRM economy to make an agent indifferent between being born in a random period in the FRM economy and a random period in the ARM economy.

The ARM economy features 3.3% lower house price volatility, 23.3% lower default volatility, and 5.1% lower aggregate consumption volatility. The overall welfare benefits are, however, modest: an agent would be indifferent between the ARM and FRM economies if their consumption rose by 0.10 percent per year in the FRM economy. This is the case because while aggregate consumption volatility and default volatility are reduced, the volatility of idiosyncratic consumption, which dominates the overall volatility of consumption, is only slightly lower in the ARM economy. A variance decomposition makes this point clearly: in the FRM economy, 77.8% of consumption volatility across individuals is across individuals within periods and within generations, 21.9% is across generations within periods, and only 0.30% is due to aggregate consumption across periods.

29
Figure 8: FRM vs. ARM: The Role of Equilibrium Effects

A. Default Rate

<table>
<thead>
<tr>
<th>Years</th>
<th>FRM</th>
<th>ARM</th>
<th>ARM No Equilibrium Effects</th>
<th>Cum Diff</th>
<th>Cum Diff No Equilibrium Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.005</td>
<td>0.01</td>
<td>0.015</td>
<td>0.02</td>
<td>0.025</td>
</tr>
<tr>
<td>0</td>
<td>0.86</td>
<td>0.88</td>
<td>0.9</td>
<td>0.92</td>
<td>0.94</td>
</tr>
<tr>
<td>10</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Consumption

<table>
<thead>
<tr>
<th>Years</th>
<th>Consumption/Income Relative to Year 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>10</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under FRM and ARM both ex ante and ex post. In the downturn, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years. For the “no equilibrium effects” counterfactual, we take the price path and distribution of agents across states from the FRM model as given and report default and consumption using policy functions computed with ARMs with the FRM forecast rule.

Since ARMs only provide insurance against aggregate shocks, the consumption insurance benefits in normal times are modest. This does, however, open the door for mortgage designs that provide insurance against idiosyncratic risk, a point we return to in the next section.

As we have seen, for particularly severe crises, ARMs can dramatically reduce housing market volatility. Together with the reduced volatility of aggregate variables under ARMs, our results suggest that indexing mortgages to aggregate conditions through ARMs provides important insurance to the macroeconomy.

6 Evaluating New Mortgage Designs

We have so far focused on comparing ARMs and FRMs to clearly elucidate the insurance benefits of indexation. However, ARMs have some drawbacks. In particular, if the central bank raises interest rates to fight an inflationary recession, our assumption that in recessions short rates fall may be violated. In these cases, ARMs are worse from an insurance perspective, the reverse of our main results because the covariance of interest rates and income shocks switches sign. We show this quantitatively in Section 7. Furthermore, by revealed preference, most Americans prefer fixed rate mortgages, which on average account for roughly 80 percent of mortgage originations.26

Given these downsides, in this section we evaluate several mortgage designs that allow for state contingency in a crisis while preserving the benefits of FRMs in normal times. We also evaluate a contract that provides more idiosyncratic insurance than a standard ARM. Our main finding is that mortgage designs that front-load payment relief in the crisis outperform mortgages that spread

26If we allow for both FRMs and ARMs in our model about half of mortgage holders choose an ARM. However, with a small subsidy on the order of 20 basis points for the FRM we obtain a realistic ARM share. Such a subsidy is reasonable given that the FRM is institutionalized by Fannie Mae and Freddie Mac, which provide an effective subsidy for conforming (predominantly FRM) loans.
Table 4: Moments From Stochastic Simulations For Various Mortgage Designs Relative to FRM

<table>
<thead>
<tr>
<th>Design</th>
<th>Design</th>
<th>Option ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std Dev of Price Rel to FRM</td>
<td>ARM</td>
<td>EK</td>
</tr>
<tr>
<td></td>
<td>96.7%</td>
<td>97.3%</td>
</tr>
<tr>
<td>St Dev of Default Rate Rel to FRM</td>
<td>76.7%</td>
<td>79.9%</td>
</tr>
<tr>
<td>St Dev of Agg Consumption Rel to FRM</td>
<td>94.9%</td>
<td>95.6%</td>
</tr>
<tr>
<td>St Dev of Consumption Within Periods</td>
<td>99.4%</td>
<td>99.2%</td>
</tr>
<tr>
<td>Across Generations Rel to FRM</td>
<td>99.8%</td>
<td>99.7%</td>
</tr>
<tr>
<td>St Dev of Consumption Within Periods</td>
<td>99.8%</td>
<td>99.7%</td>
</tr>
<tr>
<td>Within Generations Rel to FRM</td>
<td>99.8%</td>
<td>99.7%</td>
</tr>
<tr>
<td>Increase in Welfare Rel to FRM</td>
<td>0.10%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

Notes: All series are percentages relative to the same statistic for the indicated FRM model. Price, default, and aggregate consumption are calculated from aggregate 6,400 year simulations. Idiosyncratic consumption is calculated by simulating 25,000 individuals each period for 6,300 years. Welfare is calculated as the equivalent variation in terms of the percent increase in annual consumption an agent would require in the FRM economy to be indifferent between being born in a random period in the indicated economy instead of the FRM economy.

payment relief over the life of the mortgage, even though the impact on lender balance sheets during the crisis is similar.

6.1 Eberly-Krishnamurthy Convertible Mortgage

Eberly and Krishnamurthy (2014) propose a fixed-rate mortgage that can at any time be costlessly converted to an adjustable-rate mortgage, but not back. This is similar to an economy in which one can choose between ARM and FRM with two important distinctions. First, homeowners who do not satisfy the LTV constraint can still switch to an ARM. Since in our simulated crisis 70 percent of homeowners have under 20 percent equity at the beginning of the crisis, this is likely to be significant. Second, homeowners who are so highly constrained that they cannot afford to pay the fixed costs of refinancing can convert to an ARM costlessly. We introduce an EK mortgage into our model by adding an additional agent-specific state that indicates whether an agent has a mortgage functioning as an ARM or as an FRM and allowing agents to choose to convert their loan from an FRM to an ARM but not back without refinancing.

This mortgage has two added benefits. First, introducing it in practice is likely to be less disruptive, as it can act exactly like a FRM and does not take away the FRM option. Second, in the event that the covariance of interest rates and monetary policy changes, it performs more like an FRM, as we show in Section 7.

The convertible mortgage does, however, come at a cost, as borrowers will convert to an ARM when it is beneficial for them to do so and then refinance into a new loan that starts as an FRM when this is no longer the case. Because ARM rates are lower than FRM rates when rates fall, this behavior reduces the NPV of a new mortgage to the lender through standard prepayment

27There are five equations to price the EK mortgage but ten rates: an FRM rate and an ARM spread for each state. One must thus make a further assumption about the relationship between the FRM rate and ARM spread. We assume that when converted to ARM, the EK mortgage has the same spread over the short rate as the EK mortgage acting as an FRM has over the model-generated 10-year risk-free bond rate. The EK looks more appealing for households if lenders make losses under ARM and profits under FRM because the decline in the rate when the mortgage is converted is larger.
The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under FRM and the Eberly-Krishnamurthy convertible mortgage both ex ante and ex post. In the downturn, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years.

risk and results in a higher spread. The negative effect of prepayment risk on the NPV of a new loan is partially offset by the reduced losses due to default under the EK mortgage. On net, the prepayment risk dominates and the EK convertible mortgage on average has a 17 basis point higher spread over the riskless 10-year bond rate than an FRM.28

Figure 9 shows a simulated downturn under the convertible mortgage. The crisis is roughly 90 percent of the way to the all-ARM economy and realizes many of the consumption-smoothing and macroprudential benefits of ARMs. This is the case because on average the share of mortgages that are functioning as ARMs rises from 12.7 percent pre crisis to near 100 percent during the crisis as households who need the payments relief the most convert. The convertible mortgage does not look fully like an ARM because of the higher spread. On net, the consumption equivalent welfare gain relative to the FRM is 0.75 percent of consumption, compared to 0.83 percent for the ARM. Table 4 compares the Eberly-Krishnamurthy mortgage with an FRM in stochastic simulations and also finds it is most of the way to the ARM economy. Once again, however, the unconditional welfare effects are modest at 0.06% of annual consumption because the EK mortgage does not help insure households against idiosyncratic risk.

6.2 Fixed Rate Mortgage With an Underwater Refinancing Option

The second mortgage that we consider is a fixed-rate mortgage that has a built-in refinance option, which can be exercised even if the origination LTV constraint is no longer satisfied.29 We introduce

28 The average spread is are calculated as an average of the spread for originating in each state weighted by the share of loans originating in each state.

29 We model this mortgage as an FRM with a built-in option to convert to a new FRM. Upon exercise of the option, the homeowner continues to pay the same spread over the 10-year bond rate as at origination but instead over the current 10-year risk-free bond rate, which the household locks in for the remainder of the mortgage. Since the 10-year
this our model by adding an additional agent-specific state that indicates whether an agent has exercised the built-in refinance option. We assume the structure is such that the option can only be exercised in the crisis state.

FRM with an underwater refinancing option (FRMUR) acts like an FRM except it directly addresses the issue of not being able to refinance when one is underwater. Because payments fall in bad states, it helps smooth consumption and reduce default losses for lenders. Of course, the option itself is costly for lenders. On net, in our model, the FRM with an underwater refinancing option has a 0.7 basis point higher spread than an FRM.

Figure 10 shows the crisis under FRMs with an underwater refinancing option. The FRMUR is priced off the long end of the yield curve, which falls less than the short end in a crisis. Because the insurance it provides is minimal, consumption is roughly the same as FRMs in the crisis. The initial decline in prices is similar, only 7.5% fewer households default, and welfare rises by 0.20 percent of annual consumption, one quarter the gain under EK. In stochastic simulations, the FRMUR option behaves much like an FRM with slightly lower default volatility and has essentially no welfare gain relative to FRM, as shown in Table 4. Overall, allowing for underwater refinancing provides some limited macroprudential benefits in a crisis but only limited consumption-smoothing benefits because the FRM is priced off the long end of the yield curve.

The comparison of the Eberly-Krishnamurthy convertible mortgage and the FRM with an bond rate falls during the crisis, the borrower faces a lower payment. These choices put the FRMUR mortgage on an equal footing with the EK mortgage in the sense that the original lender prices the built-in option to refinance into the pre-crisis mortgage rate. If we were to require that a new lender take on the additional risk through refinancing, the FRMUR would look worse because rates would rise in the crisis as borrowers with a high risk of default would refinance. With higher rates in the crisis, the payment relief from being able to refinance would be reduced. See the Appendix for a quantitative comparison.
underwater refinancing option provides the clearest contrast for our central finding: it is best to “front load” payment relief so that it is concentrated in a crisis. Both the EK and FRMUR provide insurance to underwater borrowers, however the EK front loads the relief by delivering maximal relief in a recession while the FRMUR gives households a new lower fixed rate that they keep for longer, thereby spreading the payment relief over the length of the mortgage. From the perspective of a lender entering the crisis state, these two mortgages are quite similar. Indeed, the present value of outstanding mortgages falls by 2.05 percent upon entering the crisis under FRMUR and by 2.47 percent under EK, which is not a substantial difference. These figures are similar because lenders who are not liquidity constrained are indifferent as to the timing of payments. However, the convertible mortgage helps liquidity constrained households in the crisis by four times as much and stems the tide of default and the price-default spiral. It also makes buying much more affordable for new homeowners, helping put a floor under house prices. The convertible mortgage does hit household balance sheets more when rates rise, but by then the macroeconomy and housing market have stabilized, and house prices have recovered so that most households can refinance back into a new mortgage that initially functions as an FRM if they so choose. Consequently, designs that front-load the benefits of rate reductions so that they are concentrated in recessions do best in our quantitative analysis.

One aspect of refinancing that this analysis misses is the ability of underwater homeowners to extend their mortgage, as all mortgages amortize over the remaining lifetime of the borrower. For example, refinancing a loan that amortizes over 10 remaining years into a 30 year loan would substantially lower monthly payments, even if the loans are at the same interest rate and have the same principal (Lucas et al., 2011). Since the key issue during the crisis is liquidity, our analysis shows that such a reduction in payments could deliver benefits. However, there are a few important caveats. First, we have shown that the benefits are largest when payment reductions are front-loaded, and extending an FRM’s term reduces payments over the remaining life of the mortgage rather than front-loading them. Moreover, the benefits of obtaining a new 30-year mortgage depend on how many years the borrower has left on her current mortgage. The households most at risk of default and in need of liquidity in the model are largely young households who have recently purchased a home and for whom the term extension would have a small impact, as their existing mortgage is already a relatively long-term mortgage. Indeed, in Agarwal et al.’s (2017) analysis of the HARP program, the average refinanced loan under HARP received a term extension of only 4.7 years. Since little principal is paid down in the first several years of the loan, this implies that over three quarters of the payment relief from HARP came from rate reductions and less than one quarter from principal reductions.

Finally, the FRMUR is similar to ex post policies that refinance borrowers who are underwater, such as the Home Affordable Refinance Program pursued in the Great Recession. However, the HARP program occurred at least in part while the Federal Reserve pursued quantitative easing, and Agarwal et al. (2017) report that the average HARP borrower experienced a 1.4 percent reduction in their mortgage rate, while in our baseline calibration the reduction is 0.61 percent. We show how FRMUR interacts with quantitative easing in Section 7.2.
6.3 Option ARM

We now consider a mortgage design that takes maximal advantage of front-loading benefits, an option ARM. This is an ARM mortgage that became popular in the early 2000s boom allowing the borrower to make one of three payments: a fully amortizing payment, an interest only payment, and a potentially negatively amortizing payment equal to the minimum payment based on the interest rate at origination. The negative amortization is allowed up to a ceiling, and after several years, the option ARM converts to a fully amortizing ARM. The key feature of the option ARM is the ability to delay payments, which is potentially extremely beneficial to a homeowner in a crisis. Piskorski and Tchistyi’s (2010) theoretical analysis of mortgage contracts with exogenous house prices highlights the benefits of an option ARM.

Note that relative to the contracts we have considered thus far, the option ARM allows the payment reduction to be a function of the borrower’s idiosyncratic state and not just the aggregate state. In other words, a borrower who receives a negative income shock income in an expansion state can choose to defer payments. The ARM or the EK contract only allow for reduced payments in the recession or crisis state when interest rates are low. Thus our analysis of the option ARM also captures the benefits of mortgage contracts whose payments can be indexed to idiosyncratic states.

To introduce the option ARM in our model, we assume that the mortgage behaves like a normal ARM for households in the last 25 years of their life. However, households in the first 20 years of life are able to choose a mortgage balance next period equal to the maximum of their current balance and the maximum balance allowed under the LTV constraint ϕ in the period in which they took out their mortgage given today’s price. This allows for some negative amortization up to a ceiling defined by ϕ, and makes it so that households are not forced to pay down principal when the LTV constraint tightens at the beginning of the crisis.

Figure 11 compares the crisis under FRM and the option ARM. The option ARM delivers substantially smaller price declines than the ARM in Figure 6, as prices fall by 6.46 percentage points rather than 2.66 percentage points under ARM. The decline in aggregate consumption is also 1.60 percentage points smaller than FRM rather than 0.76 percentage points under ARM. However, there is more default than under ARM.

The option ARM is successful because in addition to indexing payments to the short rate as with a standard ARM, it delivers additional front-loaded relief by allowing homeowners to negatively amortize up to a cap during the crisis and defer mortgage payments until after the crisis. There is an offsetting effect because homeowners understand the additional insurance benefits the option ARM design provides and they take on more leverage when purchasing a home. Some also take advantage of the negative amortization option before the crisis to deal with an idiosyncratic shock. This implies that households hold fewer liquid assets and have higher LTV ratios in non-crisis periods relative to an economy with a standard ARM, which creates macro fragility that undoes some of the benefits of the option ARM when the crisis hits. To illustrate this, Figure 11 shows in dashed lines an FRM→OARM counterfactual that preserves the pre-crisis distribution of individuals across states from the FRM model by switching the economy from FRM to OARM by surprise when the crisis hits, as with the FRM→ARM counterfactual in Section 5.1. One can see that absent the
The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under FRM, the option ARM mortgage, and an FRM→OARM counterfactual. In the downturn, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years.

Endogenous increase in leverage and decrease in liquid asset holdings at the beginning of the crisis under OARM, the price and consumption declines would have been ameliorated even more, and the default rate would have been much lower under the option ARM. Indeed, the fact that the option ARM preforms worse than the ARM for default is due entirely to the rightward shift in the LTV distribution and reduction in liquid asset holdings.

It is also worthwhile to note that the option ARM provides higher welfare benefits unconditionally than the other mortgage designs, as reported in Table 4. This once again is intuitive. The other mortgage designs only provide state-contingent insurance against aggregate shocks, since changes in interest rates are tied to aggregate movements in the economy. However, households are exposed to substantial idiosyncratic risks. Unlike the other mortgage designs, the option ARM provides for insurance against such shocks because young households can negatively amortize in response to a purely idiosyncratic income shock. As a result, consumption equivalent welfare is 0.44% higher under option ARM than FRM.

These latter observations also hint at the Achilles' heel of the option ARM (or any similar contract with insurance against idiosyncratic income shocks). In a model with heterogeneity in types in which some households have low default utility costs and others have high default costs, the option ARM will attract types with low default costs who will take the mortgage, continually delay payments, and eventually default. Such behavior will raise the cost of the option ARM and even unravel the market so that there is little insurance benefit from the contract. On the other hand, with the EK mortgage or a regular ARM, the ability to delay payments is contingent on the aggregate state, which is less subject to gaming. Our purpose in studying the option-ARM is not to identify it as the optimal design but simply to quantify the benefit of the additional front-loading it provides absent adverse selection concerns.
7 The Interaction of Mortgage Design and Monetary Policy

We now turn to examining how monetary policy interacts with mortgage design in a crisis. We begin by comparing the polar opposite case from our main analysis in which the real interest rate rises in a recession. We then turn to more aggressive monetary policy in a crisis both through more aggressive short rate reductions and quantitative easing. Our model allows us to quantitatively compare how different combinations of monetary policy and mortgage designs affect the economy. A principal conclusion is that the FRMUR design together with quantitative easing policy commensurate to 2008-2009 does not outperform an ARM or EK along with conventional monetary policy. This analysis highlights the value of studying mortgage design and monetary policy jointly.

7.1 Fighting Inflation: Rising Real Rates in a Crisis

In this subsection we consider a housing-led recession with substantial inflation that causes the central bank to raise the real interest rate to contain inflationary pressures. One can think of this as a combination of the housing bust in the Great Recession and the inflation experienced in the 1981-2 recession. To consider this case, we keep the same calibration but increase the real short rate in a crisis to 5.6 percent, which is the average real rate in the 1981-2 recession instead of 0.26 percent.

We call this the “Volcker monetary policy.”

Figure 12 shows ARM, FRM, and EK, in a simulated crisis under this alternate monetary policy. FRMUR is not shown because it is indistinguishable from FRM when rates rise in a crisis. Because the covariance of the short rate and income has the opposite sign from under the baseline monetary policy, an ARM makes the household’s income stream net of mortgage payments more volatile and leads to higher price volatility and default and lower consumption. Quantitatively, prices fall by 1.8 percentage points more under ARM, and 13.5 percent of the housing stock defaults over eight years under ARM relative to 10.3 percent under FRM. On net, under ARM, welfare is lower by an equivalent of 0.72 percent of annual consumption.

The EK convertible mortgage performs closer to an FRM under the Volcker monetary policy. Prices fall by roughly the same amount peak to trough as FRM although they fall slightly more in the first period, and the cumulative default rate over eight years is 10.9 percent. Most households that take out a new mortgage or refinance do not convert their EK mortgage from fixed-rate to adjustable-rate, and the ARM share at the beginning of the crisis is 12.9 percent. However, a few households convert their EK mortgage to adjustable-rate and do not refinance into a new EK mortgage that begins as a fixed-rate prior to the crisis. Some of these households experience an adverse income shock in the crisis, are underwater, and end up defaulting, which is why default is slightly higher under EK. That being said, the crisis is nowhere near as severe as under ARM because the vast majority of households have an EK mortgage that is functioning as a FRM, which is why EK provides a nice balance of insuring against catastrophe in an inflationary environment.

Combining the 2006-8 credit crunch with the 1981-2 recession results in rather extreme event, especially given that the Federal Reserve may not have raised rates as much in the 1981-2 recession in an all-ARM economy. We nonetheless evaluate this extreme event in order to stress-test our mortgage designs.

Many ARMs have a ceiling on the amount that the interest rate can rise over the course of the loan. In this counterfactual, we assume that there are no such ceilings. If there were, the increase in the ARM interest rate would be smaller, but knowing this banks would increase the ex ante mortgage spread.
while providing insurance when real rates fall in a crisis. Indeed, the consumption-equivalent welfare loss in the high inflation scenario under the EK mortgage is only 0.31 percent of annual consumption worse than the FRM, while the gain in the baseline scenario is 0.75 percent of consumption.

7.2 Unconventional Monetary Policy Easing in a Crisis

We now consider two modifications to the central bank’s baseline monetary policy. In the first modification, we consider expansionary monetary policy in crisis states whereby the central bank lowers the short rate and consequently ARM mortgage rates by an additional 100 basis points. Long interest rates fall less since they adjust according to the expectations hypothesis. We think of this as corresponding to more aggressive traditional monetary policy. In the second modification, we assume that in addition to reducing the short rate an additional 100 basis points, in crisis states only the central bank takes actions that reduce the long rate below its expectations-hypothesis level. We do so by assuming that the central bank reduces the bank cost of capital for the FRM and FRMUR in the crisis state by enough so that interest rate differential between the expansion with loose credit and crisis states for a risk-free 10-year bond is 1.4 percent, which is the average reduction in interest rates for HARP borrowers reported by Agarwal et al. (2017). This requires a 168 basis point capital subsidy in the crisis state. We think of this as corresponding to unconventional policies such as quantitative easing that seek to affect the long end of the yield curve or long-term mortgage rates directly by reducing term premia.

The results of the first modification, which reduces only short rates, are shown in Figure 13. Traditional monetary policy has very little impact on the severity of the crisis under FRM. While the return to saving in liquid assets changes, the FRM interest rate does not change appreciably.
Note: The figure shows the outcomes in a simulated downturn in which the maximum LTV falls from 95 percent to 80 percent and there is a five year deep downturn under an FRM and ARM, for the case where the central bank both further reduces the short rate relative to the baseline monetary policy by 100 basis points and additionally pursues a policy that subsidizes the long rate so that a 10-year risk-free bond has a 1.40% interest rate differential between the expansion and crisis states. The baseline scenario without is shown in dashed lines for comparison.
because FRMs are priced off the long end of the yield curve. Since few households have liquid assets and most saving in the economy is for retirement, housing demand by young households and the behavior of high-LTV households that are primarily young is unchanged, and so the housing market equilibrium is not substantially affected.

On the other hand, more aggressive monetary policy that affects short rates is useful when homeowners have ARMs. Price declines and default are substantially lower and consumption is slightly higher due to the more aggressive monetary policy. This is, of course, not surprising. Lower short-rates leads to lower mortgage payments which leads to less default and a smaller price-default spiral, and lower short rates also stimulate rental demand more. When aggressive monetary policy in a crisis takes the form of subsidizing FRMs to the point that the risk-free 10-year long rate falls 1.4 percent in the crisis relative to an expansion, the FRM economy looks much better than under the baseline monetary policy, as shown in Figure 14. Prices fall by 1.8 percentage points less than with FRM under the baseline monetary policy, and 6.9 percent of the housing stock defaults over eight years. Relative to the baseline monetary policy, welfare is improved by 0.43 percent of annual consumption. These figures are an improvement but still fall short of the ARM under the baseline monetary policy, which improves welfare by 0.83 percent of annual consumption relative to the FRM. The mechanism behind these results, however, is quite different from the comparison of ARM and FRM under the baseline monetary policy. The monetary policy is not passed through to existing homeowners who cannot refinance at the lower rates. Indeed, many remain liquidity constrained and the default rate is high. Instead, new homeowners can now lock in cheap financing, which stimulates demand for housing and boosts house prices. Some exiting homeowners are no longer bound by the LTV constraint and are able to refinance due to the rise in prices, undoing
some of the price-default spiral.

Our central finding about the added benefits of front-loading payment relief suggests that _ex post_ policies such as HARP, which setting aside implementation frictions are the same as FRM with an underwater refinancing option, are maximally effective only if paired with policies to push down long rates such as QE. To show this quantitatively, Figure 15 compares the FRM with underwater refinancing under the baseline policy and the more aggressive short rate policy coupled with quantitative easing to generate a 1.4 percent drop in the risk-free 10-year long rate – and thus a 1.4 percent decline in the FRM rate for homeowners who exercise their refinancing option that is tied to this rate – in the crisis. One can see that the benefits of the FRM with an underwater refinancing option are stronger for prices, default, and consumption when coupled with QE. Prices fall by 2.15 percentage points less than the baseline policy, consumption falls 0.23 percentage points less, and the default rate is 5.90 percent over eight years rather than 7.32 percent. Consumption equivalent welfare rises by the equivalent of 0.52 percent of annual consumption relative to the baseline monetary policy. Compared to the FRM under the quantitative easing policy, welfare rises the equivalent of 0.29 percent of annual consumption. Still, FRMUR with quantitative easing is not an improvement relative to ARM or EK under the baseline policy, and certainly not an improvement relative to ARM with the more aggressive monetary policy in the crisis. This suggests that even setting aside the costs of unconventional monetary policy, many of its benefits can be achieved more directly through mortgage design coupled with conventional monetary policy.

8 Conclusion

We assess how mortgages can be redesigned or modified in a crisis to reduce housing market volatility, consumption volatility, and default and how mortgage design interacts with monetary policy. To do so, we construct a quantitative equilibrium life cycle model with aggregate shocks in which households have realistic long-term mortgages that are priced by risk-neutral and competitive lenders and household decisions aggregate up to determine house prices. We calibrate the model to match aggregate moments as well as quasi-experimental evidence on the effect of payment size and LTV on default so that our model is tailored to qualitatively assess the benefits of adding simple state contingency to mortgage contracts.

We use the model to assess the performance of various mortgage contracts in a realistic, recession-driven housing crisis. In our model, indexing payments to monetary policy significantly reduces household consumption volatility and default. If the central bank reduces interest rates in response to the crisis, mortgage payments fall both by more and regardless of whether a household refinances, which helps to smooth consumption, limits default by relaxing budget constraints in bad states, and stimulates housing demand by new homeowners. These hedging benefits are quite large for constrained, high LTV households who bear the brunt of the housing bust. The overall welfare benefit to the economy of switching to ARMs is equivalent to 0.83 percent of annual consumption. Crucially, these benefits depend on the extent to which the insurance provided by ARMs is anticipated by households, as households take on more debt and hold fewer liquid assets when they expect their payments to fall in a crisis, leading to more macro fragility.
Our main conclusion is that mortgages that front-load payment relief provide much better outcomes for households and can substantially improve household welfare. Reducing monthly payments in a crisis alleviates liquidity constraints when they are most binding, limits default, and stimulates housing demand by renters, which stems house price declines and ameliorates pecuniary externalities that work through the price of housing. The clearest example of the benefits of front-loading payment reductions comes from our comparison of a FRM with an option to convert to an ARM to an FRM with an option to refinance underwater. Although both mortgages have similar effects on the balance sheets of lenders when a crisis hits due to the expectations hypothesis, the EK convertible mortgage front-loads payment reductions during the crisis, increases welfare by four times as much, and reduces defaults by three times as much as the FRMUR. The FRMUR does worse because it is priced off the long end of the yield curve and thus smooths payment relief over the life of the loan, providing households payment relief in states where they need it less.

While the comparison of these two loans gives the starkest contrast, there are a number of different ways in which one might front-load payment relief. We consider quantitatively the option ARM, which allows households to insure idiosyncratic shocks. One might also consider an ARM with a cap or an FRM or ARM that can have its payments cut in a recession through term extension. We leave the analysis of the best way to front-load payment relief for future research.
References

A Numerical Implementation

We solve the model numerically by discretizing the state space. Because the aggregate state \(\Theta_t \) has five values, we use five values for the interest rate. We use seven grid points for income. We use 22 grid points for savings, with a denser grid at low savings. We use 41 grid points for the mortgage balance, with two balances for renters (with and without the default flag), and 39 values for the mortgage including zero. The grid is denser for higher balances that are close to the equilibrium price given that amortization schedules feature smaller principal payments earlier in the mortgage. Finally, we use eight equally-spaced grid points for the house price and interpolate on the price grid when the price falls between grid points. We have experimented with finer grids and have found the results are not sensitive to the grids we choose.

We solve the household’s problem by backward induction, starting with an initial guess for the mortgage spreads and the forecast rules. We then simulate 19,000 years of data and throw out the first 100 years. In each period of the simulation, a new generation is born and shocks hit the economy. We then calculate the supply and demand schedules, calculate the equilibrium price, and finally update the distribution of individuals across states according to the policy functions, interpolating between price grid points.

We then follow the Krusell and Smith-style algorithm described in the main text. We run forecast rule regressions:

\[
\log p_{t+1} = f(\Theta_t, \Theta_{t+1}) (\log p_t)
\]

where \(f(\Theta_t, \Theta_{t+1}) \) is a function for each realization of \((\Theta_t, \Theta_{t+1})\). Because \(\Theta_t \) has five values, there are potentially 25 forecast rules, but 12 relate to \((\Theta_t, \Theta_{t+1})\) transitions that do not occur in practice (e.g., one only transitions to the tight credit state after a crisis) so there are only 13 forecast rules that must converge. We parameterize \(f(\cdot) \) as a linear spline with knot points located at the price grid points. After running the regressions on the simulated data, we update the forecast rules to a convex combination of the original forecast rules and the regressions.\(^{32}\) We also solve for the equilibrium spreads given \(\kappa \) and update the spreads to a convex combination of the original forecast spreads and the new zero profit spreads. We iterate until the forecast rules and spreads converge. Three criteria must be simultaneously met for convergence. First, the spread must be within one basis point of the actual break-even spread. Second, the forecast rule R-squareds must converge so that the difference is less than 0.0025 between iterations. Third, for all forecast rules, the distance between the regression and the forecast rule must be less than 0.005 at all prices for which we observe data in our 19,000-period simulation. In practice, the third criterion is the most stringent, and our spreads and forecast rules are highly accurate as described below.

For the FRM in the baseline calibration, we must solve for the \(\kappa \) that implies that the average spread between the spread in the model and a 10-year bond is 1.65 percent as in the data. For this, we follow a similar algorithm to the one described above, but in addition to adjusting the spread and forecast rules, we adjust \(\kappa \) to hit the 1.65 percent average spread between the 10 year mortgage and a synthetic 10-year bond rate calculated by the expectations hypothesis. \(\kappa \) converges along

\(^{32}\)One could in principle simply use the regression as the new forecast rule, but we have found that this leads to oscillating behavior. We consequently use a convex combination which, while slower, provides better convergence properties.
Table 5: Den Haan Tests: R^2 Of Predicted vs. Actual Price N Years Ahead

<table>
<thead>
<tr>
<th></th>
<th>15 Years</th>
<th>30 Years</th>
<th>45 Years</th>
<th>100 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline, FRM</td>
<td>0.9479</td>
<td>0.9465</td>
<td>0.9476</td>
<td>0.9480</td>
</tr>
<tr>
<td>Baseline, ARM</td>
<td>0.9281</td>
<td>0.9285</td>
<td>0.9316</td>
<td>0.9325</td>
</tr>
<tr>
<td>Baseline, EK</td>
<td>0.9279</td>
<td>0.9282</td>
<td>0.9312</td>
<td>0.9319</td>
</tr>
<tr>
<td>Baseline, FRMUR</td>
<td>0.9435</td>
<td>0.9425</td>
<td>0.9438</td>
<td>0.9443</td>
</tr>
<tr>
<td>Baseline, OARM</td>
<td>0.9352</td>
<td>0.9338</td>
<td>0.9347</td>
<td>0.9343</td>
</tr>
<tr>
<td>Baseline, SAM</td>
<td>0.9573</td>
<td>0.9530</td>
<td>0.9505</td>
<td>0.9475</td>
</tr>
<tr>
<td>Volcker, FRM</td>
<td>0.9460</td>
<td>0.9442</td>
<td>0.9452</td>
<td>0.9453</td>
</tr>
<tr>
<td>Volcker, ARM</td>
<td>0.9371</td>
<td>0.9360</td>
<td>0.9383</td>
<td>0.9389</td>
</tr>
<tr>
<td>Volcker, EK</td>
<td>0.9318</td>
<td>0.9304</td>
<td>0.9325</td>
<td>0.9327</td>
</tr>
<tr>
<td>Volcker, FRMUR</td>
<td>0.9466</td>
<td>0.9447</td>
<td>0.9457</td>
<td>0.9458</td>
</tr>
<tr>
<td>Volcker, OARM</td>
<td>0.9736</td>
<td>0.9734</td>
<td>0.9735</td>
<td>0.9735</td>
</tr>
<tr>
<td>Short Rate Only, FRM</td>
<td>0.9441</td>
<td>0.9429</td>
<td>0.9443</td>
<td>0.9447</td>
</tr>
<tr>
<td>Short Rate Only, ARM</td>
<td>0.9250</td>
<td>0.9253</td>
<td>0.9285</td>
<td>0.9291</td>
</tr>
<tr>
<td>QE, FRM</td>
<td>0.9353</td>
<td>0.9343</td>
<td>0.9362</td>
<td>0.9368</td>
</tr>
<tr>
<td>QE, ARM</td>
<td>0.9250</td>
<td>0.9253</td>
<td>0.9285</td>
<td>0.9291</td>
</tr>
<tr>
<td>QE, FRMUR</td>
<td>0.9356</td>
<td>0.9347</td>
<td>0.9367</td>
<td>0.9372</td>
</tr>
</tbody>
</table>

Note: The table shows the R^2 of a regression of the forecast price on the actual price 15, 30, 45, and 100 years ahead. To create the table, for each period of the simulation we calculate the expected price based on the realized price N periods ago, the forecast rule, and the realized sequence of aggregate states in the intervening N years. We then regress the actual price on the predicted price and report the R^2. The R^2 ranges from 0.9250 to 0.9758, indicating the forecast rules are accurate and that errors do not accumulate over longer horizons. Figure 5 shows the scatter plot of the predicted versus the actual price at each horizon for FRM.

In the text, we report results from three exercises. In the first, we report unconditional aggregate statistics from simulations of 19,000 years of data.

In the second exercise, we report the volatility of consumption at the individual level. To do so, we track 25,000 individuals per generation for 6,300 years and report the standard deviation of consumption. We conduct a standard variance decomposition that divides individual consumption into the variance of aggregate consumption across periods, the variance of generational average consumption within periods, and the variance of individual consumption across generations.

In the third exercise, we calculate the impulse response of our economy to a crisis. We run 100 simulations in which we seed the economy to be in a loose credit expansion for the last 5 periods. We then seed the economy to be in a crisis for at least 3 periods, after which is stochastically exits. We average over the 100 simulations to obtain the impulse response. In doing so, we also calculate the impact of the initial switch into the crisis state on welfare and the present value of the bank’s portfolio. The welfare calculation is detailed in the next section.
Note: The figure shows a scatter plot of the forecast price 15, 30, 45, and 100 years ahead versus the actual price. To create the figure, for each period of the simulation we calculate the expected price based on the realized price N periods ago, the forecast rule, and the realized sequence of aggregate states in the intervening N years.

B Welfare

The value function in our model for an age a individual at time t in idiosyncratic state s_j^t and aggregate state Σ_t is:

$$V_t^a \left(s_j^t, \Sigma_t \right) = \mathbb{E}_t \left\{ \sum_{i=0}^{T-a} \beta^t \left[\frac{c_{i}^{1-\sigma}}{1-\sigma} + \alpha_a H_t - 1 \left[Default_t \right] d \right] + \beta^{T-a} \psi \left(b + \xi \right)^{1-\gamma} \right\},$$

where c_t is consumption at time t, b is the bequest at time T, H_t is housing at time t, and $Default_t$ is an indicator for default at time t. Define the value function under two different economies 0 and 1 as $V_t^{a,0}$ and $V_t^{a,1}$.

We want to calculate the consumption-equivalent welfare change, which we denote by $\Delta^a \left(s_j^t, \Sigma_t \right)$. We calculate the welfare change as equivalent variation, that is the amount consumption would have to increase by in economy 0 to make the agent indifferent between economy 0 and economy.
1. \(\Delta^a (s^j_t, \Sigma_t) \) is thus defined implicitly as:

\[
V^a_t (s^j_t, \Sigma_t) = E_t \left\{ \sum_{t=0}^{T-a} \beta^t \left[(c^t_0 \left(1 + \Delta^a (s^j_t, \Sigma_t) \right))^{1-\sigma} \right] + \alpha \Delta^0_t - 1 \left[\text{Default}^0_t \right] d + \beta^{T-a} \psi \left(b^0 + \xi \right) \right\}.
\]

Consequently,

\[
\Delta^a (s^j_t, \Sigma_t) = \left(\frac{V^a_t (s^j_t, \Sigma_t) - V^a_t (s^j_t, \Sigma_0)}{E_t \left\{ \sum_{t=0}^{T-a} \beta^t \left[(c^t_0) \right] \right\}} \right)^{\frac{1}{1-\sigma}} - 1.
\]

We report two distinct welfare calculations. The first is the unconditional welfare. This is defined as the consumption-equivalent equivalent variation of being born in economy 0 relative to economy 1. Because we are using equivalent variation, we use the ergodic distribution for the initial generation over both micro and macro states in the 0 economy, which we denote by \(\omega^0 \), to weight the value functions in the 0 economy and the 1 economy. The aggregate unconditional welfare difference between economies 0 and 1 is then:

\[
\Delta = \int \Delta^a (s^j_t, \Sigma_t) d\omega^0.
\]

The second welfare calculation is the aggregate welfare loss experienced when the economy switches from a loose-credit expansion to the crisis state. We follow Krueger et al. (2016) in calculating the welfare losses from a switch in the aggregate state as “the permanent percentage increase in consumption that a...household would require so that its welfare in the transition is the same as the welfare when the transition does not happen.” Given this, we can define the consumption-equivalent equivalent variation welfare change for a household with idiosyncratic state \(s^j_t \) of going from aggregate state \(\Sigma_0^t \) to aggregate state \(\Sigma_1^t \) as:

\[
\Delta^a_{\Sigma_0^t \Sigma_1^t} (s^j_t) = \left(1 + \frac{V^a_t (s^j_t, \Sigma_1^t) - V^a_t (s^j_t, \Sigma_0^t)}{E_t \left\{ \sum_{t=0}^{T-a} \beta^t \left[(c^t_0) \right] \right\}} \right)^{\frac{1}{1-\sigma}} - 1.
\]

For aggregate welfare, the concept we use is also from Krueger et al.: “Suppose households are randomly placed into the pre-recession cross-sectional distribution over individual characteristics. Under the veil of ignorance of not knowing where in the distribution one would be placed, we ask by what percentage would lifetime consumption of everyone need to be increased to be compensated from the loss of falling into a recession.” Define \(\Omega^a_t \) as the distribution of households of age \(a \) across states at the beginning of period \(t \), when the shock hits. Consumption equivalent welfare for age \(a \)
is then:

$$\Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}} = \int \Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}} d\Omega_{i_1}$$

We aggregate across generations living when the switch in aggregate states occurs to compute $\Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}}$ for each mortgage type. This calculation does not include the effect of the crisis on new generations. Rather than reporting $\Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}}$ directly, we report the difference between $\Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}}$ under FRM and $\Delta_{\Sigma_{i_1}^{\Sigma_{i_1}^1}}$ for alternative mortgage designs.

C Calibration Details

C.1 Income Process

This appendix details the calibration of the income process.

Our first task is to create a discretized income process with left skewness in busts. We assume that the income process of Floden and Linde (2001) holds in an expansion and add left skewness in a recession to match the left skewness observed in 2008-9 by Guvenen et al. (2014). We then discretize the resulting distribution using the method of Farmer and Today (2017) modified slightly to discretize two idiosyncratic shock distributions on the same grid. Because there are multiple ways to add this amount of left skewness, we need an additional moment to match. In particular, we match the standard deviation of aggregate log income of 0.0215. Finally, we adjust the distribution of initial income for incoming distributions to best match the lifecycle profile of income in Guvenen et al. (2016) and adjust the aggregate income level so that we obtain an average income of one.

We now describe how we implement this procedure in detail. Our first step is to create a mixture of normals to target in the Farmer and Toda (2017) procedure. We assume that the distribution of idiosyncratic shocks is the same in expansions regardless of whether credit is loose or tight. Similarly, the distribution of idiosyncratic shock is the same in recessions and crises, again regardless of whether credit is loose or tight. In expansions, we use the income process of Floden and Linde (2001), which is an AR(1) process with a standard deviation of 0.21 log points and an annual persistence of 0.91. In a crisis or recession, we add the standardized skewness of the 2008-9 income change distribution from Guvenen et al. (2014) to the mixture of normals. To do this, we fit a mixture of normals to the histogram underlying Figure 12 in Guvenen et al. (2014). We then calculate the standardized skewness of this distribution. We then adjust the Floden and Linde (2001) income process by adding mass to the left tail to match the same standardized skewness we found in the Guvenen et al. data.

With these mixtures of normals in hand, we then adjust three parameters to target three moments: the standard deviation of aggregate log income, the fit between the model and data age-income profiles, and an aggregate income of one. We adjust three parameters in a minimum distance routine. First, we shift the mean of the bust idiosyncratic shock distribution, which allows us to target the standard deviation of log income in the data. Second, we adjust fraction of the population that starts at each initial income which allows us to target the age-income profile. Third, we adjust the level of the aggregate income vector y^{agg}, which allows us to target an average income of one. For each vector of parameters, we apply a modified version of the Farmer and Toda (2017) algorithm.
using code from Toda’s website. The modification is to calculate the idiosyncratic income grid using only the boom distribution and then discretizing both the boom and bust distributions on the same grid. Given the left skewness, we use a grid with grid-points spaced from 2.5 standard deviations below the mean to 1.5 standard deviations above the mean. After discretizing, we simulate income, generate simulated data and calculate the average aggregate income, the standard deviation of log income, and the mean squared error between the age-income profile in the data and the model, and then search over the parameter space to find the optimal. We match the standard deviation of log income and aggregate income nearly exactly, and the fit to the age-income profile is close as shown in Figure 17.

We obtain from this calibration procedure four objects: a transition matrix that is a function of the aggregate state $\Xi^id (\Theta_t)$, a vector $y^{agg} (\Theta_t)$ which gives log aggregate income as a function of the aggregate state, a log idiosyncratic income vector y^id for non-retirement (and implicitly a log idiosyncratic income vector for retirement that is equal to $y^id - 0.35$ by our assumption of a 0.35 log point income decline in retirement), and an entrant distribution over the idiosyncratic states. Recall that we discretize to seven idiosyncratic incomes and have five aggregate states. For these vectors and matrices, we let state 1 be the crisis, state 2 be a recession with loose credit, state 3 be an expansion with loose credit, state 4 be a recession with tight credit, and state 5 be an expansion with tight credit.

The aggregate income vector is:

$$y^{agg} = \begin{bmatrix} 0.0976 \\ 0.1426 \\ 0.1776 \\ 0.1426 \\ 0.1776 \end{bmatrix}$$

We calibrate so that aggregate income falls by 8.0 percent in a crisis and 3.5 percent in a recession, so this is just a normalization of the resulting vector ensuring that aggregate income is on average equal to one.

The idiosyncratic income vector is:

$$y^id = \begin{bmatrix} -1.2663 \\ -0.9286 \\ -0.5909 \\ -0.2533 \\ 0.0844 \\ 0.4221 \\ 0.7598 \end{bmatrix}$$

The distribution of entrants has 92.69 percent weight on the second to bottom grid point and 7.31 percent weight on the third to bottom grid point.

By assumption, the idiosyncratic income distribution is the same in the crisis state, the recession
Figure 17: Age-Income Profile in Model and Data

Note: This figure shows the age-income distribution. The x axis is ages from 26 to 70 in our model. The y axis shows average log income by age, with zero being the average log income in the model. The data come from Guvenen et al. (2016). The retirement data is equal to the average income at 60 minus 0.35 to be consistent with retirement in our model. The model is simulated from our model.

In this matrix, the probability listed is the probability of a transition from the row \(i \) to the column \(j \), so that rows add to a probability of one. By assumption, the idiosyncratic income distribution is the same in the expansion state regardless of the state of credit and is equal to:

\[
\Xi^{id} \text{ (Expansion)} = \begin{bmatrix}
0.7059 & 0.2663 & 0.0235 & 0.0005 & 0 & 0 & 0.0038 \\
0.911 & 0.5794 & 0.3204 & 0.0091 & 0 & 0 & 0 \\
0.0021 & 0.1138 & 0.6156 & 0.26116 & 0.0069 & 0 & 0 \\
0 & 0.0030 & 0.1478 & 0.6327 & 0.2116 & 0.0049 & 0 \\
0 & 0 & 0.0042 & 0.1887 & 0.6361 & 0.1674 & 0.0036 \\
0 & 0 & 0 & 0.0032 & 0.2462 & 0.6104 & 0.1402 \\
0.0070 & 0 & 0 & 0.0001 & 0.0073 & 0.1456 & 0.8400
\end{bmatrix}
\]

Our calibration procedure does a good job of replicating key facts in the data that we target. Figure 17 shows the age-income distribution in the model relative to the data. We impose on the data that income falls 0.35 log points at retirement, so the retirement numbers are equal to average income at 60 minus 0.35. The model does a good job of capturing the age-income profile at younger ages. Figure 18 shows the distribution of idiosyncratic income shocks in the boom relative to the bust. Our income shocks capture well the left skewness found by Guvenen et al. (2014).
Figure 18: Distribution of Idiosyncratic Income Shocks in Boom vs. Bust

![Distribution of Idiosyncratic Income Shocks in Boom vs. Bust](image)

Note: This figure shows the distribution of idiosyncratic income shocks in the boom and the bust calculated from model simulations. The results compare favorably to the evidence in Guvenen et al. (2014).

C.2 Calibration Targets and Procedure

Most of the external calibration targets are described in the main text. There are a few details that we relegate to this appendix. First, although the transition matrix is described in the main text, we do not detail it there. Letting state 1 be the crisis, state 2 be a recession with loose credit, state 3 be an expansion with loose credit, state 4 be a recession with tight credit, and state 5 be an expansion with tight credit, the transition matrix is:

\[
\begin{bmatrix}
0.6364 & 0 & 0 & 0 & 0.3636 \\
0 & 0.1011 & 0.8989 & 0 & 0 \\
0.0133 & 0.1832 & 0.8035 & 0 & 0 \\
0 & 0 & 0 & 0.1011 & 0.8989 \\
0.0133 & 0 & 0.0200 & 0.1832 & 0.7835
\end{bmatrix}
\]

In this matrix, the probability listed is the probability of a transition from the row \(i\) to the column \(j\), so that rows add to one. The economy remains in the crisis state with a probability 63.64% of the time and exits with a probability of 36.36%. The expansion and recession states look identical for loose and tight credit except that in a tight-credit expansion the probability of remaining is 2% lower. There is a 2% probability the economy transitions to a loose credit expansion. The economy enters a crisis from an expansion with 1.33% probability. The transition matrices between expansion and recession are based on NBER dates as described in the main text.

The second detail relegated to the main text is how we reduce \(a_0\), the age-dependent valuation of a house, in old age. We assume that this is constant at its calibrated value until retirement, at which point it falls by 1/15 of its initial value each year until death, which is 10 years after retirement. Our results are not sensitive to this specification.

We match four internal calibration targets. To match these four moments, we alter the parameters and solve the FRM economy under the baseline monetary policy. The average price is fairly insensitive to \(\psi\), \(\xi\), and \(\bar{d}\) and can be set using \(a\) alone, and we target a house price of five times the average pre-tax income in the economy. We then alter \(\psi\), \(\xi\), and \(\bar{d}\) to target three moments.
Table 6: Moments Matched in Calibration Procedure

<table>
<thead>
<tr>
<th>Moment</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Price</td>
<td>5.00</td>
<td>5.010</td>
</tr>
<tr>
<td>Ratio of Net Worth at 60/45 at 10th Percentile Net Worth</td>
<td>3.576</td>
<td>3.542</td>
</tr>
<tr>
<td>Ratio of Net Worth at 60/45 at Median Net Worth</td>
<td>2.096</td>
<td>2.092</td>
</tr>
<tr>
<td>Cumulative Default Over 8 Year Crisis</td>
<td>8.0%</td>
<td>7.91%</td>
</tr>
</tbody>
</table>

Note: The four moments used in the calibration of \(a, \psi, \xi, \) and \(d \). The model column indicates the moments in the model and the data column indicates their values in the data that we use as targets.

Table 7: Downturn Moments For Various Mortgage Designs Under Volcker Monetary Policy

<table>
<thead>
<tr>
<th>Design</th>
<th>FRM</th>
<th>ARM</th>
<th>EK</th>
<th>FRMUR</th>
<th>Option ARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pct Point Reduction in Max (\Delta P) Rel to FRM</td>
<td>-1.83</td>
<td>0.04</td>
<td>0.00</td>
<td>-1.81</td>
<td></td>
</tr>
<tr>
<td>Pct Point Reduction in Max (\Delta C) Rel to FRM</td>
<td>-0.67</td>
<td>-0.40</td>
<td>0.00</td>
<td>-0.60</td>
<td></td>
</tr>
<tr>
<td>Share Defaulting over 8 Years</td>
<td>10.3%</td>
<td>13.5%</td>
<td>10.9%</td>
<td>10.3%</td>
<td>15.6%</td>
</tr>
<tr>
<td>Increase in Household Welfare Rel to FRM</td>
<td>-0.72%</td>
<td>-0.31%</td>
<td>-0.01%</td>
<td>-0.93%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Table shows the indicated statistics for each mortgage design averaging across 100 simulations of a crisis that lasts 5.66 years after an expansion with loose credit as described in the main text under the Volcker monetary policy. The top row shows the percentage point change in the peak to trough change in price relative to FRM, with a positive number indicating a less severe price decline. The second row shows the percentage point change in the peak to trough change in consumption relative to FRM, with a positive number indicating a less severe decline in consumption. The third row shows the share of the housing stock defaulting after 8 years. The fourth line shows the decline in household consumption-equivalent welfare relative to FRM under the Volcker monetary policy reported as a percentage of annual consumption for the rest of the household’s life.

The first two are the ratio of total net worth at age 60 to age 45 in the SCF for the median and 10th percentile households by net worth. To smooth out noise in the SCF for any particular age, we calculate total net worth at age 60 as the mean total net worth from ages 58 to 62 and total net worth at age 45 as the mean total net worth from age 43 to 47. We find a 10th percentile ratio of 3.576 in the SCF and a ratio at the median of 2.096. The final moment is the cumulative default rate over a eight years in our main impulse response, which we choose to target eight percent. The four moments are matched quite well, as indicated in Table 6.

D Additional Numerical Results

D.1 Downturn Moments for Alternate Monetary Policies

Table 3 in the main text summarizes the performance of the various mortgage designs we consider under the baseline monetary policy. Table 7 reports the same statistics this for the Volcker monetary policy, and Table 8 reports the same statistics this for the short rate reduction and the short rate reduction with quantitative easing monetary policy.

D.2 Mortgage Spreads and Yield Curves

This section documents the equilibrium yield curves and mortgage spreads in our model.

We consider five main mortgage designs. The FRM has an interest rate that depends on the aggregate state in which the mortgage is originated. The ARM has a spread over the short rate
Table 8: Downturn Moments Under Short Rate Only and QE Monetary Policies

<table>
<thead>
<tr>
<th>Monetary Policy</th>
<th>Design</th>
<th>FRM</th>
<th>ARM</th>
<th>FRM</th>
<th>ARM</th>
<th>FRMUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pct Point Change in Max ΔP Rel to FRM</td>
<td>Short Rate</td>
<td>6.54</td>
<td>5.07</td>
<td>0.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pct Point Change in Max ΔC Rel to FRM</td>
<td>Short Rate + QE</td>
<td>1.48</td>
<td>1.28</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share Defaulting over 8 Years</td>
<td></td>
<td>7.67%</td>
<td>4.63%</td>
<td>6.86%</td>
<td>4.63%</td>
<td>5.90%</td>
</tr>
<tr>
<td>Increase in Household Welfare Rel to FRM</td>
<td></td>
<td>1.09%</td>
<td>0.43%</td>
<td>0.29%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Table shows the indicated statistics for each mortgage design averaging across 100 simulations of a crisis that lasts 5.66 years after an expansion with loose credit as described in the main text, under two monetary policies. The first policy reduces the short rate relative to the baseline monetary policy by 100 basis points and lets the long rate adjust according to the expectations hypothesis. The second policy reduces the short rate relative to the baseline monetary policy by 100 basis points and additionally pursues a policy that subsidizes the long rate so that a 10-year risk-free bond has a 1.40% interest rate differential between the expansion and crisis states. The top row shows the percentage point change in the peak to trough change in price relative to FRM, with a positive number indicating a less severe price decline. The second row shows the percentage point change in the peak to trough change in consumption relative to FRM, with a positive number indicating a less severe decline in consumption. The third row shows the share of the housing stock defaulting after 8 years. The fourth line shows the decline in household consumption-equivalent welfare relative to FRM under the indicated monetary policy reported as a percentage of annual consumption for the rest of the household’s life

that depends on the aggregate state in which the mortgage is originated. The EK mortgage has a spread over the short rate if it is converted to an ARM or the 10-year bond rate if it is an FRM based on the aggregate state in which the mortgage is originated. The FRM with an underwater refinancing option can be written as a spread over the initial 10-year bond rate that is preserved when the underwater refinancing option is exercised in the crisis state. Finally, the option ARM has a spread just like the ARM but allows negative amortization up to an LTV defined by the LTV constraint at origination.

The left panel of Figure 19 shows the short rate, the 10-year bond rate plus 1.65 percent, and the FRM rate for the baseline calibration. Recall that the calibration is set such that the average FRM rate is equal to the average 10-year bond rate plus 1.65 percent. There is a positive spread relative to the 10-year bond in expansions and a negative spread in recessions and crises. This is because mortgages originated in a recession or crisis tend to be “safer” in terms of default probabilities since prices are expected to recover, which lowers spreads.

The right panel of Figure 19 shows the spreads for the ARM, EK, FRMUR, and OARM. Like the FRM, the spreads are higher in expansions. This is especially true for the EK and FRMUR, since in expansions the spread prices in the option to convert to an ARM or refinance when underwater.

Figure 20 shows the same figures for the Volcker monetary policy. One can see that the short rate now rises in crises and the FRM rate also rises, although not by as much. Because of high default in the crisis, spreads are higher in the crisis for EK and FRMUR.

Finally, Figure 21 shows the short rate, ARM spread, and FRM rate for the four different monetary policies we consider: baseline, Volcker, the short rate reduction only, and the short rate reduction with QE. For the short rate and ARM spread, the short rate only and short rate plus QE lines overlap. There is a 1.00 percent reduction in the short rate in this state. In the FRM rates, however, the long rate is subsidized enough so that the difference between the expansion and crisis risk-free 10-year bond rate is 1.40 percent.
Figure 19: Yield Curves and Mortgage Spreads: Baseline Monetary Policy

Note: The figure shows the short rate, 10-year bond rate, and FRM mortgage rates in the left panel and the ARM, FRMUR, EK, and OARM spreads in the right panel. All interest rates are for pre-paid interest timing.

Figure 20: Yield Curves and Mortgage Spreads: Volcker Monetary Policy

Note: The figure shows the short rate, 10-year bond rate, and FRM mortgage rates in the left panel and the ARM, FRMUR, EK, and OARM spreads in the right panel. All interest rates are for pre-paid interest timing.
D.3 Crisis Without Tightening LTV Constraint

This appendix decomposes the roughly one third price decline in the all-FRM economy. To do so, Figure 22 compares numerical results for the FRM economy in the baseline model where the LTV tightens to 80% in a crisis to a model in which the LTV constraint remains at 95% in all states.

Without the LTV constraint tightening, house prices fall by 9.9 percent and gradually mean revert as opposed to falling 30.6 percent at the onset of the crisis, rising about 15 percent as the economy gets out of the crisis, and then slowly mean reverting. Part of the reason that prices fall by less is there is no foreclosure crisis: after eight years only 3.50 percent of the housing stock has been foreclosed, as opposed to 7.91 percent in the baseline model. Consumption falls by 8.7 percent rather than 11.6 percent. These results show that most of the decline in house prices and defaults in our model can be attributed to tightening credit conditions.

D.4 FRM With Underwater Refinancing Without Built-In Option

In the main text, we model the FRM with an underwater refinancing option (FRMUR) as an FRM with a built-in option to lower the FRM rate in a crisis. We do so in order to put the FRMUR on equal footing with the EK mortgage in the sense that the original lender prices the option to refinance into the pre-crisis mortgage rate. In this appendix, we show quantitative results for an alternate specification: an FRM that can be refinanced underwater without an increase in principal (which we call a “refinancing FRMUR” rather than an “option FRMUR” in the main text). Under this specification, the additional risk of refinancing the FRM underwater is priced by the new bank that originates the loan in the crisis rather than by the original lender. We introduce this into our model by altering the refinancing constraint so that the LTV constraint only has to be satisfied if
Figure 22: FRM vs. ARM: Housing Market Outcomes

Note: The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under FRM. In the LTV lightning case, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years. In the case without LTV tightening, the maximum LTV stays at 95 percent but the same shocks hit the economy and the monetary policy is unchanged.

the principal balance is being increased.

Figure 23 quantitatively compares the option FRMUR with the refinancing FRMUR. One can see that the results are qualitatively and quantitatively similar, although the refinancing FRMUR performs slightly more poorly than the option FRMUR. Indeed, the FRM that requires a refinancing has a 0.6 percentage point larger decline in prices, has less initial default but more subsequent default so that over eight years an additional 0.20 percent of homeowners default, and consumption falls by 0.4 percentage points more. Consumption-equivalent welfare falls by 0.14 percent relative to FRM for the refinancing FRMUR rather than rising 0.20 percent relative to FRM with the option FRMUR. To understand the results, recall that with the option FRMUR, the option to refinance is priced into the loan *ex ante*, which drives up the spread in expansion state. By contrast, with the refinancing FRMUR, borrowers are allowed to refinance underwater and their default risk is priced by the new lender that originates the refinanced loan in the crisis. These borrowers are riskier because they have a high LTV, and this drives up the spread in the crisis state. Relative to the option FRMUR, the gap between interest rates in the expansion and crisis state shrinks and the amount of relief provided by the FRMUR is lower, leading to a slightly larger price decline, more default, and lower welfare.

E Mortgage Amortization Schedule

In this appendix, we derive the amortization formula that defines the required minimum payment for a mortgage in our setting with pre-paid interest.

Assume a mortgage is taken out with principal M_0 at time 0 and amortizes over T periods at
Figure 23: Option FRMUR vs. Refinancing FRMUR

The figure shows the impulse response to a simulated downturn preceded by an expansion with loose credit under an “option FRMUR” as in the main text where the initial lender gives the borrower and option to refinance in the crisis and prices it into the up-front rate and a “refinancing FRMUR” where the subsequent lender charges the underwater refinancing borrower a higher rate for their default risk. In the downturn, the maximum LTV falls from 95 percent to 80 percent and the economy falls into a deep downturn for an average of 5.66 years.

an interest rate i. Define P_t as the principal payment at time t and I_t as the interest payment at time t. Finally, let the constant annual payment be x.

Let us begin with the “standard” or “post-paid” timing whereby the interest between time t and $t-1$ is paid at time t. The principal at time t is then:

$$ P_t = (x - i M_0) (1 + i)^{t-1}. $$

It also must be that the sum of the mortgage payments is equal to the initial principal plus interest payments:

$$ T x = M_0 + \sum_{t=1}^{T} I_t = M_0 + \sum_{t=1}^{T} (x - P_t). $$

These two equations can be combined to obtain:

$$ M_0 = (x - i M_0) \sum_{t=0}^{T-1} (1 + t)^t, $$

which when solved for x yields the standard amortization formula:

$$ x = M_0 \frac{i (1 + i)^T}{(1 + i)^T - 1}. $$

We now wish to define a similar formula for the case of prepaid interest whereby the interest
between time t and $t+1$ is paid at t. To maintain symmetry with the standard formula, we assume that the household takes out a mortgage of size M_0 and in period one makes an interest payment of $iM_0 + P_0$. As above, $x = P_t + I_t$ but now $I_T = 0$ and $x = P_T$. Consequently:

$$P_t = \frac{(x - iM_0) \left(1 + \frac{i}{1-i}\right)^t}{1-i}$$

and

$$Tx = M_0 + \sum_{t=0}^{T-1} I_t = M_0 \sum_{t=0}^{T-1} (x - P_t).$$

Combining these two equations gives:

$$M_0 = \frac{(x - iM_0)}{1-i} \sum_{t=0}^{T-1} \left(1 + \frac{i}{1-i}\right)^t$$

and solving for x yields:

$$x = M_0 \frac{i \left(1 + \frac{i}{1-i}\right)^T}{\left(1 + \frac{i}{1-i}\right)^T - 1}.$$

This is the same amortization formula as is standard replacing i with $i/(1-i)$ in the recursive part. This makes sense because pre-paying an interest at rate i at time t is the same as paying a rate of $i/(1-i)$ at $t+1$.