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Abstract
House price changes are positively autocorrelated over two to three years, a phenomenon

known as momentum. This paper introduces, empirically grounds, and quantitatively analyzes
an amplification mechanism that can generate substantial momentum from small frictions and
demonstrates that the resulting momentum helps explain the short-run dynamics of housing
markets. The amplification is due to a concave demand curve in relative price, which im-
plies that increasing the quality-adjusted list price of a house priced above the market average
rapidly reduces its probability of sale, but cutting the price of a below-average priced home
only slightly improves its chance of selling. This creates a strategic complementarity that in-
centivizes sellers to set their list price close to others’. Consequently, frictions that cause slight
insensitivities to changes in fundamentals lead to prolonged adjustments because sellers gradu-
ally adjust their price to stay near the average. I provide new micro empirical evidence for the
concavity of demand—which is often used in macro models with strategic complementarities—
by instrumenting a house’s relative list price with a proxy for the seller’s equity. I find significant
concavity, which I embed in an equilibrium housing search model. Quantitatively, the model
can explain the momentum observed empirically with a small fraction of rule-of-thumb sellers.
Strong house price momentum leads households to re-time their purchase or sale, thereby ex-
plaining the excess volatility of inventory and the strong negative relationship between price
changes and inventory levels.
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1 Introduction

A puzzling and prominent feature of housing markets is that aggregate price changes are highly
positively autocorrelated, with a one percent annual price change correlated with a 0.30 to 0.75
percent change in the subsequent year (Case and Shiller, 1989).1 This price momentum lasts for two
to three years before prices mean revert, a time horizon far greater than most other asset markets.
Substantial momentum is surprising because predictable price changes should be arbitraged away
by households, either by altering their bidding and bargaining or by re-timing their purchase or sale,
and because most pricing frictions dissipate quickly. Rational models with frictions have not been
able to account for momentum quantitatively, and most behavioral models require large departures
from rationality.

This paper introduces, empirically grounds, and quantitatively analyzes an amplification mech-
anism that can generate substantial momentum from small frictions. The mechanism relies on a
strategic complementarity among list-price-setting sellers that makes the optimal list price for a
house depend positively on the prices set by others. Strategic complementarities of this sort are fre-
quently used in macroeconomic models, but there is limited empirical evidence of their importance
or strength. In analyzing momentum in the housing market, I provide micro empirical evidence for a
prevalent strategic complementarity in the macroeconomics literature and, using a calibrated equi-
librium search model, demonstrate that its ability to amplify underlying frictions is quantitatively
significant.

I also show that momentum has important consequences that help explain several perplexing
features of the dynamics of housing markets relating to sales and inventory in addition to price.
These dynamics, which are analogous to several features of business cycles, matter for the macroe-
conomy because housing markets affect household balance sheets, the financial system, and business
cycles and are a potential channel for monetary policy. House price momentum may also explain
why recoveries from housing-triggered cycles are slow.

The propagation mechanism I introduce relies on two components: costly search and a demand
curve that is concave in relative price. Search is inherent to housing because no two houses are alike
and idiosyncratic taste can only be learned through costly inspection. Search and idiosyncratic
taste also limit arbitrage by creating endogenous transaction costs and by making the market price
for a house difficult to ascertain. Concave demand in relative price implies that the probability a
house sells is more sensitive to list price for houses priced above the market average than below
the market average. While concave demand may arise in housing markets for several reasons, I
focus on the manner in which asking prices direct buyer search. The intuition is summarized by
an advice column for sellers: “Put yourself in the shoes of buyers who are scanning the real estate
ads...trying to decide which houses to visit in person. If your house is overpriced, that will be an
immediate turnoff. The buyer will probably clue in pretty quickly to the fact that other houses
look like better bargains and move on.”2 In other words, the probability that a house is visited by

1See also Cutler et al. (1991), Head et al. (2014), Glaeser et al. (2014), and Titman et al. (2014).
2“Settling On The Right List Price for Your House,” Ilona Bray, http://www.nolo.com/legal-encyclopedia/listing-
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buyers decreases rapidly as a home’s list price rises relative to the market average. This generates
a concave demand curve in relative price because at high relative prices buyers are on the margin
of looking and purchasing, while at low relative prices they are mostly on the margin of purchasing.

Concave demand incentivizes list-price-setting sellers—who have market power due to search
frictions—to set their list prices close to the mean. Intuitively, raising a house’s relative list price
reduces the probability of sale and profit dramatically, while lowering its relative price increases the
probability of sale slightly and leaves money on the table. Modest frictions that generate initial
insensitivities of prices to changes in fundamentals cause protracted price adjustments because
sellers find it optimal to gradually adjust their price so that they do not stray too far from the
market average.

To evaluate the concavity of the effect of unilaterally changing a house’s relative quality-adjusted
price on its probability of sale, I turn to micro data on listings for the San Francisco Bay, Los Angeles,
and San Diego metropolitan areas from 2008 to 2013. I address bias caused by unobserved quality
by instrumenting relative list price with the amount of aggregate price appreciation since the seller
purchased. The identification strategy takes advantage of the fact that sellers with low appreciation
since purchase set higher list prices because the equity they extract from the sale of their current
home constrains their ability to make a down payment on their next home (Stein, 1995; Genesove
and Mayer, 1997). Because I compare listings within a ZIP code and quarter, this supply-side
variation identifies the curvature of demand if unobserved quality is independent of when a seller
purchased their home. The instrumental variable estimates reveal a concave relationship that is
statistically and economically significant. My findings about the concavity of demand are robust to
other sources of relative price variation that are independent of appreciation since purchase.

To assess the strength of this propagation mechanism, I embed concave demand in a Diamond-
Mortensen-Pissarides equilibrium search model. While the amplification mechanism would interact
with several sources of price insensitivity such as infrequent price adjustment or information frictions,
I focus on a particular source of initial insensitivity: a small fraction of backward-looking rule-of-
thumb sellers as in Campbell and Mankiw (1989) and Gali and Gertler (1999). Backward-looking
expectations are frequently discussed as a potential cause of momentum (e.g., Case and Shiller, 1987;
Case et al. 2012), but some observers have voiced skepticism about widespread non-rationality in
housing markets given the financial importance of housing transactions for most households. With
a strategic complementarity, far fewer backward-looking sellers are needed to explain momentum
because the majority of forward-looking sellers adjust their prices gradually so they do not deviate
too much from the backward-looking sellers (Haltiwanger and Waldman, 1989; Fehr and Tyran,
2005). This, in turn, causes the backward-looking sellers to observe more gradual price growth and
change their price by less, creating a two-way feedback that amplifies momentum.

I calibrate the parameters of the model that control the shape of the demand curve to match
the micro empirical estimates and the remainder of the model to match steady state and time series
moments. The calibrated model generates substantial amplification of the underlying frictions: the

house-what-price-should-set-32336-2.html.
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model generates three years of positively autocorrelated price changes as observed empirically if
37.5 percent of sellers are backward-looking. By contrast, without concave demand, 73 percent of
sellers would have to be backward-looking to generate a three-year response. Furthermore, the loss
backward-looking sellers experience due to their failure to optimize is quite small (a mean of 0.74
percent of the sale price).

The amplification mechanism adapts two ideas from the macro literature on goods price stick-
iness to frictional asset search. First, the concave demand curve is similar to “kinked” demand
curves (Stiglitz, 1979) which, since the pioneering work of Ball and Romer (1990) has been fre-
quently cited as a potential source of real rigidities. In particular, a “smoothed-out kink” extension
of Dixit-Stiglitz preferences proposed by Kimball (1995) is frequently used to tractably introduce
real rigidities through strategic complementarity in price setting. Second, the repeated partial price
adjustment caused by the strategic complementarity is akin to Taylor’s (1980) “contract multiplier.”
A lively literature has debated the importance of strategic complementarities and kinked demand
in particular for propagating goods price stickiness by analyzing calibrated models, by assessing
whether the ramifications of strategic complementarities are borne out in micro data (Klenow and
Willis, 2006), and by examining exchange-rate pass through for imported goods (e.g., Gopinath and
Itshoki, 2010; Nakamura and Zerom, 2010). My analysis of housing markets adds to this literature
by directly estimating a concave demand curve and assessing its ability to amplify frictions in a
calibrated model.

Having established a propagation mechanism for house price momentum empirically and the-
oretically, I show that momentum can help explain two puzzling features of housing markets: the
excess volatility of inventory and the strong negative relationship between price changes and in-
ventory levels. The volatility of houses for sale is difficult to reconcile with most calibrations of
housing search models in a direct analogue to Shimer’s (2005) unemployment volatility puzzle for
labor search models, while the negative “housing Phillips curve” relationship between price changes
and inventory levels is surprising because in most asset pricing models, price changes are correlated
with changes in fundamentals such as inventory (Caplin and Leahy, 2011). Momentum explains
both features because forward-looking buyers and sellers re-time their purchase decisions due to
expectations of predictable future price changes, creating sudden swings in inventory as prices ad-
just gradually. For instance, at a trough, marginal buyers rush to purchase before prices rise, while
marginal sellers wait to obtain a better price for their home, leading inventory to plummet.3

The remainder of the paper proceeds as follows. Section 2 introduces facts about housing
dynamics and describes the state of the literature that explains these dynamics. Section 3 analyzes
micro data to assess whether housing demand curves are concave. Section 4 presents the model.

3Buyer and seller quotes in newspapers provide suggestive evidence of such re-timing. In 2013, when prices were
rising, a buyer explained to the Wall Street Journal “if you don’t get in now, things are going to skyrocket over the
next year,” while a seller who delayed putting their house on the market told the Journal that “the extra money—that
was worth [waiting] for the year.” This effect is part of the folk wisdom of housing markets, yet has not appeared in
the academic literature. For instance, Calculated Risk Blog describes a conversation with a real estate agent who
argues that “In a market with falling prices, sellers rush to list their homes, and inventory increases. But if sellers
think prices have bottomed, then they believe they can be patient, and inventory declines.”
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Section 5 calibrates the model to the micro estimates and assesses the degree to which strategic
complementarities amplify momentum. Section 6 relates momentum to the excess volatility of
inventory and housing Phillps curve. Section 7 concludes.

2 Three Facts About Housing Dynamics

This section presents three facts about housing dynamics—price momentum, the excess volatility of
inventory, and the “housing Phillips curve”—using price indices from CoreLogic, sales data from the
National Association of Realtors, and data on the stock of houses for sale from the United States
Census, all from 1976 to 2013. The robustness of these facts is shown in Appendix B.

2.1 Momentum

Since the pioneering work of Case and Shiller (1989), price momentum has been considered one of
the most puzzling features of housing markets. While other financial markets exhibit momentum,
the housing market is unusual for the strength of the effect and the horizon over which it persists.4

Fact 1: Price changes are serially correlated for 8 to 14 quarterly lags.
House price momentum has consistently been found across cities, countries, time periods, and

price index measurement methodologies (Cho, 1996; Titman et al., 2014). Figure 1 shows two
nation-wide measures of momentum for the CoreLogic repeat-sales house price index for 1976 to
2013 and a third measure for the same index across 103 cities.5 Panel A shows that autocorrelations
are positive for 11 quarterly lags of the quarterly change in the price index adjusted for inflation and
seasonality. Panel B shows an impulse response in log levels to an initial one percent price shock
estimated from an AR(5). In response to the shock, prices gradually rise for two to three years before
mean reverting. Finally, panel C shows a histogram of AR(1) coefficients estimated separately for
103 metropolitan area repeat-sales house price indices from CoreLogic using a regression of the
annual change in log price on a one-year lag of itself as in Case and Shiller (1989):

�t,t�4

ln p = �
0

+ �
1

�t�4,t�8

ln p+ ". (1)

�
1

is positive for all 103 cities, and the median city has an annual AR1 coefficient of 0.60. Appendix
B replicates these facts for a number of countries, price series, and measures of autocorrelation
and consistently finds two to three years of momentum.6 Appendix B also shows that there is

4Note that the “momentum” I analyze refers to autocorrelation in aggregate price time series net of dividends,
which is distinct from the short-term over-performance of stocks that recently performed best that is also called
“momentum.” Time-series momentum holds for a number of other asset classes but over over shorter horizons than
in the housing market (Cutler et al., 1991; Moskowitz et al. 2012).

5As discussed in Appendix B, price indices that measure the median price of transacted homes display momentum
over roughly two years as opposed to three years for repeat-sales indices.

6House prices appear to be sticky but not their rate of change, unlike goods prices (Fuhrer, 2011). In particular,
neither the evidence presented here nor the structural panel VAR in Head et al. (2014) shows evidence of high
autocorrelations or delayed “hump shaped” impulse responses for house price changes.
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Figure 1: Momentum in Housing Prices

Notes: Panel A and B show the autocorrelation function for quarterly real price changes and an impulse response of log real

price levels estimated from an AR(5) model, respectively. The IRF has 95% confidence intervals shown in grey. An AR(5) was

chosen using a number of lag selection criteria, and the results are robust to altering the number of lags. Both are estimated

using the CoreLogic national repeat-sales house price index from 1976-2013 collapsed to a quarterly level, adjusted for inflation

using the CPI, and seasonally adjusted. Panel C shows a histogram of annual AR(1) coefficients of annual house price changes

as in regression (1) estimated separately on 103 CBSA division repeat-sales house price indices provided by CoreLogic. The

local HPIs are adjusted for inflation using the CPI. The 103 CBSAs and their time coverage, which ranges from 1976-2013 to

1995-2013, are listed in Appendix A.

no evidence of an asymmetry in falling markets relative to rising markets, although the test for
asymmetry has limited power.

The existing evidence suggests that momentum cannot be explained by serially correlated
changes in fundamentals. Case and Shiller (1989) argue that momentum cannot be explained by
autocorrelation in interest rates, rents, or taxes. Glaeser et al. (2014) estimate a dynamic spatial
equilibrium model and find that “there is no reasonable parameter set” consistent with short-run mo-
mentum. Capozza et al. (2004) find significant momentum after accounting for six comprehensive
measures of fundamentals in a vector error correction model.

Five main explanations have been offered for momentum in asset markets and for the housing
market more specifically. First, a behavioral finance literature hypothesizes that investors initially
underreact to news due to behavioral biases (Barberis et al., 1998, Hong and Stein, 1999) or loss
aversion (Frazzini, 2006) and then “chase returns” due to extrapolative expectations about price
appreciation. Both extrapolative expectations and loss aversion are considered to be important
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forces in the housing market (Case and Shiller, 1987; Berkovec and Goodman, 1996; Glaeser et al.,
2014; Genesove and Mayer, 2001). These models have not been calibrated quantitatively to the
housing market.

Second, Glaeser and Nathanson (2015) provide a behavioral theory in which momentum arises
from agents using a behavioral approximation whereby they neglect to account for the fact that
previous buyers were learning from prices and instead take past prices as direct measures of demand.
In doing so, they advocate for theories based on “small irrationality from the many rather than major
irrationality from the few,” such as the first class of explanations. As I describe below, my model
is one of small irrationality from the few. Given the lack of evidence on heterogeneity in non-
rationality, it is difficult to empirically distinguish Glaeser and Nathanson’s approach, which can
be thought of as an alternate micro foundation for my backward-looking sellers, from mine. I do,
however, provide corroborating micro evidence for concave demand.

Third, Anenberg (2014) shows that gradual learning about market conditions by sellers can
create momentum. Anenberg’s structural model of learning can only explain an annual AR(1)
coefficient of 0.124 relative to between 0.3 and 0.75 in the data. This reflects the fact that learning
happens reasonably quickly in housing markets absent a strategic complementarity. The strategic
complementary presented here would complement and amplifies learning-based explanations for
momentum, as discussed below.

Fourth, Burnside et al. (2015) show that momentum could result from a gradual spread of
optimism if sentiment drives house prices rather than fundamentals. It is difficult to quantita-
tively measure the speed of the spread of sentiment, but the strategic complementarity presented
here complements sentiment-based explanations by reducing the degree of persistence in sentiment
necessary to explain momentum.

Finally, in work most closely related to this paper, Head et al. (2014) demonstrate that search
frictions, short sale constraints, housing with consumption value, and a gradual construction re-
sponse can together cause the liquidity of houses to adjust slowly in response to a shock to local
incomes, which creates momentum. While Head et al.’s calibrated model generates substantial au-
tocorrelation over one year due to the gradual adjustment of the liquidity of houses, it generates no
momentum over two years. Furthermore, 85 percent of the impulse response in price in occurs in
the first quarter. My model with backward-looking sellers also features search frictions that make
prices rise somewhat after an initial jump, but this momentum-generating effect is strengthened
considerably by Head et al.’s assumptions about construction. Adding their mechanisms to my
model would if anything reduce the number of backward-looking sellers needed to quantitatively
explain momentum.

2.2 Excess Volatility of Inventory and Housing Phillips Curve

I relate two other facts and puzzles about the short-run dynamics of housing cycles to momentum.
Fact 2: At an annual frequency, the volatility of inventory as measured by months of supply is

three times that of real price and the volatility of sales volume is twice that of real price.
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Table 1: Cyclical Summary Statistics for Income, House Price, Sales, and Inventory

�
log xq�log xq�4 ⇢

x, Real HPI ⇢
x, Sales Volume ⇢

x, Months of Supply

Real Disposable Pers. Income 0.016 0.819 0.668 0.497
Real House Price Index 0.065 0.726 0.305

Sales Volume 0.143 -0.263
Inventory: Months of Supply 0.207

Notes: All series are for 1976-2013 at a quarterly frequency. The first column shows the standard deviation of annual log

changes, while the other columns show correlation coefficients of log levels at a quarterly frequency. Real disposable personal

income is BEA series DPIC96. Real price is the CoreLogic national repeat-sales house price index adjusted for inflation using

the CPI. Sales volume is from the National Association of Realtors single-family existing home series. Months of supply is

created by dividing homes listed for sale from the Census Vacancy Survey by the NAR sales series. The volume, income, and

months of supply series are all seasonally adjusted.

Figure 2: Price Changes Correlated With Inventory Levels

Notes: The figure shows the time series of the annual change in the log CoreLogic national repeat-sales house price index

plotted against log months of supply. The latter is calculated by dividing homes vacant for sale from the Census Vacancy

Survey by sales of existing single-family homes from the National Association of Realtors (NAR), measured at the midpoint of

the yearlong period over which the change in price is computed.

Table 1 shows the standard deviation of annual log changes for four series: real disposable
personal income, real house prices, sales volume, and “for sale” inventory measured as months of
supply (a common metric in the housing market). Price is four times more volatile than income,
and volume and inventory are, in turn, two and three times more volatile than price. The excess
volatility of inventory is something many models have a difficult time explaining, as I discuss in
Section 6.

Fact 3: (Housing Phillips Curve) Price changes are negatively correlated with inventory levels,
with a one log point increase in months of supply correlated with a 0.14 log point decrease in annual
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price growth (Peach, 1983; Caplin and Leahy, 2011).
Figure 2 shows the time series of the annual change in the log price index and of log inventory,

measured as months of supply at the midpoint of the year over which the change in price is calculated.
This relationship is reminiscent of the Phillips curve as it relates for sale inventory—the equivalent
of unemployment in the housing market—to price appreciation. The visible inverse co-movement
in the series is confirmed by a regression: a one log point increase in months of supply is associated
with a 0.14 log point decrease in the annual change in prices with an R-squared of 0.53. Appendix B
shows that this relationship holds within nearly all metropolitan areas. This relationship is puzzling
because most asset pricing models imply price changes should be correlated with changes in variables
that reflect fundamentals, such as inventory, rather than with their levels. With mean reverting
shocks, such models imply a positive correlation between price changes and inventory levels because
when inventory levels are high, inventories tend to fall and prices tend to rise. Caplin and Leahy
(2011) show that this effect can be eliminated but not reversed if prices are posted before shocks
are realized.

3 Are Housing Demand Curves Concave?

I propose an amplification channel for momentum based on search and a concave demand curve in
relative price. Search is a natural assumption for housing markets, but the relevance of concave
demand requires further explanation.

A literature in macroeconomics argues that strategic complementarities among goods producers
can amplify small pricing frictions into substantial price sluggishness by incentivizing firms to set
prices close to one another. Strategic complementarities operate either through a monopolistic firm’s
marginal cost or its markup, which pushes a firm to price close to the market average if demand
is concave in relative price. “Kinked demand” was introduced by Stiglitz (1979), who hypothesized
that firms that increase their price induce consumers to search for a new firm, but firms that cut
their price only gain a few active searchers. Ball and Romer (1990) show that this can create
real rigidities and possibly explain why prices are so sticky despite small menu costs. Kimball
(1995) generalizes Dixit-Stiglitz-style aggregator to allow for concave demand, which is used as an
important real rigidity in several popular New Keynesian models (e.g., Smets and Wouters, 2007).
Despite the frequency with which it is used, there is little direct evidence for concave demand.7

Because momentum is similar to price stickiness in goods markets, I hypothesize that a similar
strategic complementarity may amplify house price momentum. There are several reasons why
concave demand may arise in housing markets. First, buyers may avoid visiting homes that appear
to be overpriced. Second, buyers may infer that underpriced homes are lemons. Third, a house’s
relative list price may be a signal of seller type, such as an unwillingness to negotiate (Albrecht et al.,

7The most direct evidence to date comes from Nakamura and Zerom (2010), who directly estimate the “super
elasticity” (elasticity of change of the elasticity) of demand for coffee using a random coefficients structural model
and find evidence for concave demand. By contrast, Klenow and Willis (2006) argue that price changes in goods
markets are too large to be consistent with concave demand.
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2014). Fourth, homes with high list prices may be less likely to sell quickly and may consequently
be more exposed to the tail risk of becoming a “stale” listing that sits on the market without selling
(Taylor, 1999). Fifth, buyers may infer that underpriced homes have a higher effective price than
their list price because their price is likely to be increased in a bidding war (Han and Strange,
2012b). Sixth, the law of one price—which would create a step-function demand curve—may be
smoothed into a concave demand curve by uncertainty about what a house is worth.

Nonetheless, concrete evidence is needed for the existence of concave demand in housing markets
before it is adopted as an explanation for momentum. Consequently, this section assesses whether
demand is concave by analyzing micro data on listings matched to sales outcomes for the San
Francisco Bay, Los Angeles, and San Diego metropolitan areas from April 2008 to February 2013.8

The relevant demand curve for list-price-setting sellers is the effect of unilaterally changing a
house’s relative quality-adjusted list price on its probability of sale. Detecting a nonlinear effect
is challenging because quality is poorly measured, list prices are endogenously correlated with un-
observed quality, and market conditions vary. The principal econometric challenge is that quality
differences unobserved to the econometrician are likely positively correlated with price leading to an
estimated demand curve that is far more inelastic than the true demand curve. The analysis is also
complicated by the high number of foreclosures and short sales during the period that I analyze.
Short sales, which occur when a home is sold for less than the outstanding mortgage balance, are
especially worrisome because they often involve lengthy negotiations between the seller and their
mortgage servicer which artificially decrease the probability of sale.

To surmount these challenges, I use a non-linear instrumental variable approach that traces out
the demand curve using plausibly exogenous supply-side variation in seller pricing behavior. Before
explaining the econometric strategy and presenting my main estimates, I first discuss the data.

3.1 Data

I combine data on listings with data on housing characteristics and transactions. The details of
data construction can be found in Appendix A. The listings data come from Altos Research, which
every Friday records a snapshot of homes listed for sale on multiple listing services (MLS) from
several publicly available web sites and records the address, MLS identifier, and list price. The
housing characteristics and transactions data come from DataQuick, which collects and digitizes
public records from county register of deeds and assessor offices. This data provides a rich one-
time snapshot of housing characteristics from 2013 along with a detailed transaction history of each
property from 1988 to 2013 that includes transaction prices, loans, buyer and seller names and
characteristics, and seller distress. I limit my analysis to non-partial transactions of single-family
existing homes as categorized by DataQuick.

I match the listings data to a unique DataQuick property ID. To account for homes being de-
listed and re-listed, listings are counted as contiguous if the same house is re-listed within 90 days

8These areas were selected because both the listings and transactions data providers are based in California, so
the matched dataset for these areas is of high quality and spans a longer time period.
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and there is not an intervening foreclosure. If a matched home sells within 12 months of the final
listing date, it is counted as a sale, and otherwise it is a withdrawal. The matched data includes
83 percent of single-family transactions in the Los Angeles area and 73 percent in the San Diego
and San Francisco Bay areas. It does not account for all transactions due to three factors: a small
fraction of homes (under 10%) are not listed on the MLS, some homes that are listed in the MLS
contain typos or incomplete addresses that preclude matching to the transactions data, and Altos
Research’s coverage is incomplete in a few peripheral parts of each metropolitan area.

I limit the data to homes listed between April 2008 and February 2013.9 I drop cases in which a
home has been rebuilt or significantly improved since the transaction, the transaction price is below
$10,000, or a previous sale occurred within 90 days. I exclude ZIP codes with fewer than 500 repeat
sales between 1988 and 2013 because my empirical approach requires that I calculate a local house
price index. These restrictions eliminate approximately five percent of listings.

The final data set consists of 665,770 listings leading to 467,806 transactions. I focus on the
432,311 listings leading to 319,121 transactions with an observed prior transaction, and my IV pro-
cedure is limited to a more restricted sample described below. Table 2 provides summary statistics
for several different subsamples that I use in the analysis.

3.2 Empirical Approach

3.2.1 Econometric Model

Before presenting the empirical approach, I introduce an econometric framework for how changes in
list price around a quality-adjusted average price affect probability of sale. Each possible sequence
of list prices is associated with a distribution of time to sale. To simplify the analysis, the unit of
observation is a listing associated with an initial log list price, p. I work with a summary statistic
of the time to sale distribution, d, which in the main text is an indicator for whether the house sells
within 13 weeks, with a withdrawal counting as a non-sale. I vary the horizon and use time to sale
for the subset of listings that sell in robustness checks. The data consist of homes, denoted with
a subscript h, from markets defined by a location ` (a ZIP code in the data) and time period t (a
quarter in the data).

I am interested in the impact of quality-adjusted list price relative to the average quality-adjusted
list price in the market on probability of sale.10 The quality-adjusted average list price p̃h`t has two
additive components: the average log list price in location ` at time t, represented by a fixed effect

9The Altos data begins in October 2007 and ends in May 2013. I allow a six month burn-in so I can properly
identify new listings, although the results are not substantially changed by including October 2007 to March 2008
listings. I drop listings that are still active on May 17, 2013, the last day for which I have data. I also drop listings
that begin less than 90 days before the listing data ends so I can properly identify whether a home is re-listed within
90 days and whether a home is sold within six months. The Altos data for San Diego is missing addresses until
August 2008, so listings that begin prior to that date are dropped. The match rate for the San Francisco Bay area
falls substantially beginning in June 2012, so I drop Bay area listings that begin subsequent to that point.

10While I focus on list prices, it is important to test the robustness of the results to using transaction prices to
ensure that bargaining or price wars that occur after a list price is chosen do not undo any concavity in list price.
Appendix C shows all results are robust to using transaction prices.
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Table 2: Summary Statistics For Listings Micro Data

Sample All Prior Trans IV All Prior Trans IV
Only houses that sold? No No No Yes Yes Yes

Transaction 70.30% 73.80% 66.70% 100% 100% 100%
Prior Transaction 64.90% 100% 100% 68.20% 100% 100%

REO 20.50% 24.90% 0% 26.70% 31.90% 0%
Short Sales 20.60% 24.20% 0% 20.20% 23.70% 0%

Positive Appreciation 63.00% 43.00% 100% 60.60% 42.30% 100%
Since Purchase

Initial List Price $642,384 $586,071 $818,282 $581,007 $541,616 $790,112
Transaction Price $534,826 $497,828 $731,906
Weeks on Market 15.06 15.69 12.39

Sold Within 13 Wks 43.40% 44.10% 46.80% 61.70% 59.70% 70.10%

Beds 3.283 3.236 3.309 3.266 3.226 3.298
Baths 2.185 2.119 2.275 2.145 2.097 2.256

Square Feet 1,810 1,722 1,911 1,763 1,694 1,888

N 665,770 432,311 111,358 467,806 319,121 74,320

Notes: Each column shows summary statistics for a different sample. The first three columns show the full sample, houses with

an observed prior transaction, and the IV sample for all listed homes regardless of whether they sell. The second three columns

show the same three samples but limited to houses that sell. The data covers listings between April 2008 and February 2013

in the San Francisco Bay, Los Angeles, and San Diego areas as described in Appendix A. REOs are sales of foreclosed homes

and foreclosure auctions. Short sales include cases in which the transaction price is less than the amount outstanding on the

loan and withdrawals that are subsequently foreclosed on in the next two years. Appreciation since purchase is based on the

ZIP code repeat-sales price index described in Appendix A.

⇠`t, and quality qh`t that is only partially observable to the econometrician:

p̃h`t = ⇠`t + qh`t. (2)

In a Walrasian world, there would be no variation in ph`t� p̃h`t because sellers would all price homes
at p̃h`t understanding that homes priced above p̃h`t would not sell and that pricing below p̃h`t leaves
money on the table. In the housing market, however, there are search frictions and substantial
amounts of idiosyncratic preference that cause demand to be a downward-sloping function of ph`t�
p̃h`t, which can be thought of as the seller’s relative markup. Variation in the relative markup
represents differences in sellers’ outside options due to factors like liquidity.

Formally, I model the probability of sale dh`t as:

dh`t = g (ph`t � p̃h`t) +  `t + "h`t. (3)

The demand curve in relative price g (·) is assumed to be invariant across markets defined by a
location and time net of an additive fixed effect  `t that represents local market conditions. "h`t
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is an error term that represents luck in finding a buyer and is assumed to be independent of the
relative markup ph`t � p̃h`t.11

If p̃h`t were observable, one could directly estimate (3). However, observable measures of quality
are imperfect, so quality qh`t likely has a component that is unobserved to the econometrician. I
consequently model quality as a linear function of observed measures of quality Xh`t and quality
unobserved by the econometrician uh`t:

qh`t = �Xh`t + uh`t. (4)

Building on Yavas and Yang (1995), I include two measures of each house’s value at listing as
quality measures in Xh`t: a repeat-sales predicted price equal to the price the last time the house
sold converted to today’s prices using a repeat-sales house price index and a predicted price from
a hedonic index that values the house based on its characteristics. To construct the repeat-sales
predicted price, I first estimate interval-weighted geometric repeat-sales house price index for each
ZIP code as in Case and Shiller (1989). The log index for a given time period is a time dummy in
a regression of log house price on house and time fixed effects. The log predicted price p̂repeath`t at
time t for a house h in location ` that sold for Ph`⌧ at time ⌧ is equal to log

⇣

Ph`⌧
�
`t

�
`⌧

⌘

, where �`t
is the ZIP code repeat-sales index at time t. To construct the hedonic predicted price, I estimate a
hedonic house price index for each ZIP code using a third order polynomial in age, log square feet,
bedrooms, and bathrooms for the hedonic factor. The predicted log price p̂hedonict is the sum of a
house’s hedonic value as implied by a regression and the fixed effect in the regression for a given time
period. The construction of both indices follows practices common in the literature and is detailed
in Appendix A. I include both predicted prices in Xh`t because each approach has its virtues (Meese
and Wallace, 1997). In Appendix C, I show the results are robust to modeling quality as a more
flexible function of the predicted prices and to including other observables in Xh`t.

Combining (2) and (4), the reference price p̃h`t can be written as:

p̃h`t = ⇠`t + �Xh`t + uh`t, (5)

where again ⇠`t is a fixed effect that represents the average price in location ` at time t and uh`t is
unobserved quality.

Unobserved quality creates two hurdles to identifying g (·). First, there is an endogeneity problem
as unobserved quality and price are likely positively correlated. Second, unobserved quality creates
a measurement error problem because the true p̃h`t is not observable. Both of these problems lead
to bias in the estimated g (·).

11Demand shocks like "
h`t

traditionally cause an endogeneity problem because they are correlated with price.
However, here the variable of interest is relative price, so the effect of demand shocks on average price levels is
absorbed into ⇠

`t

. Similarly, the effect of prices on aggregate demand is absorbed into  
`t

. It is thus natural to
assume that "

h`t

is independent of the relative markup.
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3.2.2 Instrument

To identify the demand curve g (·) in the presence of unobserved quality, I use plausibly exogenous
supply-side variation in the list price due to the liquidity needs of sellers. Sellers face a trade-off
between selling at a higher price and selling faster. Sellers with less liquidity and consequently a
higher marginal utility of cash on hand choose a higher list price and longer time on the market. A
proxy for liquidity that is orthogonal to unobserved quality and seller patience can thus serve as an
instrument for list price.

The proxy for liquidity that I use is the equity a seller extracts from their sale. Housing is a
large component of household wealth, and many sellers use the equity they extract from sale for
the down payment on their next home (Stein, 1995). This increases the marginal utility of cash
on hand for sellers who extract very little equity from their house because each additional dollar
of equity they extract can be leveraged to buy a substantially better house. The marginal utility
of cash is lower for sellers extracting substantial equity because their purchasing power is limited
more by their creditworthiness and overall budget than the cash they have on hand. Consequently,
homeowners with lower equity positions set higher list prices and sell their houses at higher prices
(Genesove and Mayer, 1997; Genesove and Mayer, 2001).

Because financing and refinancing decisions make the equity of sellers endogenous, I use as
my instrument the log of appreciation in the ZIP repeat-sales house price index since purchase
zh`t = log

⇣

�
`t

�
`⌧

⌘

, where � is the repeat-sales house price index, t is the period of listing, and ⌧

is the period of previous sale.12 This would be isomorphic to equity if all homeowners took out
an identical mortgage and did not refinance. The instrument thus compares sellers who purchase
identical homes with identical mortgages but who have different amounts of cash on hand to make
their next down payment because one seller’s home appreciated more in value than the other’s.

If variation in seller liquidity represented by zh`t is independent of unobserved quality and is the
only source of variation in price conditional on quality and average price, zh`t can be used as an
instrument to trace out the demand curve g (·). Because existing evidence shows that the effect of
equity is non-linear and strongest for sellers with low equity (Genesove and Mayer, 1997), I let zh`t
affect price through a flexible function f (·). Formally, g (·) is identified if:

Condition 1.
zh`t ? (uh`t, "h`t)

and

ph`t = f (zh`t) + p̃h`t

= f (zh`t) + ⇠`t + �Xh`t + uh`t. (6)

The first half of Condition 1 is an exclusion restriction that requires that appreciation since
12Here z

h`t

is a measure of liquidity, whereas when multiplied by the previous price P
h`⌧

in X
h`t

it is used to
convert the previous price to present values and constrained to have the same coefficient as the previous price P

h`t

.
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purchase have no direct effect on the outcome, either through fortune in finding a buyer "h`t in
equation (3) or through unobserved quality uh`t. If this is the case, zh`t only affects probability of
sale through the relative markup ph`t� p̃h`t. Because I use ZIP ⇥ quarter of listing fixed effects ⇠`t,
the variation in zh`t comes from sellers who sell at the same time in the same market but purchased
at different points in the cycle. Condition 1 can thus be interpreted as requiring that unobserved
quality be independent of when the seller purchased.

This assumption is difficult to test because I only have a few years of listings data, so flexibly
controlling for when a seller bought weakens the effect of the instrument on price in equation (6)
and widens the confidence intervals to the point that any curvature is not statistically significant.
Nonetheless, I evaluate the identification assumption in four ways as documented in Appendix C.
First, I vary the observable measures of quality. Second, I include a linear time trend in date of
purchase or time since purchase. Third, I limit the sample to sellers who purchased prior to 2004 and
again include a linear time trend, eliminating variation from sellers who purchased near the peak
of the bubble or during the bust. In all three cases, the results remain robust, although standard
errors widen with smaller sample sizes. Finally, I show that the shape of the estimated demand
curve is similar for IV and OLS, although OLS results in a more inelastic demand curve due to bias
created by the positive correlation of price with unobserved quality. While these tests assuage some
concerns, if homes with very low appreciation since purchase are of substantially lower unobserved
quality despite their higher average list price, my identification strategy would overestimate the true
amount of curvature in the data.13

I focus on sellers for whom the exogenous variation is cleanest and consequently exclude three
groups. First, many individuals who have had negative appreciation since purchase are not the
claimant on the residual equity in their homes—their mortgage lender is. For these individuals,
appreciation since purchase is directly related to how far underwater they are, which in turn affects
the foreclosure and short sale processes of the mortgage lender or servicer. Because I am interested
in market processes, I exclude short sales, withdrawals that are subsequently foreclosed upon, and
individuals who have had negative appreciation since purchase from the analysis. Second, mortgage
servicers and government-sponsored enterprises selling foreclosed homes have no reason to be sensi-
tive to the amount of appreciation since the foreclosed-upon homeowner purchased and are dropped.
Finally, investors who purchase, improve, and flip homes typically have a low appreciation in their
ZIP code since purchase but improve the quality of the house in unobservable ways. To minimize the
effect of investors, I exclude sellers who previously purchased with all cash, a hallmark of investors.

The second part of Condition 1 requires that liquidity embodied in zh`t is the only reason for
variation in ph`t � p̃h`t. This is a strong assumption because there may be components of liquidity
that are unobserved or other reasons that homeowners list their house at a price different from
p̃h`t, such as heterogeneity in discount rates. If the second part of the condition did not hold,
then the estimates would be biased because the true ph`t � p̃h`t would equal f (zh`t) + ⇣h`t, and the

13One concern is that sellers with higher appreciation since purchase improve their house in unobservable ways with
their home equity. However, this would create a positive relationship between price and appreciation since purchase
while I find a strong negative relationship.
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unobserved measurement error ⇣h`t enters g (·) nonlinearly. This is an issue because the measurement
error induced by unobserved quality is non-classical. In (6), unobserved quality is a residual that is
independent of observed quality �Xh`t, and so the measurement error induced by uh`t is Berkson
measurement error, in which the measurement error is independent of the observed component,
rather than classical measurement error, in which the measurement error is independent of the
truth p̃h`t. An instrument such as zh`t can address classical measurement error in a non-linear
setting, but it cannot address Berkson measurement error, which is why an additional assumption
is necessary. If this assumption were to fail, my results would be biased.

However, the bias created by measurement error does not cause significant spurious concavity,
which I show using two strategies. First, I prove that if the measurement error created by other
sources of variation in the relative markup ph`t � p̃h`t is independent of the variation induced by
the instrument, the measurement error would not cause spurious concavity. Intuitively, noise in
ph`t� p̃h`t would cause the observed probability of sale at each observed ph`t� p̃h`t to be an average
of the probabilities of sale at true ph`t � p̃h`ts that are on average evenly scrambled. Consequently,
the curvature of a monotonically-decreasing demand curve is preserved. An analytical result can be
obtained if the true g (·) is a polynomial regression function as in Hausman et al. (1991):

Lemma 1. Consider the econometric model described by (3) and (5) and suppose that:

zh`t ? (uh`t, "h`t) , (7)

ph`t = f (zh`t) + ⇣h`t + p̃h`t, (8)

⇣h`t ? f (zh`t), and the true regression function g (·) is a third-order polynomial. Then estimating
g (·) assuming that ph`t = f (zh`t) + p̃h`t yields the true coefficients of the second- and third-order
terms in g (·). If g (·) is a second-order polynomial, the same procedure yields the true coefficients
of the first- and second-order terms.

Proof. See Appendix C.

While a special case, Lemma 1 makes clear that the bias in the estimated concavity is minimal if
⇣h`t ? f (zh`t).

Second, while spurious concavity is a possibility if the measurement error created by other
sources of variation in the relative markup were correlated with the instrument, the amount of
concavity generated would be far smaller than the concavity I observe in the data. Appendix C
presents Monte Carlo simulations that show that if the instrument captures most of the variation
in the relative markup ph`t � p̃h`t at low levels of appreciation since purchase but very little of
the variation at high levels of appreciation since purchase, spurious concavity arises because the
slope of g (·) is attenuated for low relative markups but not high relative markups. However, to
spuriously generate a statistically-significant amount of concavity, one would need a virtually perfect
instrument at low levels of appreciation since purchase and essentially all of the variation in price
at high levels of appreciation since purchase to be measurement error. Because this is implausible,
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I conclude that spurious concavity due to Berkson measurement error is not driving my findings on
concavity.

3.2.3 Estimation

Under Condition 1, ph`t � p̃h`t = f (zh`t), and g (·) can be estimated by a two-step procedure that
first estimates equation (6) and then uses the predicted f (zh`t) as ph`t � p̃h`t to estimate equation
(3). Both equations are estimated by OLS, and in the main text I weight the specifications by the
inverse standard deviation of the error in the repeat-sales index to account for the reduced precision
of the predicted prices in areas with fewer transactions. I use a third-order polynomial for f (·), and
Appendix C shows that the results are robust to the order of the polynomial used.

I assess the degree of concavity in two ways. First, I use a quadratic polynomial in ph`t� p̃h`t for
g (·) and test whether the quadratic term is statistically distinguishable from zero. Based on Lemma
1 above, the linear and quadratic terms are both unbiased, and so testing whether the quadratic
term is less than zero is the simplest way to assess concavity. To account for spatial correlation,
I calculate standard errors by block bootstrapping the entire procedure and clustering on 35 units
defined by the first three digits of the ZIP code (ZIP-3), and I use the bootstrapped 95 percent
confidence interval as my preferred test for concavity. Second, to visualize the data, I construct a
binned scatter plot, which bins the data into 25 equally-sized groups of the log list price relative to
the reference price, ph`t� p̃h`t, and, for each bin, plots the mean of ph`t� p̃h`t against the mean of the
probability of sale net of the average probability of sale in the market, dh`t� `t. This approximates
g (·) using indicator variables for the 25 bins of ph`t � p̃h`t, as detailed in Appendix C. I overlay a
third-order polynomial fit with pointwise 95 percent confidence bands with the binned scatter plot.

There may be small-sample bias introduced into the estimation if g (·) is non-linear and the
fixed effects ⇠`t are imprecisely estimated with a small number of homes in a ZIP-quarter cell.14

Appendix C shows that the results are not substantially changed by limiting the sample to fixed
effect cells with at least 15 homes. Because the error in the estimated fixed effects is likely minimal
for these cells, this suggests that imprecision in the estimated fixed effects is not driving the results.

3.3 Results

Figure 3 shows the resulting first and second stage binned scatter plots. As shown in panel A, the
instrument induces a small amount of variation in the list price set by sellers.15 This is the variation
I use to identify the shape of demand (and is the x-axis of panel B). The first stage is strong with
a joint F statistic for the third order polynomial of the instrument in (6) of 128. Panel B shows a

14There are 9,200 fixed effects. 0.33 percent of the data is unused because there is only a single house sold in a
ZIP-quarter cell.

15Genesove and Mayer (1997) find that a house with 100 percent loan-to-value ratio is on average listed at a price
four percent higher than a home with an 80 percent loan-to-value ratio. Subsequent work (Genesove and Mayer,
2001) finds slightly smaller numbers conditioning on whether a seller has experienced a nominal loss. Nonetheless,
the similarity between their four percent figure and the amount of variation induced by the instrument in my first
stage is reassuring.
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Table 3: The Effect of List Price on Probability of Sale: Regression Results

Panel A: Ordinary Least Squares

Dependent Var: Sell Within 13 Weeks
Sample: All Listings With Prior Observation

(432,311 obs, 421,297 After Dropping 1st and 99th % and Cells With One Obs)
Controls: ZIP ⇥ Quarter ⇥ Distress FE, Repeat and Hedonic Predicted Price

Constant Linear Quadratic Quadratic Bootsrapped 95% CI

Coefficient 0.471*** -0.249*** -0.605*** [-0.796,-0.472]
(0.005) -0.016 -0.087

Panel B: Ordinary Least Squares, IV Sample

Sample: Listings With Prior Obs, excluding REO, Short Sales, Investors, Neg Appreciation
(111,358 obs, 108,460 After Dropping 1st and 99th % and Cells With One Obs)

Controls: ZIP ⇥ Quarter FE, Repeat and Hedonic Predicted Price

Constant Linear Quadratic Quadratic Bootsrapped 95% CI

Coefficient 0.511*** -0.352*** -0.715** [-1.213,-0.436]
(0.012) (0.031) (0.223)

Panel C: Instrumental Variable

Sample: Same a Panel B
Controls: ZIP ⇥ Quarter FE, Repeat and Hedonic Predicted Price

Constant Linear Quadratic Quadratic Bootsrapped 95% CI

Coefficient 0.491*** -1.138*** -33.466* [-76.788,-21.130]
(0.009) (0.290) (14.289)

Notes: * p < 0.05, ** p<0.01, *** p<0.001. Each row shows regression coefficients when g(·) in equation (3) is approximated

using a quadratic polynomial. This relationship represents the effect of the log relative markup on the probability of sale within

13 weeks. In the IV panel, a first stage regression of log list price on a third-order polynomial in the instrument, fixed effects

at the ZIP x first quarter of listing level, and log predicted price using both a repeat-sales and a hedonic methodology, as in

(6) is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup in equation

(3), which is estimated by OLS. The sample is restricted to non-REOs, non-short sales, properties with positive appreciation

since purchase, and properties not previously purchased with all cash (investors). In the OLS panels, quality is assumed to be

perfectly measured by the hedonic and repeat-sales predicted prices and have no unobserved component. Panel B thus regresses

log list price on fixed effects and the predicted prices and uses the residual as the estimated relative markup into equation (3),

as described in Appendix C. OLS uses the full set of listings with a previous observed transaction, so to prevent distressed

sales from biasing the results, the fixed effects are at the quarter of initial listing x ZIP x distress status level. Distress status

corresponds to three groups: normal sales, REOs (sales of foreclosed homes and foreclosure auctions), and short sales (cases

where the transaction price is less than the amount outstanding on the loan and withdrawals that are subsequently foreclosed

on in the next two years). Both procedures are weighted by the reciprocal of the standard deviation of the prediction error in

the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. Before creating the spline, the 99th and 1st

percentiles of the relative markup are dropped, as are any observations fully absorbed by fixed effects. Standard errors and the

95 percent confidence interval for the quadratic term are computed by block bootstrapping the entire procedure on 35 ZIP-3

clusters.
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Figure 3: Instrumental Variable Estimates of the Effect of List Price on Probability of Sale

Notes: Panel B shows a binned scatter plot of the probability of sale within 13 weeks net of fixed effects (with the average

probability of sale within 13 weeks added in) against the estimated log relative markup p� p̃. It also shows an overlaid cubic

fit of the relationship, as in equation (3). To create the figure, a first stage regression of the log list price on a third-order

polynomial in the instrument, fixed effects at the ZIP x first quarter of listing level, and repeat sales and hedonic log predicted

prices, as in (6), is estimated by OLS. The predicted value of the polynomial of the instrument is used as the relative markup.

The figure splits the data into 25 equally-sized bins of this estimated relative markup and plots the mean of the estimated

relative markup against the mean of the probability of sale within 13 weeks net of fixed effects for each bin, as detailed in

Appendix C. Before binning, the 1st and 99th percentiles of the log sale price residual and any observations fully absorbed

by fixed effects are dropped. The entire procedure is weighted by the reciprocal of the standard deviation of the prediction

error in the repeat-sales house price index in the observation’s ZIP code from 1988 to 2013. The sample is limited to the

IV subsample of homes that are not sales of foreclosures or short sales, sales of homes with negative appreciation since the

seller purchased, or sales by investors who previously purchased with all cash. The grey bands indicate a pointwise 95-percent

confidence interval for the cubic fit created by block bootstrapping the entire procedure on 35 ZIP-3 clusters. Panel A shows

the first stage relationship between the instrument and log initial list price in equation (6) by residualizing the instrument and

the log initial list price against the two predicted prices and fixed effects, binning the data into 25 equally-sized bins of the

instrument residual, and plotting the mean of the instrument residual against the mean of the log initial list price residual for

each bin. N = 111,293 observations prior to dropping the 1st and 99th percentiles and unique zip-quarter cells.

clear concave relationship in the second stage, with very inelastic demand for relatively low priced
homes and elastic demand for relatively high priced homes. This curvature is also visible in the
cubic polynomial fit.

Table 3 shows regression results when g (·) is approximated by quadratic polynomial. Panel C
shows the IV results. The concavity visible in Figure 3 is apparent, with a large and statistically
significant quadratic term with a bootstrapped 95 percent confidence interval that lies substantially
below zero.

As a point of comparison, Panel A shows OLS results for the full sample of homes with a prior
observed transaction and panel B shows OLS results for the IV sample. The fixed effects are at
the ZIP ⇥ quarter ⇥ REO seller ⇥ short seller level to prevent distressed sales from biasing the
results. OLS assumes away unobserved quality and should be positively biased if p̃h`t is positively
correlated with ph`t due to omitted unobserved quality. This is the case: the estimated demand
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curve is more elastic for IV than OLS. In fact, the OLS bias is strong enough that the demand
curve slopes significantly upward in the lowest tercile. Nonetheless, there is clear and significant
concavity in the OLS results, and the similarity between the full data set and IV sample assuages
concerns about sample selection.

At the mean price, the estimates imply that raising one’s price by one percent reduces the prob-
ability of sale within 13 weeks by approximately 1.4 percentage points on a base of 46.8 percentage
points, a reduction of 3 percent. This corresponds to a one percent price hike increasing the time
to sale by three to five days. By contrast, increasing the list price by five percent reduces the
probability of sale within 13 weeks by 14 percentage points, a reduction of 30 percent. These figures
are slightly smaller than those found by Carrillo (2012), who estimates a structural search model of
the steady state of the housing market with multiple dimensions of heterogeneity using data from
Charlottesville, Virginia from 2000 to 2002. Although we use very different empirical approaches,
in a counterfactual simulation, he finds that a one percent list price increase increases time on the
market by a week, while a five percent list price increase increases time on the market by nearly a
year. Carrillo also finds small reductions in time on the market from underpricing, consistent with
the nonlinear relationship found here.

Appendix C shows the finding of concavity survives many robustness checks. The results are
robust across geographies, time periods, and specifications, although in some cases restricting to a
smaller sample leads to insignificant results. The results are also robust to time trends in date of
purchase, limiting the sample to sellers who purchased before the bubble, controlling for other mea-
sures of quality, allowing for differential sorting by letting � vary across time and space, accounting
for the uniqueness of a house in its neighborhood, and accounting for different price tiers within
ZIP codes. Appendix C also shows that concavity is clearly visible in the reduced-form relationship
between the instrument and probability of sale and that the results are robust to using transac-
tion prices rather than using list prices. The instrumental variable results thus provide evidence of
demand concave in relative price for these three MSAs from 2008 to 2013.16

4 A Model of House Price Momentum

This section introduces an equilibrium search model with concave demand. The model includes two
additional ingredients new to the housing search literature. First, because concave demand only
amplifies existing price insensitivity, I introduce small number of backward-looking rule-of-thumb
sellers as in Haltiwanger and Waldman (1989) and Gali and Gertler (1999). Second, I include an
endogenous entry decision for buyers and sellers because entry is a form of intertemporal arbitrage
that works against the forces that generate momentum in the model. Furthermore, with an active
but not overwhelming entry margin, the re-timing of purchases and sales in light of momentum can
explain the excess volatility of inventory and the housing Phillips curve relationship.

16Aside from the tail end of my sample, this period was a depressed market. The similarity between my results
and Carrillo’s provide some reassurance that the results I find are not specific to the time period, but I cannot rule
out that the nonlinearity would look different in a booming market.
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Table 4: Notation in the Model

Variable Description Note

Masses

N Total Population (Housing Stock Mass One)
B

t

Endogenous Mass of Buyers Value Fn V b

t

S
t

Endogenous Mass of Sellers Value Fn V s

t

R
t

Endogenous Mass of Renters Value Fn V r

t

H
t

Endogenous Mass of Homeowners Value Fn V h

t

Flow Utilities

b Flow Utility of Buyer (Includes search cost)
s Flow Utility of Seller (includes search cost)
u
t

Flow Utility of Renter Shocked Variable
h Flow Utility of Homeowner

Moving Shock Probabilities

�h Prob Homeowner Gets Shock
�r Prob Renter Gets Shock

Costs

c Stochastic Cost for Homeowner to Stay in Home C (c) ⇠ U (c, c̄)

k Stochastic Cost for Renter to Stay Renter (Negative) K (k) ⇠ U
�

k, ¯k
�

c⇤
t

Threshold c Above Which Homeowners Enter Endogenous
k⇤
t

Threshold k Above Which Renters Enter Endogenous

Other Fixed Parameters

� Discount Factor
L Probability Seller Leaves Metro Area
V 0 PDV of Exiting Metro Area

The model builds on search models of the housing market, such as Wheaton (1990), Krainer
(2001), Novy-Marx (2009), Piazzesi and Schneider (2009), Caplin and Leahy (2011), Genesove and
Han (2012), Ngai and Tenreyro (2013), and Head et al. (2014). I first introduce a framework that
models a metropolitan area with a fixed population and housing stock. I then describe the housing
market component and show how sellers set list prices. I finally introduce rule-of-thumb sellers and
define equilibrium. The notation used in the model is summarized in Tables 4 and 5.

4.1 Setting

Time is discrete and all agents are risk neutral. Agents have a discount factor of �. There is a fixed
housing stock of mass one, no construction, and a fixed population of size N .17

17Construction is omitted for parsimony. While momentum is negatively correlated with the housing supply
elasticity, momentum is important even in elastic MSAs. The model best applies to areas with inelastic housing
supply in which momentum is stronger, although it is also relevant to the short run in areas with more elastic housing
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There are four types of homogenous agents: a mass Bt of buyers, St of sellers, Ht of homeowners,
and Rt of renters. These agents have flow utilities (inclusive of search costs) b, s, h, and ut (u is time
varying because it will be shocked), and value functions V b

t , V s
t , V h

t , and V r
t , respectively. Buyers

and sellers are active in the housing market, which is described in the next section. The rental
market, which serves as a reservoir of potential buyers, is unmodeled aside from the flow utility
net of rents. Each agent can own only one home, which precludes short sales and investor-owners.
Sellers and buyers are homogenous but sellers may differ in their list prices.

Each period with probability �h and �r, respectively, homeowners and renters receive shocks
that cause them to separate from their current house or apartment, as in Wheaton (1990). However,
rather than automatically entering the housing market, the shocks cause homeowners and renters
to draw a one-time cost, c ⇠ C (·) for homeowners and k ⇠ K (·) (likely negative) for renters, that
can be paid to stay in their current house or apartment and receive the same flow utility as before
instead of moving.18 The cost distributions are parameterized as uniform so that c ⇠ U (c, c̄) and
k ⇠ U

�

k, ¯k
�

, which gives an approximately constant seller entry elasticity appears to be constant
as shown to hold in the data in Appendix E. This setup captures that potential movers have
heterogeneous reasons to buy or sell and consequently differ in the ease with which they can re-time
their transaction.

A renter who decides not to pay the cost k enters the market as a homogenous buyer. A
homeowner who decides not to pay the cost c learns after making their entry decision whether they
leave the MSA with probability L, in which case they become a seller and receive a net present value
of V 0 for leaving, or whether they remain in the city with probability 1� L. If they remain in the
city, they simultaneously become a buyer and a homogenous seller. These two roles are assumed to
be quasi-independent so that the value functions do not interact and no structure is put on whether
agents buy or sell first, as in Ngai and Tenreyro (2013) and Guren and McQuade (2015).

A homeowner who draws a cost c enters the market if:

c � V h
t � V s

t � LV 0 � (1� L)V b
t ⌘ c⇤t . (9)

Similarly a renter enters if
k � V r

t � V b
t ⌘ k⇤t . (10)

The cutoffs c⇤t and k⇤t determine the marginal entrant and control their flow into the market.19

Because the population is constant, every time a seller leaves the city they are replaced by a new
entrant. Entrants draw a cost of being a renter and decide whether to rent or buy in the same manner
as a renter who just experienced a shock. The full closed system is illustrated diagrammatically

supply. See Head et al. (2014) for a model with a construction margin.
18The model would be isomorphic if homeowners and renters drew a cost every period and had a much lower

probability of drawing a cost that leads to a move as long as the densities of the two distributions of costs were the
same at the margin.

19This setup makes two implicit assumptions for tractability. First, although individuals are heterogeneous in their
motivation to move, once they enter the market they are homogenous. Second, if an individual decides not to move
today, they do not make another decision about moving until they get another shock.
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Figure 4: Schematic Representation of Closed GE System
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in Figure 4. I defer the laws of motion that formalize the system until after I have defined the
probabilities of purchase and sale. The value functions of the homeowner and renter are:

V h
t = h+ �Et

"

�h
�

1� C
�

c⇤t+1

�� ⇥

V s
t+1

+ LV 0

+ (1� L)V b
t+1

⇤

��hC
�

c⇤t+1

�

E
⇥

c|c < c⇤t+1

⇤

+

�

1� �h
�

1� C
�

c⇤t+1

���

V h
t+1

#

(11)

V r
t = ut + �Et

"

�r
�

1�K
�

k⇤t+1

��

V b
t+1

� �rK
�

k⇤t+1

�

E
⇥

k|k < k⇤t+1

⇤

+

�

1� �r
�

1�K
�

k⇤t+1

���

V r
t+1

#

. (12)

The E [c|c < c⇤t ] and E [k|k < k⇤t ] terms reflect the expected costs if a homeowner or renter decide
to not move and pay the cost of accommodating the shock.

4.2 The Housing Market

The search process occurs at the beginning of each period and unfolds in three stages. First, sellers
post list prices p̂t. Second, buyers observe a noisy binary signal about each house’s quality relative
to its price. Buyers direct their search either towards houses that appear reasonably-priced for
their quality or towards houses that appear to be overpriced for their quality, which defines two
sub-markets: follow the signal (submarket f) or do not follow the signal (submarket d). After
choosing a submarket, buyers search randomly within the submarket an stochastically find a house
to inspect. Third, matched buyers inspect the house and decide whether to purchase it.
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Table 5: Notation in Housing Market

Variable Description Note

Utilities
" Match-Specific One-Time Utility Benefit ⇠ F (")

�
h

Permanent House Quality Mean Zero

Stochastic Draws

⌘
h,t

Noise in �
h

in Binary Signal About Quality, ⇠ G (⌘)

IID Common to All Buyers in Period t

Parameters / Values
✓m
t

Market Tightness = B/S in Submarket m = {f, d} Endogenous
˜✓
t

Vector of ✓m s Endogenous
qm (✓m

t

) Prob. Seller Meets Buyer in m (Matching Fn) Endogenous
⇠m Constant in Matching Function in m

� Matching Function Elasticity in all ms
p
t

List Price Adjusted for Permanent Quality Endogenous
⌦

t

Distribution of Prices Endogenous
"⇤
t

Threshold " for Purchase Endogenous
µ Threshold for Binary Signal

Distribution Parameters

", "̄ Bounds of Dist of F ("), Uniform With Mass Point
� Size of Mass Point of Uniform Dist at "̄
� Logistic Variance Param for G (⌘)

At the inspection stage, buyers observe their idiosyncratic valuation for the house ", which is
match-specific, drawn from F (") at inspection, and realized as utility at purchase. They also observe
the house’s permanent quality �h, which is common to all buyers, mean-zero, gained by a buyer at
purchase, and lost by a seller at sale. I assume all sales occur at list price, or equivalently that risk
neutral buyers and sellers expect that the average sale price will be an affine function of the list
price.20 This assumption is made for tractability and is not essential to the propagation mechanism.
It is also empirically realistic: although many houses do sell above or below list price, Appendix A.3
shows that in the merged Altos-DataQuick micro data, the modal transaction price is the list price,
and the average and median differences between the list and transaction price are less than 0.01 log
points and do not vary much across years.21 Letting pt ⌘ p̂t � �h be the quality-adjusted list price,
the buyer purchases if his or her surplus from doing so V h

t + "� pt � b� �V b
t is positive. This leads

to a threshold rule to buy if " > pt + b+ �V b
t+1

� V h
t ⌘ "⇤t (pt) and a probability of purchase given

20This assumption restricts what can occur in bargaining or a price war. Several papers have considered the role of
various types of bargaining in a framework with a list price in a steady state search model, including cases in which
the list price is a price ceiling (Chen and Rosenthal, 1996; Haurin et al., 2010), price wars are possible (Han and
Strange, 2013), and list price can signal seller type (Albrecht et al., 2014).

21An important feature of the housing market is that most price changes are decreases. Consequently, the difference
between the initial list price and the sale price fluctuates substantially over the cycle as homes that do not sell cut
their list price. I abstract from such duration dependence to maintain a tractable state space.
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inspection of 1� F ("⇤t ).
At the signal stage, buyers observe a binary signal from their real estate agent or from adver-

tisements that reveals whether each house’s quality-adjusted price relative to the average quality-
adjusted price is above a threshold µ. However, quality �h (or equivalently the observation of the
average price) is subject to mean zero noise ⌘h,t ⇠ G (·), where G (·) is assumed to be a fixed distri-
bution.22 This noise, which represents how well a house is marketed in a given period, is common
to all buyers but independent and identically distributed across periods. The signal thus indicates
a house is reasonably priced if,

pt � E
⌦

t

[pt]� ⌘h,t  µ,

where ⌦t is the cumulative distribution function of list prices and the notation E
⌦

t

[·] represents an
expectation with respect to ⌦t. Consequently, a house with quality-adjusted price pt is searched
by buyers in submarket f with probability 1 � G (pt � E

⌦

t

[pt]� µ) and is searched by buyers in
submarket d with probability G (pt � E

⌦

t

[pt]� µ). I assume that search is more efficient if buyers
follow the signal than if they do not because they have the help of a realtor or are looking at better-
marketed homes. In equilibrium, buyers follow a mixed strategy randomize whether they search
submarket f or d so that the value of following the signal is equal to the value of not following it. I
consider an equilibrium in which all buyers choose the same symmetric strategy with a probability
of following the signal of �t.

After choosing a submarket, buyers search randomly within that sub-market and cannot direct
their search to any particular type of home within that market. The probability a house in submarket
m meets a buyer is determined according to a constant returns to scale matching function, qm (✓mt ),
where ✓mt is the ratio of buyers to sellers in submarket m = {f, d}. The probability a buyer meets
a seller is then qm (✓mt ) /✓mt . The matching function captures frictions in the search process that
prevent all reasonably-priced homes and all buyers from having an inspection each period. For
instance, buyers randomly allocating themselves across houses may miss a few houses, or there may
not be a mutually-agreeable time for a buyer to visit a house in a given period.

Given this setup, the mass of sellers in the f submarket is St times the weighted average
probability that any given seller is in the f submarket E

⌦

[1�G (·)], and the mass of sellers in the
d submarket is similarly StE⌦

[G (·)]. Consequently, the market market tightness in the f and d

submarkets is:

✓ft =

Bfollow
t

Sf
t

=

Bt�t
StE⌦

t

[1�G (pt � E
⌦

t

[pt]� µ)]

✓dt =

Bdo not follow
t

Sd
t

=

Bt (1� �t)

StE⌦

t

[G (pt � E
⌦

t

[pt]� µ)]
.

22Because the signal reveals no information about the house’s permanent quality �
h

, posted price p̂
t

, or match
quality "

m

, the search and inspection stages are independent.
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The probability a buyer who follows the signal buys a house is then:

Pr [Buy|follow] =

qf
⇣

✓ft

⌘

✓ft

Z

1�G (pt � E
⌦

t

[pt]� µ)

E
⌦

t

[1�G (pt � E
⌦

t

[pt]� µ)]
(1� F ("⇤t (pt))) d⌦t (pt)

=

qf
⇣

✓ft

⌘

�t✓t

Z

(1�G (pt � E
⌦

t

[pt]� µ)) (1� F ("⇤t (pt))) d⌦t (pt)

=

1

�t✓t
E

⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘i

,

where ✓t = Bt/St is the aggregate market tightness and,

df
⇣

pt,⌦t, ˜✓t

⌘

= qf
⇣

qft

⌘

(1�G (pt � E
⌦

t

[pt]� µ)) (1� F ("⇤t (pt))) . (13)

Similarly, the probability a buyer buys if they do not follow the signal is:

Pr [Buy|do not follow] =
1

(1� �t) ✓t
E

⌦

t

h

dd (pt,⌦t, ✓t,�t)
i

,

where,
dd

⇣

pt,⌦t, ˜✓t

⌘

= qd
⇣

✓dt

⌘

G (pt � E
⌦

t

[pt]� µ) (1� F ("⇤t (pt))) . (14)

Note that the demand curve faced by sellers, which is the ex-ante probability of sale for a house
with a list price pt, can be written as:

d
⇣

pt,⌦t, ˜✓t

⌘

= Pr [Good Signal]Pr [Sell|Good Signal] + Pr [Bad Signal]Pr [Sell|Bad Signal]

= df
⇣

pt,⌦t, ˜✓t

⌘

+ dd
⇣

pt,⌦t, ˜✓t

⌘

. (15)

Similarly, the total probability a buyer buys is given the �t randomization strategy is:

Pr [Buy] = �t
1

�t✓t
E

⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘i

+ (1� �t)
1

(1� �t) ✓t
E

⌦

t

h

dd (pt,⌦t, ✓t,�t)
i

=

1

✓t
E

⌦

t

h

d
⇣

pt,⌦t, ˜✓t

⌘i

.

Given these probabilities of purchase and sale, the stock of buyers is equal to the stock of buyers
who failed to buy last period plus the stock of renters and flow of new entrants who decide to buy,
while the stock of sellers is equal to those sellers who failed to sell last period plus homeowners who
put their house up for sale. These are formalized by:

Bt =

✓

1� 1

✓t�1

E
⌦

t�1

h

d
⇣

pt�1

,⌦t�1

, ˜✓t�1

⌘i

◆

Bt�1

(16)

+ �r
�

1�K
�

k⇤t�1

��

Rt�1

+

�

1� LK
�

k⇤t�1

��

�h
�

1� C
�

c⇤t�1

��

Ht�1

St =

⇣

1� E
⌦

t�1

h

d
⇣

pt�1

,⌦t�1

, ˜✓t�1

⌘i⌘

St�1

+ �h
�

1� C
�

c⇤t�1

��

Ht�1

. (17)
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Because there are mass one of homes that can either be owned by a homeowner or up for sale and
mass N of agents who can either be renters, homeowners, or buyers,

1 = Ht + St (18)

N = Rt +Bt +Ht. (19)

These equations together with (16) and (17) implicitly define laws of motion for Ht and Rt.
When a buyer buys, they get the expected surplus E ["� "⇤t |" > "⇤t ] where "⇤t is a function of

pt. The value of a buyer who follows, V b,f
t , a buyer who does not follow V b,d

t , and a buyer prior to
choosing a submarket V b

t , are then:

V b,f
t = b+ �EtV

b
t+1

+

1

�t✓t
E

⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

(20)

V b,d
t = b+ �EtV

b
t+1

+

1

(1� �t) ✓t
E

⌦

t

h

dd
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

(21)

V b
t = max

n

V b,f
t , V b,d

t

o

.

In equilibrium, buyers are indifferent between the two markets, so V b,f
t = V b,d

t or:

E
⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

E
⌦

t

h

dd
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

=

�t
1� �t

. (22)

This pins down the fraction of buyers who go to submarket f , �t. V b
t can then be rewritten as:

V b
t = b+ �EtV

b
t+1

+

1

�t✓t
E

⌦

t

h

df
⇣

pt,⌦t, ˜✓t

⌘

E ["� "⇤t |" > "⇤t ]
i

. (23)

Sellers have rational expectations but set their list price before ⌘h,t is realized and without
knowing the valuation of the particular buyer who visits their house. The demand curve they face
is d

⇣

pt,⌦t, ˜✓t

⌘

, so the seller’s value function is:

V s
t = s+ �EtV

s
t+1

+max

p
t

n

d
⇣

pt,⌦t, ˜✓t

⌘

⇥

pt � s� �EtV
s
t+1

⇤

o

. (24)

I solve for the seller’s optimal price in the next subsection.
I parameterize the model by assuming distributions for F (·), the distribution of idiosyncratic

match quality, and G (·), the noise in the signal. I assume that F ("m) is a uniform distribution on
[", "̄] with a mass point of mass � at "̄. In Figure 3, the demand curve for below average priced
homes is very flat., which implies a very low density of F (·) at the margin. If there were not a
mass point at the top of F (·), the low density would imply a very large upper tail conditional
expectation E ["� "⇤|" > "⇤], which in turn implies a very high value of future search to buyers.
Adding a mass point allows me to control the value of future search and obtain a realistic buyer
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Figure 5: The Concave Demand Curve in the Model
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Notes: The figures are generated using calibration described in Section 5. All probabilities are calculated assuming all other

sellers are setting the steady state price and considering the effect of a unilateral deviation.

search cost. In practice, this means that there are many buyers who like the property, many who
do not, and a few in between. For G (⌘h,t), I choose a logistic with mean zero and variance �2 ⇡2

3

.
These two distributions are both flexible and tractable, and as I show below they provide a close fit
to the microdata. I also assume that the matching function is Cobb-Douglas qm (✓) = ⇠m✓� , as is
standard in the search literature, with ⇠f > ⇠d. While these assumptions matter somewhat for the
precise quantitative predictions of the model, they are not necessary for the intuitions it illustrates.

This setup leads to a locally concave demand curve with considerable curvature in the neighbor-
hood of the average price. There are many fewer buyers in the d submarket than the f submarket
in equilibrium. At below average prices, the house receives a good signal with near certainty and
the demand curve is dominated by the trade-off between idiosyncratic match quality "m and price,
so demand is less elastic. At prices just above the average, the demand curve is dominated by
the fact that perturbing the price affects whether the house gets a good signal or a bad signal, in
which case it ends up in a market with few buyers who match with less efficiency. To illustrate
this, Figure 5 shows the shapes of the probability of inspection q

⇣

✓ft

⌘

(1�G (pt � E
⌦

t

[pt]� µ)) +

q
�

✓dt
�

G (pt � E
⌦

t

[pt]� µ), the probability of purchase conditional on inspection 1�F ("⇤ (pt)), and
the overall demand curve faced by sellers d (pt,⌦t, ✓t), equal to the product of the first two panels.
(Note that the axes are swapped from the traditional Marshallian supply and demand diagram in
order to be consistent with the empirical analysis in Section 3.)

4.3 Optimal Price Setting

Sellers do not internalize that their choice of pt affects the average price, which they treat as given.
I focus on a symmetric equilibrium, and although the seller’s problem is not globally concave I
focus on an interior optimum and later check that the interior optimum is the global optimum by
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simulation. Seller optimization thus implies:

Lemma 2. The seller’s optimal list price at the interior optimum is:
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s
t+1

+ Et

2

4

�d
⇣

pt,⌦t,
˜✓t

⌘

@d
(

p
t

,⌦
t

,˜✓
t

)

@p
t

3

5

= s+ �EtV
s
t+1

+

1

f("⇤
t

)

1�F ("⇤
t

)

+

g
(

p
t

�E⌦
t

[p
t

]�µ
)

1�G
(

p
t

�E⌦
t

[p
t

]�µ
)

� g
(

p
t

�E⌦
t

[p
t

]�µ
)

1�G
(

p
t

�E⌦
t

[p
t

]�µ
)

1

G
(

p
t

�E⌦
t

[p
t

]�µ
)

dd
(

p
t

,⌦
t

,˜✓
t

)

d
(

p
t

,⌦
t

,˜✓
t

)

,

(25)

where dd is defined by (14) and d is defined by (15). With a logistic distribution for G (·), this
simplifies to:

pt = s+ �EtV
s
t+1

+

1

f("⇤
t

)

1�F ("⇤
t

)

+

1

�G (pt � E
⌦

t

[pt]� µ)� 1

�

dd
(

p
t

,⌦
t

,˜✓
t

)

d
(

p
t

,⌦
t

,˜✓
t

)

.

Proof. See Appendix D.

Sellers have monopoly power due to costly search. The optimal pricing problem they solve is the
same as that of a monopolist facing the demand curve d except that the marginal cost is replaced by
the seller’s outside option of searching again next period. The optimal pricing strategy is a markup
over the outside option s + �V s

t+1

. In equation (25) it is written as an additive markup equal to
the reciprocal of the semi-elasticity of demand, �d(p

t

,⌦
t,

✓
t

)

@d(p
t

,⌦
t

,✓

t

)
@p

t

. The semi-elasticity, in turn, is equal to

the sum of the hazard rates of the idiosyncratic preference distribution F (·) and the distribution of
signal noise G (·) adjusted for the share of sales that occur in the d submarket.

This creates a local strategic complementarity in price setting because the optimal price depends
on relative price pt�E

⌦

t

[pt] through the hazard rate of the signal G (·). In particular, the elasticity
of demand rises as relative price increases, causing the optimal additive markup to fall. The markup
thus pushes sellers to set prices close to those of others.

However, in a rational expectations equilibrium in which all sellers can set their price flexibly,
all sellers choose the same list price and pt = E

⌦

t

[pt], so there is no relative price to affect the
markup. A shock to home values thus causes list price to jump proportionally to the seller’s outside
option, and there is no momentum. In the terminology of Ball and Romer (1990), concave demand
is a real rigidity that only amplifies nominal rigidities. Consequently, I introduce a small amount of
insensitivity of prices to generate some initial momentum.

4.4 Source of Insensitivity: A Small Fraction of Rule-of-Thumb Sellers

There are several sources of initial price insensitivity that likely exist in housing markets. These
include price adjustment costs and infrequent adjustment more generally, information frictions,
and backward looking sellers. In this paper, I focus on a small fraction of rule-of-thumb sellers (a
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previous working paper draft considered staggered pricing, which was amplified substantially but
too small of an initial friction to generate the momentum in the data). I leave the analysis of other
sources of insensitivity to future work.

Since Case and Shiller (1987), sellers with backward-looking expectations have been thought to
play an important role in housing markets. Previous models assume that all agents have backward-
looking beliefs (e.g., Berkovec and Goodman, 1996), but some observers have found the notion
that the majority of sellers are non-rational unpalatable given the financial importance of housing
transactions for many households. Some fraction of sellers, however, may not find it worthwhile
to scrutinize current market conditions due to information costs. I introduce a small number of
rule-of-thumb sellers, as in Campbell and Mankiw (1989), and assess quantitatively what fraction
of sellers is needed to be non-rational to explain the momentum in data, similar to Gali and Gertler
(1999).

I assume that at all times a fraction 1�↵ of sellers are of type R (rational) and set their list price
pRt rationally according to Lemma 2 and (25) but a fraction ↵ of sellers are of type E (extrapolator)
and use a backward-looking rule of thumb to set their list price pEt . Specifically, they follow an
AR(1) rule:

pEt =

pt�2

+ pt�3

+ pt�4

3

+  

✓

pt�2

+ pt�3

+ pt�4

3

� pt�5

+ pt�6

+ pt�7

3

◆

, (26)

where pt is the transaction-weighted average price at time t:

pt =
↵dEt p

E
t + (1� ↵) dRt p

R
t

↵dEt + (1� ↵) dRt
. (27)

I use three-month lag to match the lag with which house price indices are released.23 Such an
AR(1) rule is a common assumption in models with backward-looking expectations and in the
New Keynesian literature and is frequently motivated by limited knowledge, information costs, and
extrapolative biases (e.g., Hong and Stein, 1999; Fuster et al. 2010). I microfound such a rule using
a model of limited information and near rationality in Appendix D.

For calibration, I asume that  that is attenuated relative to what one would find if one ran a
quarterly AR(1) in the model environment. This is consistent with Case et al. (2012), who survey
home buyers for four metropolitan areas from 2003 to 2011 and show that the average predicted
amount of price appreciation at a one-year horizon is approximately 43 percent of the actual amount
of appreciation. An attenuated AR(1) coefficient is also consistent with psychological theories in
which agents overweight and “anchor” on recent observable prices (see Barberis et al., 1998).

I make two additional assumptions for tractability and parsimony that are not crucial for the
results. First, I assume that regardless of whether rational or backward-looking sellers sell faster,
inflows adjust so that ↵ of the active listings are houses owned by backward-looking sellers at all

23I use three-month averages to correspond to how price indices like the closely watched Case-Shiller index are
constructed and to smooth out saw-tooth patterns that emerge with non-averaged multi-period lags. A shorter
AR(1) lag would require more backward-looking sellers to match the data.
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times. Second, I assume that entry occurs according to the threshold rules (9) and (10) using
rational value functions. I also assume that all sellers of each type are alike, and I continue to
assume a symmetric equilibrium. To conserve notation, St refers to the total number of sellers, but
V s
t is now the value function for the rational sellers. V s

t remains as in equation (24), and the value
function of a buyer remains (23), but now there are two prices pEt and pRt in the market.

4.5 Equilibrium

I add a stochastic shock process to the model to examine its dynamic implications. The propagation
mechanism for momentum does not qualitatively depend on any particular shock. However, the
positive correlation between price and volume in the data implies that demand-side shocks dominate.
Although the particular type of demand shock introduced to the model is not important for the
results, I use a shock to the flow utility of being a renter u that changes the relative value of
homeownership for potential entrants. This takes a cue from Wheaton and Lee (2009), who show
that changes in the frequency of transitions between renting and owning due to credit conditions
are a precipitating shock for housing cycles. An example of such a shock would be a change in
credit standards for new homeowners. I implement the shock by assuming that ut = u+ xt, where
xt is an AR(1) process understood by the forward-looking agents:

xt = ⇢xt�1

+ ⌘t with ⌘t ⇠ N
�

0,�2⌘
�

and iid. (28)

An equilibrium with a fraction ↵ of backward-looking sellers is then defined as:

Definition 1. Equilibrium with a fraction ↵ of backward-looking sellers is a set of prices pit, demands
d
⇣

pit,⌦t, ˜✓t

⌘

, and purchase cutoffs "⇤,it for each type of seller i 2 {E,R}, a transaction-weighted
average price pt, rational seller, buyer, homeowner, and renter value functions V s

t , V b
t , V h

t , and V r
t ,

a probability that buyers follow the signal �t, entry cutoffs c⇤t and k⇤t , stocks of each type of agent
Bt, St, Ht, and Rt, and a shock to the flow utility of renting xt satisfying:

1. Optimal pricing for rational sellers (25) and the pricing rule (26) for backward-looking sellers,
which depends on lagged transaction-weighted average prices (27);

2. Optimal purchasing decisions by buyers: "⇤,it = pit + b+ �V b
t+1

� V h
t ;

3. The demand curve for each type of seller i 2 {E,R} in the f submarket (13), the d submarket,
(14), and the aggregate (15), all of which result from buyer search behavior;

4. Optimal entry decisions by homeowners and renters who receive shocks (9) and (10);

5. The value functions for buyers (23), rational sellers (24), homeowners (11), and renters (12);

6. The laws of motion for buyers (16) and sellers (17) and the closed system conditions for homes
(18) and people (19) that implicitly define the laws of motion for homeowners and renters;
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7. Buyers are indifferent across markets (22);

8. All agents have rational expectations that ut = u + xt where the shock xt evolves according
to the AR(1) process (28).

The model cannot be solved analytically, so I simulate it numerically using a log-cubic approximation
pruning higher order terms as in Kim et al. (2008) around a steady state described in Appendix D
in which xt = 0 8 t implemented in Dynare (Adjemian et al., 2013).24 The Appendix shows that the
impulse responses are similar in an exactly-solved model with a permanent and unexpected shock.

5 How Much Can Concave Demand Amplify Momentum?

To quantitatively assess the degree to which concave demand curves amplify house price momentum,
this section calibrates the model to the empirical findings presented in Section 3 and a number of
aggregate moments.

5.1 Calibration and Estimation

In order to simulate the model, 26 parameters listed in Table 7 must be set. This section describes
the calibration procedure and targets, with details deferred to Appendix E.

Three components of the calibration control the shape of the demand curve and thus have a
first-order impact on momentum: the local density of the idiosyncratic quality distribution F (·)
controls the elasticity of demand for low-priced homes that are certain to be visited; �, the logistic
variance parameter of the signal, controls how much the elasticity of demand changes as relative
price increases; and µ, the threshold for being overpriced, controls where on the curve the average
price lies. The other parameters affect momentum mainly through equilibrium feedbacks and largely
have a second order effect on momentum. Consequently, the first step of the calibration estimates
the parameters that control the local density of F (·), µ, and � to match the instrumental variable
micro estimates presented in Section 3. The second step calibrate the rest of the model to match
steady state and time series aggregate moments.

For the first step, I approximate the probability of sale as a function of a few key parameters,
the relative list price I observe in the data, and a fixed effect that absorbs the aggregate market
conditions so that the model can be directly compared to my empirical specification. This allows
me to approximate the model with the heterogeneity in the data out of steady state for the purposes
of calibration and then conduct dynamic simulations with the heterogeneity suppressed to maintain
a tractable state space. Specifically, Appendix D shows that the probability of sale at the time the

24Because of the mass point in the F (·) distribution, the model is not smooth. However, a perturbation approach is
appropriate because the mass point at "̄ is virtually never reached (less than 0.01 percent of the time in simulations).
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list price is posted can be approximated as:

d (pt � E
⌦

t

[pt]) ⇡ t (1� F ("⇤mean + pt � E
⌦

t

[pt]))⇥ (29)
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where t is a fixed effect that summarizes the state of the market at time t, and "⇤mean and �mean are
the mean values of these variables over the cycle. Appendix D also explains why the approximation
error is small.

Given data on pt�E
⌦

t

[pt], a parameterization for F (·), �, µ, ⇠
d

⇠f
, "⇤mean, and t, I can then solve

for �mean by approximating it by its steady state value which can be found using a steady-state
version of (22). (29) can then be used to simulate a demand curve that can be compared to the IV
binned scatter plot.

This approach requires assuming values for several parameters. I assume a value for "⇤mean =

$100k, which I show in robustness tests is a normalization that has no impact on the economics of
the model. I also assume a value of ⇠d/⇠f = 1/2. This is a parameter that has no analog in the
data, and I show in robustness checks that it is of minimal importance for my quantitative results.
I choose a value of 1/2 to limit the degree of non-convexity in the model.25 Recalling that F (·) is a
uniform distribution on [", "̄] with a point of mass � at "̄, I introduce two additional moments that
along with the assumed "⇤mean and density pin down the three parameters of F (·). These are the
average fraction of home inspections that lead to a purchase 1 � F ("⇤mean) and the average mean
excess function E ["� "⇤mean|" > "⇤mean]. I set the average fraction of home inspections that lead to
a purchase to 1/10 to match buyer surveys from National Association of Realtors surveys analyzed
by Genesove and Han (2012). I choose a target for the mean excess function to match a target
for the buyer flow cost of b = �$10, 000. There is little evidence on costs incurred by buyers, so I
set the search cost equal to that for sellers described below. I show in robustness checks that this
calibration target does not affect my results on momentum, which are unchanged with a search cost
of $5,000.

Given these assumed parameters, I use equation (29) to calibrate the local density of F (·), µ,
and � to 25 ordered pairs (pb, db) corresponding to the log relative markup plus the mean log price
in the market and probability of sale within 13 weeks for each of 25 bins b of the distribution of
the relative markup. The data is identical to Figure 3, except I drop 2.5 percent of the data from
each end instead of 1 percent to minimize the importance of outliers. I solve for t to match the
average probability of sale, and use the steady state version of (22) and (29) to simulate d (pb) in
the model for each pb. Because the zero point corresponding to the average price is not precisely

25As discussed above, the seller’s problem is non-convex. If ⇠d is high enough relative to ⇠f , sellers will have an
incentive to deviate and set a price of "̄ when prices are rising and buyers visit rarely. Appendix D shows numerically
that with ⇠d/⇠f = 1/2 this happens less than .001 percent of the time and is thus not an issue. Empirically, I rule
out a substantially higher ⇠d because the stronger incentive to deviate would generate asymmetries in house prices
not present in the data.
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Figure 6: Model Fit Relative to Instrumental Variable Estimates
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Notes: The Xs are the binned scatter plot from the IV specification with 2.5% of the data from each end excluded to reduce

the effects of outliers. The dots are the simulated probabilities of sale at each price calculated using (29) and approximating �
t

by its steady state value using (22) as described in the text.

estimated and depends on the deadline used for a listing to count as a sale, I choose the average
price so that the elasticity of demand implies a monthly seller search cost of approximately $10,000
based on evidence from Genesove and Mayer (1997) and Levitt and Syverson (2008) described in
Appendix E.26 I conduct robustness checks on this figure below. Conditional on the average price,
the best fit (density,�, µ) is chosen to minimize the mean squared error ⌃b

�

db � d3 month
(pb)

�

/25

where d3 month
(·) is a simulated 3-month sale probability based on (29).

Figure 6 shows the IV binned scatter plot in Xs and the model’s predicted d (pb) for the
(density,�, µ) that minimize the distance between the model and the data in circles. The fit
suggests that the demand curve in the calibrated model captures the curvature in the data well.

The second step in the calibration is to match a number of aggregate steady state and stochastic
moments given "̄, ", �, �, and µ and the other calibration targets from the first step.

I set the remaining parameters to match steady state moments listed in the first three panels
of Table 6 as detailed in Appendix E. These targets are either from other papers or are long-run
averages for the U.S. housing market, such as the homeownership rate, the average amount of time
between moves for buyers and renters, and the average time on the market for buyers and sellers.
A few parameters are based on limited data or assumed, and the results are not sensitive to the
chosen values as shown in Section 5.4. I also match three time series moments as indicated by the
bottom panel of Table 6. The monthly persistence of the shock is set to match the persistence
of local income shocks as in Glaeser et al. (2014). The final parameters are set to match the

26The seller search cost is likely large because of the nuisances and uncertainties involved and the need to move
quickly. Another factor, highlighted by Anenberg and Bayer (2014), is the high cost of simultaneously holding two
homes, which pushes households to sell quickly before buying.
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Table 6: Calibration Targets

Steady State Parameter or Moment Value Source / Justification

Parameters

� (Matching Function Elasticity) .8 Genesove and Han (2012)

L (Prob. Stay in MSA) .7 Anenberg and Bayer (2013)

Aggregate Targets

Annual Discount Rate 5%

Time on Market for Sellers 4 Months Approx average parameter value in literature

Time on Market for Buyers 4 Months ⇡ Time to sell (Genesove and Han, 2012)

Homeownership Rate 65% Long run average, 1970s-1990s

Time in House For Owner Occupants 9 Years American Housing Survey, 1997-2005

Time Between Moves for Renters 29 Months American Housing Survey, 1997-2005

c⇤ (Cost Marginal H Pays to Avoid Move) $37.5k Moving cost 5% of price (Haurin & Gill, 2002)

k⇤ (Cost Marginal R Pays to Avoid Buying) -$20k Tax benefit of owning 29 months (Poterba & Sinai, 2008)

Prob Purchase | Inspect 0.1 Mean buyer visits 10 homes (Genesove and Han, 2012)

Assumed Values

Time Between Shocks for Homeowners 29 Months Same as renter

Steady State Price $732k Average transaction price in IV sample

h (Flow Utility of Homeowner) $6.5k 2/3 of house value from expected flow util

⇠d/⇠f 0.5 Limited Incentive to “Fish”

"⇤ in steady state $100k Normalization

b (Flow Utility of Buyer) ⇡-$10k Same as seller

s (Flow Utility of Seller) ⇡-$10k Genesove and Mayer (1997), Levitt and Syverson (2008)

Time Series Moments

SD of Annual Log Price Changes .065 CoreLogic national HPI adjusted for CPI, 1976-2013

⇢ (Monthly Persistence of AR1 Shock) .990 Persistence of income shocks (Glaeser et al., 2014)

Price Elasticity of Seller Entry .878 CoreLogic, Census, and NAR, 1976-2013

standard deviation of annual log price changes and the elasticity of seller entry with respect to price
in stochastic simulations.27

Finally, I set the AR(1) coefficient  to 0.4 following evidence from Case et al. (2012). Using
surveys of home buyers they show that regressing realized annual house price appreciation on house-
holds’ ex-ante beliefs yields a regression coefficient of 2.34. I use this survey evidence to calibrate
the beliefs of the backward-looking sellers by dividing the approximate regression coefficient one
would obtain in quarterly simulated data (approximately 0.94) by their coefficient.

I adjust ↵ and recalibrate the model until the impulse response to the renter flow utility shock
matches the matches the 36 months of positively autocorrelated price changes in the AR(5) impulse

27Because the stock of buyers is not observed, I cannot similarly calibrate for the buyer entry elasticity. Conse-
quently, I assume the density of buyer entry costs is the same as the density of seller entry costs. Seller entry tends
to track volume, so buyer entry cannot have a substantially different density.
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Table 7: Calibrated Parameter Values for Rule of Thumb Model

Parameter Interpretation Value Parameter Interpretation Value

� Monthly Discount Factor 0.996 V 0 NPV of Leaving MSA $3,921k

� Matching Fn Elasticity 0.8 h Flow Util of H $6.5k

⇠f Matching Fn Efficiency, Follow 2.570 u Flow Util of R $2.084k

⇠d Matching Fn Efficiency, Defy 1.285 b Flow Util of B (search cost) -$9.960k

�h Monthly Prob H Moving Shock 0.035 s Flow Util of S (search cost) $-10.157k

�r Monthly Prob R Moving Shock 0.035 "̄ Upper Bound of F Dist $215.7k

c̄ Upper Bound, H Entry Cost Dist $458k " Lower Bound of F Dist -$7,915k

c Lower Bound, H Entry Cost Dist -$1,108k � Weight of Mass Point at "̄ 0.087
¯k Upper Bound, R Entry Cost Dist $407k � Variance Param of Signal Noise 7.083

k Lower Bound, R Entry Cost Dist -$1,159k µ Threshold for Signal 13.307

N Population 1.484 �
⌘

SD of Innovations to AR(1) shock 0.270

L Prob Leave MSA 0.7 ⇢ Persistence of AR(1) shock 0.990

 AR(1) Param in Rule of Thumb 0.4 ↵ Fraction Backward Looking 0.375

Notes: The calibration is monthly.

response estimated on the CoreLogic national house price index in Section 2. Table 7 summarizes
the calibrated parameter values.

5.2 Amplification of Momentum in the Calibrated Model

The model reaches a 36-month impulse response as in the data when 37.5 percent of sellers are
backward looking.28 To assess the degree of amplification of momentum in the calibrated model,
Figure 7 compares the model to the estimated impulse response from the data, to a model without
backward-looking sellers, and to a model with backward-looking sellers but without concave demand.
To do so, it presents the impulse response to the model shock to the flow utility of renters. The
impulse response is computed as the average difference between two sets of simulations that use the
same sequence of random shocks except for one period in which an additional standard deviation
shock is added. I contrast the model impulse responses with the impulse response to a one standard
deviation price shock to the quarterly CoreLogic national house price index estimated from an
AR(5), as in Section 2.

The solid line shows the model impulse response with 37.5 percent backward-looking sellers,
while the dotted line shows the estimated AR(5) impulse response from the CoreLogic data with
the 95 percent confidence interval shown as thin grey lines.29 The two impulse responses are similar,
although the model impulse response grows less at the beginning and is slightly more S-shaped than
the AR(5) impulse response. This is the case because backward-looking sellers are insensitive to
the shock for several months and so the growth rate of prices takes a few months to accelerate.

28With additional initial sources of price insensitivity it is likely that the 37.5 percent figure could be reduced even
further. Intuitively, concave demand creates an incentive to price close to others that interacts with any source of
heterogenous price insensitivity to create additional momentum.

29Appendix F shows the impulse responses to shocks that cause price declines are symmetric, as in the data.
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Figure 7: Price Impulse Response Functions: Model and Data
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Notes: The figure shows the impulse responses to a one standard deviation shock to the flow utility of renting in the backward-

looking model with and without concavity as well as the fully-flexible model. The calibration removing concave demand

maintains the average elasticity of demand and is detailed in Appendix D. Also shown in the figure in the dotted black line

and with grey 95% confidence intervals and on the right axis is the impulse response to a one standard deviation price shock

estimated from a quarterly AR(5) for the seasonally and CPI adjusted CoreLogic national house price index for 1976-2013, as

in Figure 1. Simulated impulse responses are calculated by differencing two simulations of the model from periods 100 to 150,

both of which use identical random shocks except in period 101 in which a one standard deviation negative draw is added to

the random sequence, and then computing the average difference over 100 simulations.

The dashed line shows the model without backward-looking sellers but with concave demand.
In this case, the optimal price jumps nearly all the way to its peak level and then gradually mean
reverts. There is almost no momentum because there is no initial stickiness for the strategic com-
plementarity to amplify.

Finally, the dash-dotted line shows a model without concave demand calibrated so that the
elasticity of demand for the average house is the same as in the model with concave demand, as
detailed in Appendix D. Prices jump over half of the way to their peak value upon the impact
of the shock and continue to rise for five months, at which point they begin to mean revert. One
can generate a 36 month impulse response without concave demand, but this requires 73 percent of
sellers to be backward looking.

Far fewer backward-looking sellers are needed to match the data with concave demand because
the strategic complementarity creates a two-way feedback. When a shock occurs, the backward-
looking sellers are not aware of it for several months, and the rational sellers only slightly increase
their prices so that they do not dramatically reduce their chances of attracting a buyer. When the
backward-looking sellers do observe increasing prices, they observe a much small increase than in
the non-concave case and gradually adjust their price according to their AR(1) rule, reinforcing the
incentives of the rational sellers not to raise their prices too quickly.
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Table 8: Robustness to Calibration Targets

Calibration ↵ for 36-Month IRF Calibration ↵ for 36-Month IRF

Baseline 0.375 h = $7.5k 0.375

c⇤ = $0, k⇤ = $0 0.375 ⇠d/⇠f = 3/4 0.385

"⇤
mean

= $50k 0.375 b = �$5k 0.375

"⇤
mean

= $150k 0.375 s = �$5k 0.410

h = $5.5k 0.375 s = �$5k and b = �$5k 0.410

Notes: Each line alters a single calibration target from the baseline, fully recalibrates the model, and reports the ↵ necessary

to generate a 36-month impulse response.

5.3 Loss From Failure to Optimize

In equilibrium, the loss the backward-looking sellers experience due to their failure to optimize is
typically small. To calculate this loss, I define a value of being a backward-looking seller analogously
to (24) as:

V s,E
t = s+ �V s,E

t+1

+ d
⇣

pEt ,⌦t, ˜✓t

⌘⇣

pEt � s� �V s,E
t+1

⌘

. (30)

The median loss from being an extrapolative seller V s
t �V s,E

t is $2,674 or about 0.37 percent of the
average sales price, while the mean loss is $5,449 or 0.74 percent of the average sales price. This
implies a median loss from posting an extrapolative price per month of about $670. While the loss
rises in down markets when backward-looking sellers have high prices and take much longer to sell,
the on-average small loss illustrates that the explanation for momentum I propose is not one of mass
non-rationality by a few—which Glaeser and Nathanson (2015) have criticized—but rather one of
minor non-rationality by a few.

5.4 Robustness

Several of the targets used in the calibration use assumed values or have limited empirical support.
Table 8 shows that the degree of momentum generated by the model is not sensitive to these
calibration targets, which are largely normalizations. In particular, it shows that the assumed
calibration targets for c⇤ in steady state, k⇤ in steady state, "⇤mean, h, and b have absolutely no
effect on the fraction of backward-looking sellers needed to generate a 36-month impulse response.
⇠d/⇠f does have a small effect, as if this is increased from 0.5 to 0.75 one percent more backward-
looking sellers are needed to generate a 36-month impulse response.

The most important parameter is the target for s. If this falls from -$10k to -$5k, 41 percent
of sellers need to be backward-looking to generate a 36-month IRF. This is because the markup in
steady state falls with a lower s and thus the markup has less ability to fluctuate counter-cyclically
to generate momentum.
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Figure 8: Impulse Response Functions of Non-Price Variables
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by differencing two simulations of the model from periods 100 to 150, both of which use identical random shocks except in

period 101 in which a one standard deviation negative draw is added to the random sequence, and then computing the average

difference over 100 simulations.

6 Can Momentum Explain the Cyclicality of Price and Inventory?

This section argues that momentum helps explain the excess volatility of inventory and the housing
Phillips curve introduced in Section 2. These features arise because some buyers and sellers re-time
their sales and purchases in light of predictable price changes, creating volatility in the inventory of
homes for sale that is correlated with price changes.

6.1 Intuition From Impulse Responses

To illustrate the intuition behind these results, Figure 8 shows the impulse responses of price, sales
volume, months of supply, and buyer and seller entry in a model without backward-looking sellers
(dashed) and in a model with 37.5 percent backward-looking sellers (solid). Recall that the shock
reduces the value of being a renter and increases the incentives to enter the market to buy.

Without backward-looking sellers, price jumps immediately and gradually returns towards the
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stochastic steady state, so there is not a strong incentive to buy or sell today relative to tomorrow.
Buyer entry and seller entry, shown in panel D in dashed and dash-dotted lines, respectively, both
jump on impact due to the change in the relative value of homeownership and the elevated house
price. Buyer entry is slightly higher for 18 months as the ratio of buyers to sellers slowly rises until
it settles on a stable transition path to the stochastic steady state. The slow adjustment of market
tightness, in turn, causes a gradual increase in volume and decrease in months of supply.

By contrast, the momentum generated with a small fraction of backward-looking sellers makes
price changes predictable. This creates an incentive for potential buyers on the margin of entering to
enter today rather than waiting and for sellers on the margin of entering to wait to do so until prices
rise.30 The entry responses are shown as the solid (buyer entry) and dotted (seller entry) lines in
panel D. The gap between these lines is substantial, particularly relative to the no-backward-looking
case. The excess buyer entry causes inventory to fall substantially for 18 months as shown in panel
C, which is why inventory becomes so much more volatile. Because inventory adjusts rapidly while
prices gradually adjust, this creates a negative relationship between price changes and inventory
levels. Indeed, inventory begins to mean revert when buyer entry falls below seller entry, which
happens almost exactly as the speed of price adjustment stops rising and starts falling.

6.2 The Excess Volatility of Inventory

In housing search models without momentum, inventory is too smooth. The top half of Table 9
shows the standard deviation of annual changes of log price, log volume, and log months of supply
in the data and three versions of the model. In the model without backward-looking sellers, months
of supply is about a sixth as volatile and sales volume less a third as volatile as the data.

This is not unique to my particular model. In a broad class of housing search models, combining
the steady-state value of being a seller with the steady-state price and differentiating yields a
condition of the form:

dp

dPr [Sell]
=

Seller Surplus

1� �
.

This steady state response illustrates that if the seller surplus is not miniscule, price is very sensitive
to the probability of sale, which is mechanically related to inventory and sales volume.31 The relative
volatility of volume and inventory are also low due to the gradual dynamic adjustment of market
tightness as shown in the impulse responses.

30In the model, this operates through the entry cutoffs c⇤
t

and k⇤
t

, which are defined by differences of value functions
in equations (9) and (10). For instance, the cutoff cost for a renter to enter k⇤

t

= V r

t

�V b

t

. Because the value function
of being a renter V r

t

accounts for the likelihood of getting a shock and entering as a buyer in the future, when
prices are expected to rise V r

t

falls relative to V b

t

, k⇤
t

falls, and the mass of buyer entrants, which is proportional to
1�K (k⇤

t

), rises.
31Diaz and Jerez (2013), for example, explain the relative volatilities in a model without momentum by using

a calibration in which the seller surplus is 0.5% of the purchase price. Consequently, they argue that price is too
insensitive and volume and time on the market are too sensitive to shocks and introduce a model with amplified price
volatility. My calibration, which uses a seller surplus that is approximately 7.0% of the steady state price, implies
that price is too volatile without additional frictions. Head et al. (2014) make a similar point that momentum reduces
price volatility.
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Table 9: Quantitative Performance of Calibrated Models

Data No Backward Looking 37.5% Backward Looking

SD Annual � log (Real Price) 0.065 0.066 0.065}

SD Annual � log (Sales) 0.143 0.055 0.076
SD Annual � log (Inventory) 0.207 0.034 0.250

Regression Coefficient of -.140 0.146 -0.231
log (Inventory) on �

yr

log (Real Price) (.015) (.026) (.007)
Regression R2 .543 0.039 0.787

Notes: } indicates the model is calibrated to match the data. All are statistics calculated as means of 200 random simulations

of 500 years. The standard deviations of annual log changes in the model are calculated by collapsing simulated data to the

quarterly level, taking logs, and reporting the quarterly standard deviations of annual differences. Inventory is measured as

months of supply. The regression of log price changes on log inventory levels is as in equation (31), with inventory measured

as months of supply at the midpoint of the year differenced to calculate the log change in price. The model without backward

looking sellers uses the same calibration as the the 37.5% backward looking calibration except for ↵.

The low volatility of inventory is directly analogous to labor search models. Shimer (2005)
shows that unless the employer surplus is tiny, labor search models have difficulty accounting for
the volatility of unemployment because most of the response to a shock is absorbed by the wage.
Here, the unemployment rate is analogous to inventory and the wage rate is analogous to price.

Like sticky wages in labor search models, momentum makes house prices adjust more slowly and
slightly reduces price volatility. Quantities adjust slightly more and inventory adjusts substantially
more, as shown in the impulse responses and Table 9, which shows the standard deviation of annual
changes for log price, log sales, and log inventory averaged over 200 500-year simulations. Inventory
is a bit too volatile in the calibrated model, although it is of the same order of magnitude as the
data in contrast to the model without backward-looking sellers. The volatility of sales volume, on
the other hand, falls short of the data, which suggests that other factors, such as lock in due to
equity (Stein, 1995), may play a role in amplifying volume volatility. Appendix B shows that the
model’s strongest prediction about relative volatilities—that momentum and inventory volatility
are positively correlated—is borne out in a cross-section of cities.

6.3 Housing Phillips Curve

In the data, price changes are strongly negatively correlated with inventory levels, creating a “hous-
ing Phillips curve.” Without backward-looking sellers, price changes are negatively correlated with
inventory changes, albeit weakly because the inventory response is delayed due to gradual entry and
search frictions. With persistent but mean reverting shocks, this generates a positive correlation
between price changes and inventory levels because when inventory is high, prices are low and tend
to rise towards the stochastic steady state. This can be seen in the bottom half of Table 9, which
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shows a regression coefficient �
1

in:

�t,t�4

log (p) = �
0

+ �
1

log (MSt�2

) + ", (31)

estimated on simulated quarterly data. For a model without pricing frictions, the regression coeffi-
cient is significantly positive, although with a small R-squared.

With momentum, inventory rapidly adjusts and then mean reverts while price appreciation grows
and then gradually weakens. This creates a strong negative correlation between price changes
and inventory levels. Table 9 shows that with 37.5 percent backward-looking sellers, a robust
negative relationship emerges. In fact, the relationship is slightly stronger than in the data with a
larger regression coefficient and an R-squared of nearly 0.8. Appendix B shows that the housing
Phillips curve is stronger in terms of the magnitude of �

1

and explanatory power in cities with more
momentum, which is consistent with the model.

7 Conclusion

The degree and persistence of autocorrelation in house price changes is one of the housing market’s
most distinctive features and greatest puzzles. This paper introduces a mechanism that amplifies
small frictions that have been discussed in the literature into substantial momentum. Search frictions
and concave demand in relative price together imply that increasing one’s list price above the
market average is costly, while lowering one’s list price below the market average has little benefit.
This strategic complementarity induces sellers to set their list prices close to the market average.
Consequently, modest price insensitivity to changes in fundamentals can lead to prolonged periods
of autocorrelated price changes as sellers slowly adjust their list price to remain close to the mean.

I provide evidence for concave demand in micro data and introduce an equilibrium search model
with concave demand that is calibrated to match the amount of concavity in the micro data.
The amount of amplification provided by the strategic complementarity is significant: if just 37.5
percent of sellers use a backward-looking rule of thumb, the impulse response to a shock lasts for
three years. Without concave demand, 73 percent of sellers would have to be backward-looking to
obtain the same result. Importantly, in equilibrium the backward-looking sellers’ failure to optimize
is on average not very costly. The explanation for momentum proposed here is thus one of small
non-rationality by the few.

Concave demand also amplifies other pricing frictions beside backward-looking sellers. In par-
ticular, it interacts with any friction that creates heterogeneity in the speed of price adjustment
because the incentive to price close to the average makes sellers who would change their price quickly
instead respond sluggishly. Assessing whether a model with concave demand and other frictions,
such as learning about fundamentals or gradually-spreading belief disagreement, can quantitatively
explain momentum without appealing to non-rationality is an important path for future research.32

32Incomplete information and learning may be particularly potent. Strategic complementarities in such a framework
can cause very gradual price adjustment even if first-order learning occurs rapidly because the motive to price close
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Beyond the housing market, this paper shows how a central idea in macroeconomics—that
strategic complementarities can greatly amplify modest frictions—can be applied in new contexts.
These contexts can, in turn, serve as empirical laboratories to study macroeconomic phenomena
for which micro evidence has proven elusive. In particular, many models with real rigidities (Ball
and Romer, 1990) use a concave demand curve. This paper provides new evidence that a concave
demand curve in relative price is not merely a theoretical construct and can have a significant effect
on market dynamics.

to others makes higher order beliefs matter. Learning about higher order beliefs is more gradual—which in turn
makes price adjustment more gradual—because agents must learn not only about fundamentals but also about what
everyone else has learned as in a Keynesian beauty contest.
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