
Replication Package Readme for
“The 2000s Housing Boom With 2020 Hindsight:

A Neo-Kindlebergerian View”

Gabriel Chodorow-Reich, Adam Guren, and Timothy McQuade

October 2022

This preliminary readme document explains the code used in our paper (it will be ex-
panded and updated soon). Section 1 explains the code for the results in sections 2 and 4 and
Appendix B. Section 2 explains how we solve the model computationally and explains the
files used to calculate the global model solution and impulse responses. Section 3 explains
how we conduct our simulated method of moments estimation and calculate our final model
results.

1 Files for Sections 2 and 4 and Appendix B

The subfolder “data/code” contains eponymous Stata .do files to create each table and figure
in Sections 2 and 4 and Appendix B. For example, running fig1.do creates figure 1 of the
paper. The file masterfile.do creates all of the tables and figures in these sections. The file
masterfile.do also calls two files, smm-data.do and ltv-scf.do, that produce data sets used
in the model estimation. For completeness, the folder also contains the files cbsa-merged-
data.do and prep-cbsa-data.do which were used to create our CBSA-level data set.

2 Model Computation

In this appendix, we detail the computational approach we employ for solving the model.
We first discuss approximating the Fokker-Plank partial differential equation via polynomial
projection methods. We then discuss how we use a sparse grids approach for our global
solution method. Finally, we discuss how Monte-Carlo simulation methods are employed in
our iterative global solution method to compute equilbirum mortgage pricing.

1

2.1 Approximating the Fokker-Plank Equation

The infinite-dimensional distribution of mortgage balances is a key state variable in our
model. The measure density g (M, t) of this distribution follows the Fokker-Plank equation:

∂

∂t
g (M, t) = (It + ι)Htϕ (M/Pt) /Pt − ιg (Mt) (1)

where ι is the arrival rate of liquidity shocks and ϕ (·) is the LTV origination distribution.
We approximate the loan balance distribution with a Chebyshev series:

g (M, t) =
N∑
i=0

αi (t)Ti (M) ,

with Ti (M) = cos

(
i ∗ arccos

(
M −

(
Mu +M l

)
/2

(Mu −M l) /2

))
the (scaled) ith Chebyshev polynomial of the 1st kind and Mu,M l the upper and lower
bounds of the mortgage balance distribution. The coefficients αi (t) are set so that the
polynomial series interpolates the true measure density at (M1, ...,MN) collocation points.
We set the collocation nodes to be the (scaled) Chebyshev-Gauss-Lobato (CGL) points:

Mi =
1

2

(
Mu +M l

)
− 1

2

(
Mu −M l

)
cos

(
iπ

N

)
,

equal to the (N − 1) extrema of the N th Chebyshev polynomial plus the endpoints. We thus
require:

N∑
i=1

αi (t)Ti (Mj) = g (Mj, t) for j = 1, ..., N.

Using (1), we find the system of differential equations governing the coefficients:

N∑
i=0

α′
i (t)Ti (Mj) = (It + ι)Htϕ (Mj/Pt) /Pt −

N∑
i=0

ιαi (t)Ti (Mj) .

Letting A∗Ti (M) = ιαi (t)Ti (M) we have:

α′ (t) = T (M)−1 [A∗T (M)α (t) + (It + ι)Htϕ (M/Pt) /Pt] ,

where: α (t) =

α0 (t)
...

αN (t)

 , T (M) =

T0 (M0) · · · TN (M0)
...

. . .
...

T0 (MN) · · · TN (MN)

 ,

2

which provides a finite-dimensional system of differential equations governing the evolution
of the coefficients of the Chebyshev expansion.

2.2 Sparse Grids

Using a Chebyshev series to approximate the loan balance distribution, the state variables
in the model are the current dividend Dt, current beliefs about the dividend growth rate
mθ

t , the current housing stock Ht, the moving average of past investment rates Īt, and the
vector of Chebyshev coefficients α (t) . Full grid methods for the global solution quickly run
into the curse of dimensionality. We thus employ sparse grid techniques to get the global
solution of the model. Our approach follows Judd et al. (2014).

We use the Smolyak construction for the sparse grids, once again utilizing Chebyshev-
Gauss-Lobatto (CGL) points, that is extrema of Chebyshev polynomials of the 1st kind. In
particlar, let d denote the number of state variables. The Smolyak construction proceeds
as follows. We first extract a subsequence of unidimensional grid points S1, S2, ... from the
extrema of the Chebyshev polynomials satisfying |S1| = 1 |Si| = 2i−1 + 1 for i > 1 and
Si ⊂ Si+1. The first such four nested sets are:

S1 = {0}
S2 = {0,−1, 1}

S3 =

{
0,−1, 1,

−1√
2
,
1√
2

}
S4 =

{
0,−1, 1,

−1√
2
,
1√
2
,
−
√

2 +
√
2

2
,
−
√
2−

√
2

2
,

√
2−

√
2

2
,

√
2 +

√
2

2

}
,

equal to the extrema of the 1st, 3rd, 5th, and 7th Chebyshev polynomials of the 1st kind.
To form multidimensional grid points, we can take d-fold products of the unidimensional

sets above. In particular, let:

Ki =
d∏

j=1

Sij

for i = (i1, ..., id). Finally, let µ ≥ 1 be the order of the approximation. Then, the Smolyak
sparse grid is formed as:

Hd,µ =
⋃

d≤|i|≤d+µ

Ki

where |i| = i1 + · · ·+ id.
We then construct an approximation to the true global solution f (x) : Rd → R as:

f̂ (x) =
M∑
n=1

cnΥn (x)

3

where Υn : Rd → R for n = 1, ...,M are a set of d-dimensional basis functions. We then set
the coefficients (cn)

M
n=1 by minimizing the L2-norm:

c = argmin
c

∥∥∥∥∥f (Hd,µ
)
−

M∑
n=1

cnΥn

(
Hd,µ

)∥∥∥∥∥
2

,

where f
(
Hd,µ

)
,Υn

(
Hd,µ

)
∈ R|Hd,µ| are vectors which evaluate the respective functions at

each element of the sparse grid Hd,µ.

2.3 Monte-Carlo Simulation and Global Solution Algorithm

The key challenge for the global solution is determining equilibrium mortgage pricing, which
takes the form of mortgage points:

Wt = Et

[
e−r(τ−t) (Mt − ψRPτ)

]
.

The difficulty is that the mortgage points depend (nonlinearly) on the equilibrium house price
function, but of course equilibrium house prices depend on equilibrium mortgage points.

We therefore follow an iterative procedure, in conjunction with Monte-Carlo simulation,
to solve for the global solution. Let W 0

(
Hd,µ

)
be an initial guess for equilibrium mortgage

points on the sparse grid Hd,µ. Then at iteration j:

1. Given the current solutionW j
(
Hd,µ

)
, solve for the equilibrium price function P j

(
Hd,µ

)
and equilibrium investment function Ij

(
Hd,µ

)
on the sparse grid.

2. Construct appproximants to the house price and investment functions P̂ j and Îj with
coefficients cjP , c

j
I using the procedure described in the previous subsection.

3. At each point of the sparse grid Hd,µ, use Monte-Carlo simulation with N trials to
simulate house prices forward.

(a) At each point of the sparse grid Hd,µ, simulate dividends and beliefs forward using
Euler-Maruyama method for the SDE system.

(b) Use the investment function approximant Îj to simulate forward the housing stock
and the house price approximant P̂ j to construct house prices at each step of the
simulation.

4. At each point of the sparse grid x ∈ Hd,µ, compute:

W (x) =
1

N

N∑
i=1

EP

[
e−rτ (M (x)− ψRPτ) 1 [τL < τC]

]
,

where the expectation EP [·] is conditional on the simulated future house prices for
that Monte-Carlo trial. This gives W j+1

(
Hd,µ

)
.

4

If
∥∥W j+1

(
Hd,µ

)
−W j

(
Hd,µ

)∥∥ < ε for some specified tolerance level ε > 0, then terminate

and construct the approximant Ŵ ∗ with coefficient c∗W . If not, move to iteration j + 1 and
return to Step 1. This procedure has the advantage of being highly parallelizable.

3 Simulated Method of Moments Estimation Proce-

dure

We run our simulated method of moments on the Boston University Shared Computing
Cluster (SCC) using Matlab in five steps. First, we grid over parameters to find a coarse
optimum for quartile four. We use the cluster for this step to break a large grid with millions
of parameter combinations into thousands of small chunks that can be run independently
and in parallel on separate nodes (we use over 1,000 at one time) and then stitched together.
Second, we refine to a finer grid and find a fine optimum for quartile four; this grid is
the grid pre-programmed into our replication code. Third, we run fine grids for the other
quartiles holding fixed some of the parameters estimated in quartile four; these grids are
pre-programmed into our replication code as well. To economize on computing resources, we
run the model without priced mortgages for the grids, so before moving on, in a fourth step
we check that the model with priced mortgages is very close to the model without priced
mortgages. This is the case for all but quartile one, so we run another grid for quartile
one (also pre-programmed) with priced mortgage. Fifth, we calculate rents (which is quite
computationally intensive) for the optimal parameters for each of the four quartiles and make
our final tables and figures.

We include in the replication package not only the Matlab code but also the files used to
run the Matlab files. In particular the BU SCC uses a batch scheduler, and we include the
.sh “shell” files used to submit jobs to the SCC cluster.

3.1 Step-By-Step Guide

The step-by-step guide to run this on the SCC (or a similar server is) is:

1. Create a folder called “SMM” on your server. Upload the “Template,”, “data moments”,
and “shared libraries” folders as well as the .sh files in the “shell files” folder to the
SMM folder.

• The “Template” folder is the folder that is copied for each chunk and contains all
the code to run the simulations for each parameter combination.

• The “shared libraries” folder contains shared Matlab computational libraries used
in the numerics.

• The “data moments” folder contains the data moments we load in to set some
parameters exogenously.

• You will need to update the directory paths in the .sh files.

5

• It is useful to run build mex.m in matlab now in the “Template” directory, which
will set up the mex files for parallelization on your server (you should also do this
in “model main” on your local computer.

2. Run “smm nopoints.sh’”. This submits 3,000 jobs to the server, each of which analyzes
a chunk of parameter combinations. It also runs the collector when everything is
done running. The collector’s output is “smm combined.mat.” We have included the
parameter grid we used for our fine final run; if you change something you may need
to adjust the parameter grid which you can do by finding it in “run smm nopoints.m.”

3. When the collector is done, download “smm combined.mat” to the “model main”
folder on your local machine and run “smm moments.m”. (Note that “model main” in-
cludes “smm combined.mat” after we ran things on the server for our final grid.) This
loads the moments from the “data moments” folder, finds the coarse optimum, and
saves it in “optimal params.mat.” At this point, if you change parameters, you may
need to adjust the grids in “run smm nopoints.m” and re-run until the coarse optimum
is in the interior of the grid. To clean things up, delete all the “smm [number]” folders
that were created by “run smm nopoints.m.” Also rename “smm combined.mat” on
the server.

4. Run “smm nopoints xc.sh.” This submits 3,000 jobs to the server, each of which ana-
lyzes a chunk of parameter combinations for the cross-sectional version (quartiles 1-4),
holding ϕ, κ, and ρ fixed at the values estimated for quartile four. It also runs the collec-
tor when everything is done running. We have included the parameter grid we used; if
you change something you may need to adjust the parameter grid which you can do by
finding it in “run smm nopoints xc.m.” If you have a different optimum from the one
we found in step two, you will need to update ϕ, κ, and ρ in “run smm nopoints xc.m”
as these are hard coded.

5. When the collector is done, rename the output “smm combined.mat” to “smm combined xc.mat.”
Download it to the “model main” folder on your local machine and run “smm moments xc.m.”
(Note that “model main” includes “smm combined xc.mat” after we ran things on the
server for our final grid.) This loads the moments from the “data moments” folder,
finds the coarse optimum, and saves it in “optimal params xc.mat.” At this point, if
you change parameters, you may need to adjust the grids in “run smm nopoints.m”
and re-run until the coarse optimum is in the interior of the grid.

6. Run “figures pointscompare.m” in the “model main” folder. This creates a plot that
compares the model wihtout priced mortgages with the model with priced mortgages
to see if we need to run a grid with priced mortgages. We find that the unpriced
mortgage model deviates very little from the priced mortgage model except in quartile
1.

7. Run “smm points xc.sh.” This submits 3,000 jobs to the server, each of which analyzes
a chunk of parameter combinations for quartile 1 only with priced mortgages. We do

6

not parallelize the calculation of points, so this runs very slowly.

8. When the collector is done, rename the output “smm combined.mat” to “smm combined xc q1.mat.”
Download it to the “model main” folder on your local machine and run “smm moments xc q1.m.”
(Note that “model main” includes “smm combined xc q1.mat” after we ran things on
the server for our final grid.) This loads the moments from the “data moments” folder,
finds the coarse optimum, and overwrites “optimal params xc.mat” with the priced
mortgage optimum for q1. At this point, if you change parameters, you may need to
adjust the grids in “run smm points.m” and re-run until the coarse optimum is in the
interior of the grid.

9. Copy the “Template” folder on the server and name it “postgrid rents.” Upload “op-
timal params xc.mat” to the folder and then Run “postgrid rents.sh” on the server.
This calculates the rents, which is computationally intensive, on the server and cre-
ates a file called “postgrid rents.mat” that includes the calculated rents. When it is
finished, download this to the “model main” folder on your local machine.

10. Create the tables and figures by running: “figure main.m” which creates the tables
and figures in the text and “figures pf.m” which creates the lender perfect foresight
figure in the appendix, all of which are saved in “model main/output.” In particular:

• moments.text, which is the bottom half of Table 2. The top half is entered
manually based on “optimal params xc.mat”

• paper crossicites.pdf, which is Figure 7.

• paper rents.pdf, which is Figure 8.

• paper structuralcombined.pdf, which is Figure 9.

• slides lenderforesight.pdf, chich is Figure C.1.

3.2 Ancillary Calibration Targets

Most of the calibration targets are loaded from csv files created in Stata as described in
section 1 (these can be found in the “data moments” folder or hard coded.

Two sets of calibration targets are worth further discussion. First, the repeat sales
residual standard deviation from DataQuick is used as a moment in our calibration procedure.
As described in Section 5.3 of the paper, we load all of the DataQuick deeds data from 1988-
2013 for non-distressed ales of single family homes and condominiums and run a repeat sales
regression of log price on house fixed effects and census tract-by-quarter fixed effects and use
the residuals to create this moment. The do file to run this analysis is “dq residuals.do” in
the “data moments” folder. We unfortunately cannot share the underlying data, which was
obtained from DataQuick by Harvard University. Second, we load the initial loan balance
distribution from the 1995 Survey of Consumer Finances. This file “ltv-scf-1995.csv” in teh
“data moments” folder is created by the do files described in Section 1. The “import LTV.m”
file in “model main” loads this and saves it in “LTV DATA”, which is used by the rest of
the model files.

7

4 File By File Summary

Coming Soon

8

